
Latent Diffusion Models
(and other text-to-image models)

1

10-423/10-623 Generative AI

Matt Gormley
Lecture 13

Feb. 28, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Wed, Feb 21
– Due: Thu, Feb 29 at 11:59pm

• Homework 4:
– Out: Mon, Mar 11
– Due: Fri, Mar 22 at 11:59pm

• Looking ahead…
– Wed, Feb 28: Matt’s last lecture
– Mon, Mar 11: Yuanzhi’s first lecture

3

Syllabus Highlights
• Grading: 40% homework, 10% quizzes, 20%

exam, 25% project, 5% participation
• Exam: in-class exam, Wed, Mar. 27
• Homework: 5 assignments

– 6 grace days for homework assignments
– Late submissions: 75% day 1, 50% day 2, 25%

day 3
– No submissions accepted after 3 days w/o

extension
– Extension requests: for emergency

situations, see syllabus
• Recitations: Fridays, same time/place as

lecture (optional, interactive sessions)
• Readings: required, online PDFs,

recommended for after lecture

• Technologies:
– Piazza (discussion),
– Gradescope (homework),
– Google Forms (polls),
– Zoom (livestream),
– Panopto (video recordings)

• Academic Integrity:
– Collaboration encouraged, but must be

documented
– Solutions must always be written

independently
– No re-use of found code / past assignments
– Severe penalties (i.e.. failure)
– (Policies differ from 10-301/10-601)

• Office Hours: posted on Google Calendar
on “Office Hours” page

4

Homework
There will be 5 homework assignments during the semester. The
assignments will consist of both conceptual and programming
problems.

5

Main Topic Implementation Application
Area

Type

HW0 PyTorch Primer image classifier +
Text classifier

vision +
language

written +
programming

HW1 Large Language
Models

TransformerLM with
sliding window attn.

char-level
text gen

written +
programming

HW2 Image Generation diffusion model unconditional
image gen

written +
programming

HW3 Adapting LLMs GPT-2 + LoRA instruction fine-
tuning

written +
programming

HW4 Multimodal
Foundation Models

Prompt-to-Prompt text-to-image
generation

written +
programming

HW623 (10-623 only) read / analyze a recent
research paper

genAI video
presentation

Project
• Goals:
– Explore a generative

modeling technique of your
choosing

– Deeper understanding of
methods in real-world
application

– Work in teams of 3 students

6

CONDITIONAL IMAGE GENERATION

7

Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

8

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)

Class Conditional Generation

9

• Task: Given a class
label indicating the
image type, sample a
new image from the
model with that type

• Image classification is
the problem of taking
in an image and
predicting its label
p(y|x)

• Class conditional
generation is doing
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)

Super Resolution

10
Figure from Li et al. (2021)

• Given a low
resolution image,
generate a high
resolution
reconstruction of
the image

• Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs

Image Editing

11
Figure from Saharia et al. (2022)

A variety of tasks involve
automatic editing of an
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores

color to a greyscale image
• Uncropping creates a

photo-realistic
reconstruction of a
missing side of an image

Style Transfer

12

• The goal of style transfer is to blend
two images

• Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure from Gatys et al. (2016)

Text-to-Image Generation

13

• Given a text description, sample an
image that depicts the prompt

• The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)

Timeline: Text-to-Image Generation

18
Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810

Timeline: Text-to-Image Generation

19
Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810

TEXT-TO-IMAGE: GANS

20

Class-conditional GANs

21

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

label

Add a label as input
to the generator, so
that it can learn to
generate specific
types of images

Generative adversarial text to image synthesis

23
Figure from Reed et al. (2016)

TEXT-TO-IMAGE: AUTOREGRESSIVE MODELS

24

Parti
The Pathways
Autoregressive Text-to-
Image (Parti) model:
• treat image generation

as a sequence-to-
sequence problem

• text prompt is input to
encoder

• sequence of image
tokens is output of
decoder

• ViT-VQGAN takes in the
image tokens and
generates a high-
quality image

26

TEXT-TO-IMAGE: DIFFUSION MODELS

27

CLIP (background for Dall-E 2)

28
Figure from Radford et al. (2021)

Dall-E 2

29
Figure from Ramesh et al. (2022)

Imagen
• Imagen uses a text-

to-image diffusion
model coupled with
a super-resolution
diffusion model

• All the models
operate in pixel
space

• While effective, the
compute
requirements are
very high

32

LATENT DIFFUSION MODEL (LDM)

33

Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel

space
• yet, training typically takes hundreds of GPU

days
– 150 – 1000 V100 days [Guided Diffusion]

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder

model) that learns an efficient latent space
that is perceptually equivalent to the data
space

• keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z0 =
encoder(x)
– forward model: latent representation z0 à noise

zT

– reverse model: noise zT à latent representation
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in

latent space
34

Latent Diffusion Model 39

Latent Diffusion Model (LDM)

41

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Autoencoder

42

z

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• The autoencoder is chosen so that it can project

high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a

Gaussian)
2. a VQGAN (performs vector quantization in the decoder;

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all
subsequent LDM training

43

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• After trying a zoo of autoencoder options, the original

paper picked one that offered a good level of
compression without much loss of information

44

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion

model
• The goal is to build up good representations of

the text prompts such that they inform the latent
diffusion process

45

prompt space

LLM

τθ

orange cat

ŷ

y

LDM: with DDPM

46

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: with DDPM

47

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

LDM: with DDPM

48

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do
we define the

mean to condition
on the prompt

representation?

Properties of forward and exact reverse processes

49

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)εwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ε we have
that:

x0 = (x0 + (1− ᾱt)ε) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ε) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Recall…

Parameterizing the learned reverse process

50

Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)εθ(xt, t)) /

√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Recall…

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = UNet(zt, t, τθ(y))
prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously

LDM: Cross-Attention in Noise Model
• The cross-attention is placed within

a larger Transformer layer
• The cross-attention modifies the keys and

values to be the prompt representation
• The queries are the current layer of UNet

53

Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752

LDM: Learning the Diffusion Model + LLM

54

Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T)
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:

Latent Diffusion Model (LDM)

55

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM Results

56
Figure from http://arxiv.org/abs/2112.10752

LDM Results
• The result models obtain

very high quality FID / IS
scores with many fewer
parameters than
competing models

• The models are much
more efficient than
vanilla diffusion models
because the most
computationally intensive
step happens in low
dimensional latent space,
instead of high
dimensional pixel space

57
Figure from http://arxiv.org/abs/2112.10752

