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Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Wed, Feb 21
– Due: Thu, Feb 29 at 11:59pm

• Homework 4: 
– Out: Mon, Mar 11
– Due: Fri, Mar 22 at 11:59pm

• Looking ahead…
– Wed, Feb 28: Matt’s last lecture
– Mon, Mar 11: Yuanzhi’s first lecture
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Syllabus Highlights
• Grading: 40% homework, 10% quizzes, 20% 

exam, 25% project, 5% participation
• Exam: in-class exam, Wed, Mar. 27
• Homework: 5 assignments

– 6 grace days for homework assignments
– Late submissions: 75% day 1, 50% day 2, 25% 

day 3
– No submissions accepted after 3 days w/o 

extension
– Extension requests: for emergency 

situations, see syllabus
• Recitations: Fridays, same time/place as 

lecture (optional, interactive sessions)
• Readings: required, online PDFs, 

recommended for after lecture

• Technologies: 
– Piazza (discussion),
– Gradescope (homework), 
– Google Forms (polls), 
– Zoom (livestream), 
– Panopto (video recordings)

• Academic Integrity:
– Collaboration encouraged, but must be 

documented
– Solutions must always be written 

independently
– No re-use of found code / past assignments
– Severe penalties (i.e.. failure)
– (Policies differ from 10-301/10-601)

• Office Hours: posted on Google Calendar 
on “Office Hours” page
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Homework
There will be 5 homework assignments during the semester. The 
assignments will consist of both conceptual and programming 
problems. 
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Main Topic Implementation Application 
Area

Type

HW0 PyTorch Primer image classifier + 
Text classifier

vision + 
language

written + 
programming

HW1 Large Language 
Models

TransformerLM with 
sliding window attn.

char-level 
text gen

written + 
programming

HW2 Image Generation diffusion model unconditional 
image gen

written + 
programming

HW3 Adapting LLMs GPT-2 + LoRA instruction fine-
tuning

written + 
programming

HW4 Multimodal 
Foundation Models

Prompt-to-Prompt text-to-image 
generation

written + 
programming

HW623 (10-623 only) read / analyze a recent 
research paper

genAI video 
presentation



Project
• Goals:
– Explore a generative 

modeling technique of your 
choosing

– Deeper understanding of 
methods in real-world 
application

– Work in teams of 3 students
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CONDITIONAL IMAGE GENERATION
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Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation
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sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)



Class Conditional Generation
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• Task: Given a class 
label indicating the 
image type, sample a 
new image from the 
model with that type

• Image classification is 
the problem of taking 
in an image and 
predicting its label 
p(y|x)

• Class conditional 
generation is doing 
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)



Super Resolution
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Figure from Li et al. (2021)

• Given a low 
resolution image, 
generate a high 
resolution 
reconstruction of 
the image

• Compelling on low 
resolution inputs 
(see example to the 
left) but also 
effective on high 
resolution inputs



Image Editing
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Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Style Transfer
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• The goal of style transfer is to blend 
two images

• Yet, the blend should retain the 
semantic content of the source 
image presented in the style of 
another image

Figure from Gatys et al. (2016)



Text-to-Image Generation
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• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: A propaganda poster depicting a 
cat dressed as french emperor napoleon 
holding a piece of cheese.

Figure from Podell et al. (2023)



Timeline: Text-to-Image Generation
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Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



Timeline: Text-to-Image Generation
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Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



TEXT-TO-IMAGE: GANS
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Class-conditional GANs
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

label

Add a label as input 
to the generator, so 
that it can learn to 
generate specific 
types of images 



Generative adversarial text to image synthesis
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Figure from Reed et al. (2016) 



TEXT-TO-IMAGE: AUTOREGRESSIVE MODELS

24



Parti
The Pathways 
Autoregressive Text-to-
Image (Parti) model:
• treat image generation 

as a sequence-to-
sequence problem

• text prompt is input to 
encoder

• sequence of image 
tokens is output of 
decoder

• ViT-VQGAN takes in the 
image tokens and 
generates a high-
quality image
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TEXT-TO-IMAGE: DIFFUSION MODELS
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CLIP (background for Dall-E 2)

28
Figure from Radford et al. (2021) 



Dall-E 2

29
Figure from Ramesh et al. (2022) 



Imagen
• Imagen uses a text-

to-image diffusion 
model coupled with 
a super-resolution 
diffusion model

• All the models 
operate in pixel 
space

• While effective, the 
compute 
requirements are 
very high
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LATENT DIFFUSION MODEL (LDM)
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Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel 

space
• yet, training typically takes hundreds of GPU 

days 
– 150 – 1000 V100 days [Guided Diffusion] 

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen] 

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided 
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder 

model) that learns an efficient latent space 
that is perceptually equivalent to the data 
space

• keeping the autoencoder fixed, train a 
diffusion model on the latent 
representations of real images z0 = 
encoder(x)
– forward model: latent representation z0 à noise 

zT

– reverse model: noise zT à latent representation 
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent 
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in 

latent space
34



Latent Diffusion Model 39



Latent Diffusion Model (LDM)
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LDM: Autoencoder
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LDM: Autoencoder
• The autoencoder is chosen so that it can project 

high dimensional images (e.g. 1024x1024) down to 
low dimensional latent space and faithfully project 
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a 

Gaussian)
2. a VQGAN (performs vector quantization in the decoder; 

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw 
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all 
subsequent LDM training

43

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space



LDM: Autoencoder
• After trying a zoo of autoencoder options, the original 

paper picked one that offered a good level of 
compression without much loss of information
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LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion 

model
• The goal is to build up good representations of 

the text prompts such that they inform the latent 
diffusion process
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LDM: with DDPM
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LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder



LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do 
we define the 

mean to condition 
on the prompt 

representation?



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)εwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ε we have
that:

x0 = (x0 + (1− ᾱt)ε) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ε) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Recall…



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)εθ(xt, t)) /

√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Recall…



LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = UNet(zt, t, τθ(y))
prompt space

• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously 



LDM: Cross-Attention in Noise Model
• The cross-attention is placed within 

a larger Transformer layer
• The cross-attention modifies the keys and 

values to be the prompt representation
• The queries are the current layer of UNet
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Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752 



LDM: Learning the Diffusion Model + LLM
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Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:



Latent Diffusion Model (LDM)
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ŷ

y

U
N

et
 w

/c
ro

ss
 

at
te

nt
io

n

latent space



LDM Results

56
Figure from http://arxiv.org/abs/2112.10752 



LDM Results
• The result models obtain 

very high quality FID / IS 
scores with many fewer 
parameters than 
competing models

• The models are much 
more efficient than 
vanilla diffusion models 
because the most 
computationally intensive 
step happens in low 
dimensional latent space, 
instead of high 
dimensional pixel space

57
Figure from http://arxiv.org/abs/2112.10752 


