10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Parameter Efficient Fine-Tuning

Matt Gormley
Lecture 11
Feb. 21, 2024

Reminders

* Homework 3: Applying and Adapting LLMs
— Out: Wed, Feb 21
— Due: Thu, Feb 29 at 11:59pm

* Change to grace days policy:
— 8 grace days (instead of 6)
— may submit up to 4 days late (instead of 3)

PARAMETER EFFICIENT FINE-TUNING

Few-shot Learning with LLMs

Suppose you have...

« adataset D = {(x;, y;)}i-;N and N is rather small (i.e. few-shot setting)
« avery large (billions of parameters) pre-trained language model
There are two ways to “learn”

Option A: Supervised fine-tuning Option B: In-context learning
* Definition: fine-tune the LLM on the training data * Definition:
using... 1. feed training examples to the LLM as a
— astandard supervised objective prompt
— backpropagation to compute gradients 2. allow the LLM to infer patterns in the training
— your favorite optimizer (e.g. Adam) examples during inference (i.e. decoding)
* Pro: fits into the standard ML recipe 3. take the output of the LLM following the
* Pro:still works if N is large prompt as its prediction
* Con: backpropagation requires ~3x the memory * Con: the prompt may be very long and
and computation time as the forward Transformer LMs require O(N?) time/space where
computation N = length of context
* Con: you might not have access to the model * Pro: no backpropagation required and only one
weights at all (e.g. because the model is pass through the training data
proprietary) * Pro: does not require model weights, only API

access

Few-shot Learning with LLMs

Suppose you have...

There are two ways to “learn”

Option A: Supervised fine-tuning @

Definition: fine-tune the LLM on the training data
using...

— astandard supervised objective

— backpropagation to compute gradients

— your favorite optimizer (e.g. Adam)
Pro: fits into the standard ML recipe
Pro: still works if N is large
Con: backpropagation requires ~3x the memory
and computation time as the forward
computation
Con: you might not have access to the model
weights at all (e.g. because the model is
proprietary)

a dataset D = {(x;, ¥;)}i-:\ and N is rather small (i.e. few-shot setting)
a very large (billions of parameters) pre-trained language model

In this section, we consider the
question:

o the LLM as a

How can we do supervised fine-
tuning of a very large
foundation model more
efficiently?

atterns in the training
nce (i.e. decoding)
LM following the

* Con: the prompt may be very long and
Transformer LMs require O(N?) time/space where
N = length of context

* Pro: no backpropagation required and only one
pass through the training data

* Pro: does not require model weights, only API
access

Fine-Tuning vs. In-Context Learning

* Why would we ever bother with fine-tuning if it’s so inefficient?
* Because, even for very large LMs, fine-tuning often beats in-context learning

Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)
\N=" GPT-3 Few-Shot 40.6 69.0
N 7 GPT-3 Fine-Tuned 89.5 85.4
Question: Answer:

Why did fine-tuning of GPT-3 do so much
better on these two tasks than few-shot
learning?

Figure from http://arxiv.org/abs/2106.09685

Fine-Tuning vs. In-Context Learning

* Why would we ever bother with fine-tuning if it’s so inefficient?
* Because, even for very large LMs, fine-tuning often beats in-context learning

* In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT
outperforms ICL for most model sizes

I FT FT

125M 350M 13B 27B 67B 13B 30B 125M 350M 13B 27B 67B 13B 30B

125M —0.00 001 002 003 012 014 0.09 125M —0.00 0.00 77002° 0.01 7000011007
350M —0.00 001 002 003 012 014 0.09 350M —-0.00 0.00 002 001 010 011 007
1.3B —0.00 001 002 003 012 014 0.09 1.3B —0.01 —-0.00 001 001 010 011 0.07
5 (27B —000 001 002 003 012 014 0.09 5 27B —001 —000 001 001 009 010 0.07
~167B —0.00 001 0.02 003 0.14 0.09 = 67B —-001 —-001 001 000! 009 010 0.06
383 —004 —002 —001 —000 ‘TH9 011 0.05 13B —-0.03 —-003 —-0.02 —-0.02! 007 008 0.04
30B —011 —0.09 —0.08 —0.08 W 0.03 —0.02 30B —007 —007 —005 —006 003 004 0.00

(a) RTE (b) MNLI

Table 1: Difference between average out-of-domain performance of ICL and FT on RTE (a) and MNLI (b) across
model sizes. We use 16 examples and 10 random seeds for both approaches. For ICL, we use the gpt -3 pattern.
For FT, we use pattern-based fine-tuning (PBFT) and select checkpoints according to in-domain performance.
We perform a Welch'’s t-test and color cells according to whether: A
performs significantly better than ICL. For cells without color, there is no significant difference.

Figure from https://aclanthology.org/2023.findings-acl.779.pdf

10

Parameter Efficient Fine-Tuning

* Goal: perform fine-tuning of fewer parameters, but achieve
performance on a downstream task that is comparable to fine-

tuning of all parameters

* Various approaches:
— Subset: Pick a subset of the parameters and fine-tune only those (e.g.
only the top K layers of a K+L layer deep neural network)

— Adapters: add additional layers that have few parameters and tune only
the parameters of those layers, keeping all others fixed

— LoRA: learn a small delta for the each of the parameter matrices with
the delta chosen to be low rank

— Prefix Tuning: for a Transformer LM, pretend as if there exist many
tokens that came before your sequence and tune the keys/values
corresponding to those tokens

Fine-Tuning the Top Layers Only , &2

WWQ
. . 2,(,) L
* Simple baseline for PEFT: wy
— keep all parameters fixed N T% _ oosk e
except for the top K layers [fp(w.In,
— gradients only need to flow ‘ S
through K layers instead of i /"h 6{ h h
K+L total layers 1 i : ‘
— reduced memory usage b/c . Ny o N
here
we don’t need to store the P Eradien [Transformer layer
- : t. d t
adjoints (gradient of the loss 0 e N

backprop to lower

with respect to each layers

parameter) for the full
computation graph

* Can easily be applied to
most deep neural networks

ADAPTERS

Transformer Language Model

[The

[bat] [made] [noise]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

BERT popularized this
encoder-only
Transformer
architecture and style

of pretraining

MLM Pretraining:

* Rather than trying
to predict the next
word from the
previous ones...

e ...maskoutaword
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

- p(
1?1("')

T
/[p(Wth

h, h, h, h,

N, N N

[Transformer layer]

[Transformer layer]

[Transformer layer]

eSS
X1/I\X2/]\X3/I\X4’]‘

[[CLS]] [[MASK]][cat] [sat]

Each layer of an encoder-only
Transformer consists of several
sublayers:

1. non-causal attention

2. feed-forward neural network

3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used

for masked language model (MLM)
pre-training (cf. BERT)

Adapters Module

* An adapter layer is simply a feed-
forward neural network with one
hidden layer, and a residual
connection

* Forinput dimension, d, the
adapter layer also has output
dimension d, but bottlenecks to a
lower dimension m in the middle

—7

Figure from

sl

%mﬂ“{

i
X{(S

/

-

OO0
\70#} ﬁ[FeedfclmNard ﬁ/
down-project

[d
/ Adapter
Layer \:j 1 :
OO0 O]O OO0 :
[Feedforward %/’—i\
up-project :
— 1 :
Nonlinearity | :
1 I
T
[:
O0000O0O)
L) L |/
f d

17

X’

Adapters for Transformer

— [add & layer norm

]4_

adapter

__________ _I

—/[feed-forward neural net

transformer
)
Q
—
—+
M
3
=
(@]
3

multi-headed

Vi

Figure inspired by He et al. (2022)

Ve

4 ~
/:/ Adapter
! Layer

KeXeXeXeXoXeol

- (*
In practice,4® is chosen s.t. ma <<

d and the adapter layers contain
only 0.5% — 8% of the total
parameters

When added to a deep neural
network (e.g. Transformer) all
the other parameters of the
pretrained model are kept fixed,
and only the adapter layer
parameters are fine-tuned

Adapter Results

Pretrained Model: BERT-
Large
Baseline Method: fine-

tune only the top K layers
of BERT-Large

Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

Sometimes adapters even
outperform full fine-tuning

GLUE (BERT | ArGE)

1 a1l 1 L s 1 aaal 1 L 1 a1l

-10 4

-15 4

Accuracy delta (%)

—-20 4

—2D

e —————

*—e Adapters

== Fine-tune top layers

10°

10° 107 10°
Num trainable parameters / task

10°

19

Adapter Results

Pretrained Model: BERT-
Large
Baseline Method: fine-

tune only the top K layers
of BERT-Large

Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

Sometimes adapters even
outperform full fine-tuning

MNLIm (BERTBASI:)

o

Validation accuracy (%)

® Layer Norm.

1| - Adapters
F— Fine-tune top layers

T TrrTT T LN B B | T T LN B I N | T T
5 6 7
10 10 10

Num trainable parameters / task

10°

20

Adapter Results

Pretrained Model: BERT-
Large
Baseline Method: fine-

tune only the top K layers
of BERT-Large

Adapters achieve nearly
the performance (i.e. 0%
delta) of full fine-tuning
but with substantially
fewer parameters

Sometimes adapters even
outperform full fine-tuning

o0
(o))

CoLA (BERTgAsE)

Laaal

o0
BN
1

o0
N

e i I

Validation accuracy (%)
o0
o

® Layer Norm.

4| - Adapters
- Fine-tune top layers

T T'TIY] T ! 1 3 IYYTY] T T T YIYIYI T A L)
10° 10° 10’
Num trainable parameters / task

108

21

PROMPT TUNING & PREFIX TUNING

X’

[add & layer norm]4—

[feed-forward neural nét]

f

[add & layer norm]4—

—
()
E
o [:
G attention]
C A
o©
B Q K \)
| R | R
1 1
© S L
5
o
-+
2
W, W, v ﬂ/
-
\ S/
X

Figure inspired by He et al. (2022)

Prefix Tuning

Fine-tuning
Transformer (Translation)
Transformer (Summarization)
Transformer (Table-to-text)
ucks type ee) [SEP] Starbucks serves colfee
Prefix | U1 (table-to-text) Output (table-to-text)
ﬂ!mﬂl"ﬂ)

~ Profix Prefix-tuning
(Summarization)
. ‘ = .352’-‘- - | @Mma (Pretrained)

ame Starbucks type ffee shop [SEP] Starbucks serves coffee
(table-to-text) Output (table-to-text)

Figure |: Fine-tuning (top) updates all Transformer
parameters (the red Transformer box) and requires stor-
ing a full model copy for each task. We propose
prefix-tuning (bottom), which freezes the Transformer
parameters and only optimizes the prefix (the red pre-
fix blocks). Consequently, we only need to store the
prefix for each task, making prefix-tuning modular and
space-efficient. Note that each vertical block denote
transformer activations at one time step.
Figure from http://arxiv.org/abs/2101.00190

24

Prefix Tuning

Autoregressive Model (e.g GPT2) Summarization Example
PRrEFIX T source abler y.-uroonmoum- Article: Scientists at University College London discovered people
I 11 1 tend to think that their hands are wider and their fingers are
| shorter than they truly are.They say the confusion may Lie in the
A Harry Potter , Education , Hogwarts [SEP] Harry Potter Is graduated from Hogwarts way the brain receives information from different parts of the
body.Distorted perception may dominate in some people, leading to
Activation Iy ha hs he hs he hy hg ho hio hiy hia hys hig Mys body image problems ... [ignoring 388 words] could be very

motivating for people with eating disorders to know that there was
a biological explanation for their experiences, rather than

Indexing [,1 24' l? E 5 6 7 OAJ l’ 10 11 12 13 14 15A_J ﬁff\l“ﬂ,i‘ was their fault."
!Su’mnry: The brain naturally distorts body image |
Pax = [1,2] Xiae = [3,4,5,6,7, 8] Yigx = [9,10,11,12,13, 14, 15] la finding which could explain eating disorders like |

| anorexia, say experts. J

~

Encoder-Decoder Model (e.g. BART) PREFIX

PREFIX L source table, PreFIX' Y rarget vnterance; Table-to-text Example
| i N B 1 TS Table: name[Clowns] customer-

Z Harry Potter , Education , Hogwarts Viser) warry porter s gradusted from m’“;) rating(1 out of 5] eatTypelcoffee

shop] food([Chinese] arealriverside]
Activation h h, hy hy hs he hr hg he hw hyy hya hys by hys hye Py near[Clare Halll 5

Textual Description: Clowns is a
11 12 13 14 15 16 17 coffee shop in the riverside area
Indexing ll 2 lli 4 5 6 7 CJ 1 9 1.] 1 B near Clare Hall that has a rating

Pax=[1,2] X =[3,4,5,6,7.8] Pux += [0,10] Yig = [11,12,13, 14, 15,16,17) o el e e e

Figure from http://arxiv.org/abs/2101.00190

LOW-RANK ADAPTATION (LORA)

How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion
(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion
(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion
LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAl 2023 ? ?

28

Why does efficiency matter?

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
c ase S t u d y o G PT_ 3 Common Crawl (filtered) 410 billion 60% 0.4
) WebText2 19 billion 22% 2.9
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix" refers to the fraction of examples during training

] L[]
* # of training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
t O e n S p— O O result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

[] L]
|
b l I l I O n Model Name Mparams M ayers dmoilcl Mheads dhc;ad IBalCh Size Lcanﬁng Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
° f GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
O GPT-3 Large 760M 24 1536 16 96 0.5M 2.5x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
aram ete rS — GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 10_f1
p i GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2x 1074
ol le GPT-3 13B 13.0B 40 5140 40 128 M 1.0 x 10—4
1 7 5 b I I I I O n GPT-3 175B or “GPT-3"} 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
° # Of Cy C l e S — 5 O which we trained. All models were trained for a total of 300 billion tokens.

10000

° y 1000
each of which
o
g
= 100
]
T
are 8.64e+19 :
]
€
] 10
1 l
$ & & @9 & &
F &S & 7 o
0«9« o{(g\ 0&/@ %‘3/}@ SHPC (?,\A (5’\?:} (g,\.s (g & c? éf\ (51
E o
Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B 29

Flgu re from is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

https://arxiv.org/pdf/2005.14165.pdf

Fine-Tuning LLMs without Regularization

Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0

GPT-3 Fine-Tuned 89.5 85.4
Question: Hypothesis:
Why don’t LLMs They are intrinsically
overfit when we fine- low dimensional

tune them without
regularization?

Figure from http://arxiv.org/abs/1804.08838

Motivation

* Maybe the number of parametersina
model is not a great measure of how
many degrees of freedom are needed

Intrinsic Dimensionality

to successfully learn some problem

How could we measure the number

of degrees of freedom you really

need?

Validation accuracy

baseline
90% baseline

600
Subspace dim d

L2000 1400

Intrinsic Dimension

Definition from Li et al. (2018):

* Learn a neural network with D
parameters in a random lower
dimensional subspace, d

* Then repeat, gradually increasing the
dimensionality, d

* Let the intrinsic dimension be the
value of d when good solutions
(above 90% threshold of full
parameterization) start to appear

For MNIST digit recognition, original
neural network has D=199,210
parameters but the intrinsic
dimension is only d=750

Intrinsic Dimensionality
()(D) _ conca (\/e c\—o((l,\)m) / \}Qckro((um)> W ¥{§

o R
W

How do we learn in a low dimensional subspace? . —

Standard optimization, which we will refer to hereafter as the direct method of training, entails
evaluating the gradient of a loss with respect to #(?) and taking steps directly in the space of (2).
To train in a random subspace, we instead define #(?) in the following way:

4
0 =657 + Po'), 2)

where P is a randomly generated D X d projection matrix! and #(%) is a parameter vector in a gen-
erally smaller space R¢. O(D) and P are randomly generated and frozen (not trained), so the system

has only d degrees of freedom. We initialize 8(%) to a vector of all zeros, so initially §(°) = O(D)

Figure from http://arxiv.org/abs/1804.08838

32

Intrinsic Dimensionality

* Using similar techniques,
Aghajanyan et al. (2020) measure
the intrinsic dimension of LLMs

* Empirical results suggest that pre-
training finds parameters that
have low intrinsic dimensionality

* Number of parameters:

— BERT-Base: 110 million
— BERT-Large: 345 million

Figure from http://arxiv.org/abs/1804.08838

SAID DID
Model MRPC QQP MRPC QQP
BERT-Base 1608 8030 1861 9295
BERT-Large 1037 1200 2493 1389
RoBERTa-Base 896 896 1000 1389

RoBERTa-Large 207 774 322 774

Table 1: Estimated dgp intrinsic dimension for a set

of sentence prediction tasks and common pre-trained
models. We present both the SA/D and DID methods.

33

LORA

Motivation #1:
“We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the
learned over-parametrized models in fact reside on a low intrinsic dimension.”

Motivation #2:

Directly optimizing the prompt, as in prefix tuning, leads to non-monotonic changes in
performance as the number of parameters increases (we want more parameters to
mean better performance!)

Motivation #3:

Adapters and related methods introduce inference latency at test time that is non-trivial!

Batch Size 32 16 1
Sequence Length 512 256 128
(5] 0.5M 1 1M 1 1M
Fine-Tune/LoRA | 1449.4+0.8 338.0+0.6 19.8+£2.7
Adapter" 1482.0+1.0 (+2.2%) 354.8+0.5 (+5.0%) 23.9£2.1 (+20.7%)
Adapter” 1492.24+1.0 (+3.0%) 366.3+0.5 (+8.4%) 25.84+2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, av-
eraged over 100 trials. We use an NVIDIA Quadro RTX8000. “|©|” denotes the number of trainable
parameters in adapter layers. AdapterL and AdapterH are two variants of adapter tuning, which we
describe in[Section 3.1. The inference latency introduced by adapter layers can be significant in an
online, short-sequence-length scenario. See the full study in[Appendix B.

34

LORA

Key Idea (Standard Linear Layer Z CITII11T1T111 d—; A

* Keep the original pretrained 7 = Wox -
parameters W, fixed during
fine-tuning W, € R¥*F x ¢ R* z € R?

« Learn an additive § x""j"""”{"f'\k
modification to those 7 . ™~
parametersﬂ LoRA Linear Layer | q

* Define AW via a low rank z = Wox + BAx
decomposition: = (Wo + BA)x —

AW = BA

e

where BA has rank r, which is

much less than the input W, € R4¥F (inear A
dimension k or the output . d
dimension d AcR™ aBERXT x|||||||||||||ﬂl
where r << min(d, k) Sk
- 35/

Figure inspired by He et al. (2022)

Initialization

 We initialize the trainable
parameters:

Aij ~ N(O, 02),Vi,j
B=0

* This ensures that, at the start
of fine tuning, the

parameters have their
pretrained values:

AW =BA =0
Wy + BA =W,

Figure inspired by He et al. (2022)

LORA

Standard Linear Layer yAEEREEEE

. N
W, € R>*F x ¢ R* 7z € R?

X OOTTIITTITITT]
4 LoRA Linear Layer q
z = Wox + BAx :
— (WO _I_ BA)X Linear
e
WO c Rka LinearA
AERTXk,BERdXT X (OO
1 J
where r << min(d, k) Sk
N

36/

Hot Swapping Parameters LO R A
* W, and BA have the same
dimension, so we can ”swap”

the LORA parameters in and (Standard Linear Layer z CIIIED)

out of a Standard Linear Layer W
 To get a Standard Linear Layer 4= WoX

with parameters W that W € RY%F x c RF 7 € R?

includes our LoRA fine tuning: 0 ’ ’ N S AREREREEE

- J
W WO T BA 4 LoRA Linear Layer q)

 Toremove the LoRA fine |

tuning from that Standard z = Wox + BAx

Linear Layer: = (WO + BA)X

Linear
W+ W-BA =W, r

* If we do LoRA training on two

’ in arA
tasks s.t. the parameters B’A’ W, € R¥*F, Hine
are for task 1and B”’A” are for y p
task 2, then we can swap back AcR™* B e R X IO
forth h . \ '
and forth between them where 1 << mm(d, k) N
N 32/

Figure inspired by He et al. (2022)

Transformer Language Model

[The

[bat] [made] [noise]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer Layer

transformer

[

add & layer norm

]4_

feed-forward neural net

f

add & layer norm

]4_

multi-headed

attention

Figure inspired by He et al. (2022)

nd ~
X" = concat(X'\V), ..., X/(")
. (@) (KT .
X' = softmax (Q K) + M) V)
5 Vi
i QW = XW((;)
U K" = xw!"
E
Vi) = XW()
X =[x,...,xn5]"
IR /

39

LoRA for Transformer

[add & layer norm

AN

[M feed-forward neural net

f

[add & layer norm

attention

transformer
)

multi-headed

~

Figure inspired by He et al. (2022)

LoRA linear layers could replace every linear layer in the
Transformer layer

But the original paper only applies LoRA to the attention
weights

-

_

LoRA Linear Layer
7z = Wpx + BAx

— (WO —I_ BA)X Linear
17
WO c Rka LinearA
AERTXR,BERCZXT X (OO
l J
where r << min(d, k) Sk

s/

LoRA for Transformer

4 [addalayernorm je— . LoRA linear layers could replace every linear layer in the
Transformer layer
(T E——] * But the original paper only applies LoRA to the attention
! weights
[add & layer norm]4—
g - ' ~ Q= LORALinear(X§ qu Aq> Bq) 4 LoRA Lineal&ayer)
% [Q att:ntlon ; | K = LoRALinear(X; Wy, Ax, Bx) —1
T V = LoRALinear(X; W,,A,,B,)
;% Linear
E R I T
. W_ W_
i% ;'\ i LinearA
- N "
X X LTI iTIeTiTl]
| J
Nk
- 4/

Figure inspired by He et al. (2022)

X’

LoRA for Transformer

/ [add & layer norm]4— \
[feed-forward neural net
T
[add & Ia)l/er norm]4—
]
E N
wg [attention]
% A
5 Q K \
@
O
3
T
E
Wi
i r
\
1 | |
| 7 J
-
\ |/)
X

Table from http://arxiv.org/abs/2106.09685

* LoRAlinear layers could replace every linear layer in the
Transformer layer

* But the original paper only applies LoRA to the attention
weights

* Empirically, for GPT-3, they also find that it is most efficient to
include LoRA only on the query and key linear layers:

| # of Trainable Parameters = 18M

Weight Type H'q Wi W, W, H"'q. Wi H',,. W, H"q, Wi, W, W,
Rank r h 8 8 8 4 4 2
WikiSQL (£0.5%) | 704 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both I/, and
W, gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.

42

LoRA Results

Takeaways m—

» Applied to GPT-3, LORA o s
achieves performance Toss M i

= PrefixEmbed

aImOSt aS gOOd aS fU” %0.60 * Z;efncha(y:)r
fine-tuning, but with far
feWer parameters ° /Z)g-_g#frainablegParami?ers H

* On some tasks it even | MU matchec
outperforms full fine- |
tuning | S

* For some datasets a
rank of r=1is sufficient

log.p # Trainable Parameters

LoRA Results

Takeaways
* Applied to GPT-3, LORA
achieves performance | WeightType |r=1 r=2 r=4 r=8 r=064
almost as gOOd as full fine- WikiSOL(+0.5% W, 68.8 69.6 705 704 700
tuning. but with far f kISQL(E0.5%) W,, W, 734 733 737 138 735
uning, but wi ar rewer W, Wi W, W, | 741 737 740 740 739
parameters W, 907 909 91.1 907 [90.7
, MultiNLI (£0.1%) W, W, 913 914 913 916 |914
* On some tasks it even W, Wp, W,,W, | [912] 917 917 915 914
outperforms full fine- T
tuning
° For some datasets 3 rank Method . \ MNLI(m)-100 MNLI(m)-1k MNLI(m)-10k MNLI(m)-392K
. o« o GPT-3 (Fine-Tune) 60.2 85.8 88.9 89.5
of r=1is sufficient GPT-3 (PrefixEmbed) 37.6 75.2 79.5 88.6
GPT-3 (PrefixLayer) 48.3 82.5 85.9 89.6
* LoRA performs well when GPT-3 (LoRA) 63.8 85.6 89.2 91.7

the dataset is large or
small

44

X’

PEFT for Transformer

/ \ Adapter
[add & layer norm]4— -
S A
S adapter E
]
[feed-forward neural net]
f
[
[add & layer norm]4—
S A
.‘ adapter ! -
QLJ ______________________
E D\
L
<
o
o Pk
[L —
®
L
§ ——
LoRA

Figure inspired by / copied from He et al. (2022)

PEFT FOR VISION TRANSFORMER

PEFT for Vision Transformer

* Since Vision Transfomer is just another transformer model, we can apply LoRA directly to it
* (LNLoRA s just a variant that includes LayerNorm in the LoRALinear module.)

MLP Head
w/ LNLoRA

Class: Church) 4

Feature h € RNxd

)] Transformer Encoder
\B € R¥*"4/ T —
+
rxk
/A€ R™KA\ Embedding —»1 2)66 EL L6
LayerNorm &

2

Feature x € RV*k

[Embedded |
Patches

Figure from https://arxiv.org/pdf/2401.01752.pdf

PEFT for Vision Transformer

19-Task Average Accuracy on VTAB-1k

78 -
-y Full
--A-- BitFit
76 -
*® f -@- VPT
) ety Adapter
2 i -
2 74 *"* AdaptFormer
@ ¥ LoRA
&’ 72 0 M- NOAH
Q - - FacT-TT (Ours)
O 70 - - FacT-TK (Ours)
o | Y
2 68 o
<
66 -
A
64_""| ' . , "8y . ' . q .6 ' IR A | ' . ¢ 0
1072 1071 100 101 102

trainable param (M)

Figure from https://ojs.aaai.org/index.php/AAAl/article/view/25187

* For various computer

vision tasks, parameter
efficient transfer-learning
(PETL) is sometimes better
than full fine-tuning!

VTAB-1k is a collection of 19
different vision tasks; here
we’re seeing average
performance across tasks

(FacT is another low-rank
method capable of
dramatically reducing the
number of parameters
tuned.)

48

