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Reminders

* Homework 3: Applying and Adapting LLMs
— Out: Wed, Feb 21
— Due: Thu, Feb 29 at 11:59pm

* Homework 4:

— Out: Mon, Mar 11

— Due: Fri, Mar 22 at 11:59pm
* Looking ahead...

— Wed, Feb 28: Matt’s last lecture
— Mon, Mar 11: Yuanzhi’s first lecture




Syllabus Highlights
5/ %/5

Grading: 40% homework, 10% quizzes, 20% * Technologies:

exam, 25% project, 5% participation — Piazza (discussion),
Exam: in-class exam, Wed, Mar. 27 — Gradescope (homework),
Homework: 5 assignments — Google Forms (polls),
— 6 grace days for homework assignments — Zoom (livestream),
— Late submissions: 75% day 1, 50% day 2, 25% — Panopto (video recordings)
day 3  Academic Integrity:
— No submissions accepted after 3 days w/o — Collaboration encouraged, but must be
extension documented
— Extension requests: for emergency — Solutions must always be written
situations, see syllabus independently
Recitations: Fridays, same time/place as — No re-use of found code / past assignments
lecture (optional, interactive sessions) — Severe penalties (i.e.. failure)
Readings: required, online PDFs, — (Policies differ from 10-301/10-601)
recommended for after lecture .

Office Hours: posted on Google Calendar
on “Office Hours” page



Homework

There will be 5 homework assignments during the semester. The
assignments will consist of both conceptual and programming
problems

Area

PyTorch Primer image classifier + vision + written +
Text classifier language programming

HW1 Large Language TransformerLM with char-level written +
Models sliding window attn. text gen programming

HW?2 Image Generation diffusion model unconditional written +
image gen programming

HW3 Adapting LLMs GPT-2 + LoRA instruction fine-  written +
tuning programming

HW4 Multimodal Prompt-to-Prompt text-to-image written +
Foundation Models generation programming

HW623  (10-623 only) read [ analyze arecent genAl video

research paper presentation



Project

e Goals:

— Explore a generative
modeling technique of your
choosing

— Deeper understanding of
methods in real-world
application

— Work in teams of 3 students




CONDITIONAL IMAGE GENERATION



Image Generation

“A sunset behind
a mountain range”

* (lass-conditional generation
* Super resolution

* Image Editing '

* Style transfer \ l

* Text-to-image (TTI) generation [ Super J { RE { Style }
resolution transfer

Seéa anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023) g



Class Conditional Generation

e Task: Given a class
label indicating the
image type, sample a
new image from the sea anemone
model with that type

* Image classification is brain coral
the problem of taking
in an image and
predicting its label slug

p(y|x)
 (Class conditional

generation is doin
this in reverse p(xﬁl)

goldfinch

Figure from Razavi et al. (2019)



Figure from Li et al. (2021)

Super Resolution

»

SRDiff

e Given alow

resolution image,
generate a high
resolution
reconstruction of
the image

Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs

10



Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

11

Figure from Saharia et al. (2022)



Style Transfer

* The goal of style transfer is to blend
two images

* Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tiibingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

Figure from Gatys et al. (2016)



Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)




Timeline: Text-to-Image Generation

® PARTI-20B
® DALLE
® GAN method o oDiff1
® Imagen ® Muse3B
@ Transformer method ° .
Cogview2 g \1ys6900M
® Glide ® DALLE2
@ Diffusion method P TE— S —
e ® PARTI-3B
@ ControlNet
® LD
® sD
® GigaGAN
® PARTI-750M
® DALLE-MINI
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are
calculated without the involvement of their text encoders.

Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



Timeline: Text-to-Image Generation

A comparison of the text to image methods discussed highlighting their date published, model configuration and evaluation results. For the model
type, green dot refers to the GAN model TTI, blue dot refers to the autoregressive TTI and orange dot indicates the Diffusion TTI. For evaluation
metrics, IS and FID score are provided under the evaluation of MSCOCO dataset in a zero-shot fashion. The last column provides the specific
model size in scale of Million(M) or Billion(B); x : no zero-shot results found, use standard results instead.

Method Date Model Type Data Size  Open Source IS evaluation  FID evaluation = Model size
AttnGAN [33] 11/2017 ® 120K X 20.80 35.49 * 13M
StyleGAN [34] 11/2017 @ 120K X 20.80 35.49 x -
Obj-GAN [220] 09/2019 ® 120K v 24.09 36.52 % 34M
Control-GAN [221] 09/2019 ® 120K v 23.61 33.10 % -
DM-GAN [35] 04/2019 ® 120K v 32.32 27.34 % 21IM
XMC-GAN [165] 01/2021 ® 120K X 30.45 9.33 % 90M
LAFITE [44] 11/2021 &) - v 26.02 26.94 150M
Retreival-GAN [208]  08/2022 8 120K X 29.33 9.13 % 25M
GigaGAN [46] 01/2023 ® - X s 10.24 650M
GALIP [45] 03/2023 s 3M-12M v - 12.54 240M
39] 02/2021 ® 250M X - 27.5 12B
ogview [189] 06/2021 o 300M v - 27.1 4B
Make-A-Scene 03/2022 o 35M X - 11.84 4B
Cogview?2 [43] 05/2022 o 300M v - 24.0 6B
PARTI-350M [5] 06/2022 o ~1000M X - 14.10 350M
PARTI-20B [5] 06/2022 o ~1000M X - 7.23 20B
DALLE-mini [187] 07/2021 E 250M X : - ~500M
MUSE-3B [31] 03/2023 o ~1000M X - 7.88 7.6B
0] 12/2021 — 5 250M v - 12.24 5B
Q-diftusion-F [68] 11/2021 © >7M v - 13.86 % 370M
DALLE-2 [4] 04/2022 ® 250M X - 10.39 5.2B
—Imagen [30] 05/2022 & ~860M X - 7.27 7.6B
—LDM [3] 08/2022 5 400M v 30.29 12.63 1.45B
eDiff-1 [197] 11/2022 % 1000M X : 6.95 9B
Shift Diffusion[158] 08/2022 900M v - 10.88 -
Re-Imagen[203] 09/2022 5 50M X - 6.88 ~8B
ControlNet [159] 03/2023 - v - - ~2.2B

Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



TEXT-TO-IMAGE: GANS



Class-conditional GANs

* Obijective function is a simple

differentiable function

e We chose Gand D to be
differentiable neural networks

Generator

7

Add a label as input
to the generator, so
that it can learn to
generate specific
types of images

x = Gy(2)

fake image

X’ ~ pdata(')

*

Training alternates between:
Keep G, fixed and backprop through D,
Keep D, fixed and backprop through G,

( D
> Discriminator
L y

p(real | image)

/

J =log(1-Dg(Ge(2)))

loss = J+)’

y.

J’ =log(Dg(x"))

R

D
Discriminator
y)

—
Real/fake images from Huang et al. (2017)

real image

p(real | image) \
/

21




Generative adversarial text to image synthesis
gt
T

This flower has small, round violet
petals with a dark purple center

This flower has small, round violet
petals with a dark purple center

b
| |

pwbed

Generator Network

Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding (%) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Figure from Reed et al. (2016)
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TEXT-TO-IMAGE: AUTOREGRESSIVE MODELS



Min e (oS
advesan
The Pathways KA@ | Ae\ W/adeesan |
Autoregressive Text-to- O vejmss\w Mo

Image (Parti) model:

* treatimage generation
as a sequence-to-
sequence problem

* text promptisinputto
encoder

* sequence of image |
tokens is output of | 1 /-
decoder J | o1 ok -

* VIiT-VQGAN takesin th o M 1
image tokens and

generates a high-
quality image

ViT-VQGAN
drrodle~ \

Image Detokenizer
(Transformer)

W
 Euhidls
Image Tokenizer
(Transformer)




TEXT-TO-IMAGE: DIFFUSION MODELS



CLIP (background for Dall-E 2)
Toin on HOO willion ?airs

(1) Contrastive pre-training \)/\ (2) Create dataset classifier from label text
ovr-
- | o
Pepper the N L
aa4a m Text A photo of
auasiae pup —> Encoder l i l l Edl e — En.[:;:er J
= /|
il m T, | Ty & Tn 5 e
< s 4y LTy | 10Ty | 1Ty I'Ty o
C NN N Al n h | ) : (3) Use for zero-shot prediction v
—» I Iy Ty 1Tyl 13Ty I, Ty ) Ty
Image |
— I l_g'Tl 14Ty | 13Ty l_; TN | l
Encoder : T4 R mage N ;
. — Encoder l I
—>) IN INTy | INT2 | IN'T3 IN‘TN i
' \

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

Figure from Radford et al. (2021)



Dall-E 2

CLIP objective img
encoder

"a corgi
playing a E
flame | 5 s
throwing |
i S
trumpet” OO0000
________________________________________ AL O O
O+0)~» e
oS,

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Figure from Ramesh et al. (2022)



* Imagen uses a text-
to-image diffusion
model coupled with
a super-resolution
diffusion model

* All the models
operate in pixel
space

* While effective, the
compute
requirements are
very high

Imagen

Text “A Golden Retriever dog wearing a blue
ex 5
+ checkered beret and red dotted turtleneck.

Frozen Text Encoder

‘®

lext-to-Image
Diffusion Model

.’j
/V v
256¢< 256 Image

Super-Resolution
Diffusion Model

v

N

A
)24 x 1024 Imap

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text
into text embeddings. A conditional diffusion model maps the text embedding into a 64 x 64 image.
Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image,
first 64 x 64 — 256 x 256, and then 256 x 256 — 1024 x 1024.
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LATENT DIFFUSION MODEL (LDM)



Latent Diffusion Model

Motivation:

diffusion models typically operate in pixel
space

yet, training typically takes hundreds of GPU
days

— 150 — 1000 V100 days [Guided Diffusion]
(Dhariwal & Nichol, 2021)

— 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]
(Sharia et al., 2022)

inference is also slow

— 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

— 15 seconds per image

Key Idea:

train an autoencoder (i.e. encoder-decoder
model) that learns an efficient latent space
that is perceptually equivalent to the data
space

keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z, =

encoder(x)
— forward model: l[atent representation z, = noise
Z7
— reverse model: noise z; = latent representation
ZO

to generate an image:
— sample noise z;

— apply reverse diffusion model to obtain a latent
representation z,

— decode the latent representation to an image x

condition on prompt via cross attention in
latent space



ion Model

Latent Diffus
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LDM: Autoencoder

latent space pixel space




LDM: Autoencoder

* The autoencoderis chosen so that it can project
high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

latent space pixel space

* The original LDM paper considers two options:

1. a VAE-like model (regularizes the noise towards a
Gaussian)

2. aVQGAN (performs vector quantization in the decoder;
i.e., it uses a discrete codebook)

* This model is trained ahead of time just on raw
images (no text prompts) and then frozen

e The frozen encoder-decoder can be reused for all
subsequent LDM training




VAE

LDM: Autoencoder

* After trying a zoo of autoencoder options, the original
paper picked one that offered a good level of
compression without much loss of information

f |Z] c R-FID | R-IS 1 PSNR 1 PSIM | SSIM 1
16 VOGAN [23] 16384 256 4.98 - 19.9 +3.4 1.83 +0.42  0.51 +o.1s
16 VOQGAN [23] 1024 256 7.94 - 194 £33 1.98 +0.43  0.50 £o.1s
8 DALL-E [66] 8192 - 32.01 - 22.8 £2.1 1.95 051 0.73 £o.aa
32 16384 16 31.83 40.40 +1.07 1745 +2.900  2.58 +0.48 041 +o.1s
16 16384 8 5.15 14455 374 2083 +3.61  1.73 +0.43  0.54 +o.1s
8 16384 4 1.14 201.92 +3.97  23.07 390  1.17 £0.36  0.65 +o.16
8 256 4 1.49 194.20 +a.87 2235 +3s1 1.26 +0.37  0.62 +o.16
4 8192 3 0.58 22478 +5.35 2743 426  0.53 2021 0.82 £o.10
4t 8192 3 1.06 221.94 £a5s 2521 +aa7 072 +026  0.76 +o.12
4 256 3 0.47 22381 +a5s 2643 £a22  0.62 +0.2a  0.80 £o.11
2 2048 2 0.16 23275 +5.00  30.85 £a.12  0.27 012 091 +o.05
2 64 2 0.40 226.62 +asz  29.13 346  0.38 £0.13  0.90 +o.05
32 KL 64 2.04 189.53 +3.6s 2227 43903 141 2040 0.6 +0.17
32 KL 16 7.3 132.75 271 2038 +356  1.88 +0.45  0.53 £o.1s
16 KL 16 0.87 21031 £3.97 2408 £a22  1.07 +0.36  0.68 +o0.15
16 KL 8 2.63 178.68 +a.08 2194 1302 149 1042 059 +0.17
8 KL 4 0.90 209.90 492 2419 410 1.02 035 0.69 +o.15
4 KL 3 0.27 22757 +ase 2753 454 0.55 2024  0.82 o1
2 KL 2 0.086 232,66 +5.16 3247 419 0.20 £0.09  0.93 £o.04

Table 8. Complete autoencoder zoo trained on Openlmages, evaluated on ImageNet-Val.  denotes an attention-free autoencoder.

() - fZ. ™) i(szv

X

ZV NI

Y- S):g(%\ FGO#)\J(/

J ?@@

latent space

pixel space
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LDM: the Prompt Model

* The prompt model is just a Transformer LM

* We learn its parameters alongside the diffusion
model

* The goal is to build up good representations of
the text prompts such that they inform the latent
diffusion process

45



= LDM: with DDPM
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LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process:
q(zo) = data distribution

Qe (2t | 2t—1) ~ N(Vayzi—1, (1 — ap)l)

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:
T

po(z1.7) = po(zr) | [ po(zi—1 | 26, 70(v)) po(zr) ~ N(0,1)
t=1 po(zt—1 | 2, 79(y)) ~ N(po(ze,t, 70(y)), Xo(2e, 1))



LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process: QLIEStiOI‘l: How do
q(zo) = data| we define the
mean to condition
Z 7+ ~J N
ToBe | %2-1) Y on the prompt
representation?

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:

po(zr) = po(ar) [[ po(@1 | 2, 70(1)) po(zr) ~ N0, 1) Q
=1 Po(zi—1 | 26, 7o (y)) ~ N (1o(2¢,t,70(y)), Xo(2¢, 1))



Properties of forward and exact reverse proces

Property #1:
q(x¢ | x0) ~ N (Vauixo, (1 — a)I)

t
where a; = H Qg
s=1

= we can sample x; from x( at any timestep ¢
efficiently in closed form

= x; = /X + (1 — a;)e where € ~ N(0,1)

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/Ozif( = Oét)XO N \/ozi( = &t)xt
- e - e

(0)

t
= oy "X —|—a§ )xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = y/ayxg + (1 — a;)e we have
that:

xg = (X0 + (1 — a¢)€) [/

Substituting this definition of xy into property
#2’s definition of 1, gives:

fiq(X¢,X0) = ago)xo + agt)xt

— a{” ((x0 + (1 — @)e) /Var) + oix,




Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

pe(Xt—l | Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Idea #1: Rather than learn ¥y (x;,t) just use what we

know about ¢(x;_1 | x¢,%xg) ~ N{( ,o21):

EQ(Xt,t) = 0'752]:

Idea #2: Choose g based on g(x;_1 | x¢,Xg), i.e. we

want pg(x¢, t) to be close to fi,(x¢,%o). Here are
three ways we could parameterize this:

Option C: Learnanetworkthat approximatesthe
e that gave rise to x; from xg in the forward
process from x; and ¢:

to(xg,t) = ago)xéo) (x¢,1) + ozit)xt

where X(@O) (x¢,t) = (xp+ (1 — ay)eg(xt, 1)) /v
where €y(x;,t) = UNetg(xy, t)



LDM: Noise Model
@Q(ZtvthQ(y)) — UNet(ZtvtaTQ(y))

S N * The noise model
includes cross
ir:Ir;r:?E ols Ilefsf+ oo attention (
EEN ) to the
representation of
the prompt text

* During training we
optimize both the
parameters of the

=» conv 3x3, RelLU

copy and crop UNet noise model
¥ max pool 2x2
# up-conv 2x2 and the parameters
=» conv 1x1
of the LLM

simultaneously



LDM: Cross-Attention in Noise Model

* The cross-attention is placed within
a larger Transformer layer

Transformer Layer inside UNet

il'lput Rh XwXc
LayerNorm RhxwXxec
Convlixl th wXd-nyp
Reshape Rhur Xd-n h
SelfAttention RA-wXxd-np
h-wxd-n;
xT { MLP R 0
Rh-w Xd-nyp
CrossAttention
Reshape ]Rh XwXd-n A
Convlixl RAhXwXc

Figure from http://arxiv.org/abs/2112.10752

The cross-attention modifies the keys and
values to be the prompt representation

The queries are the current layer of UNet

Attention(Q, K, V') = softmax (Q\I/{(_IT) -V, with
Q=W pi(z), K=WY  19(y), V=W - 74(
2 Q pi(zt), K - To(Y), v To(y).

Here, p;(z:) € RNV*d: denotes a (flattened) intermediate
representation of the UNet implementing ¢y and IfV‘(}) €
Réxd W) e RI*4- & Wi € R?*9" are learnable pro-

jection matrices [36,97]. See Fig. 3 for a visual depiction.
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LDM: Learning the Diffusion Model + LLM

Given a training sample zg, wewant  Objective Function:
po(zi—1 | 2¢,70(y)) Lipy = Eg(a),y,e~N(0,1) [Hf_f()(«f t,mo(y))|5 }

to be as close as possible to

Algorithm 1 Training

Q(Zt—l ‘ Zt,Zo) 1: initialize 6

2: foree {1,...,E}do

for xy/ D do
t ~Uniform(1,...,7T)
e ~ N(0,1)
X; < v/ auXg + /1 — ay€
0:(0) < lle — eo(xt,t, 70 (y))I?
0« 60— Vol:(0) I

Intuitively, this makes sense: if the
learnedreverse process is supposed 3
to subtract away the noise, then
whenever we’re working with a spe-
cific zg it should subtract it away
exactly as exact reverse process would
have.

Y B A
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LDM Results

YN
Text-to-Image Synthesis on LAION .(1 .458}’10del.

‘A street sign that reads ‘A zombie in the 'An image of an animal "‘An illustration of a slightly %uiming of a 'A watercolor painting of a ‘A shirt with the inscription:
“Latent Diffusion” ' style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I' love generative models!” '

LATENT
DIFFUSION

'DIFFUSION _

5
RS
Vb At

Generative
Models!

M

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [7%] database. Samples generated with 200 DDIM steps and = 1.0. We use unconditional guidance [32] with s = 10.0.

56
Figure from http://arxiv.org/abs/2112.10752



* The result models obtain
very high quality FID /IS
scores with many fewer
parameters than
competing models

* The models are much
more efficient than
vanilla diffusion models
because the most
computationally intensive
step happens in low
dimensional latent space,
instead of high
dimensional pixel space

Figure from http://arxiv.org/abs/2112.10752

LDM Results

Text-Conditional Image Synthesis

Method FID | ISt Nparams
CogView' [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITET [109] 26.94 26.02 75M

—~>GLIDE* [5Y] 12.24 - 6B 277 DDIM steps, c.f.g. [12] s = 3
Make-A-Scene™ [20] 11.84 - 4B c.f.g for AR models [V5] s = 5
LDM-KL-8 2331 20.03+033 1.45B 250 DDIM steps
LDM-KL-8-G* 1263 30.29+0.42 1.45B 250 DDIM steps, c.f.g. [12] s = 1.5

Table 2. Evaluation of text-conditional image synthesis on the
256 x 256-sized MS-COCO [51] dataset: with 250 DDIM [#4]
steps our model 1s on par with the most recent diffusion [5Y] and
autoregressive [26] methods despite using significantly less pa-
rameters. '/*:Numbers from [109]/ [26]
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