10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Prompt to Prompt

Matt Gormley
Lecture 13.5
Mar. 15, 2024

CONDITIONAL IMAGE GENERATION

Image Generation

“A sunset behind
a mountain range”

* (lass-conditional generation
* Super resolution

* Image Editing '

* Style transfer \ l

* Text-to-image (TTI) generation [Super J { RE { Style }
resolution transfer

Seéa anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023) :

Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

Figure from Saharia et al. (2022)

prompt-to-
prompt can edit
one generated
image simply by
adjusting the
prompt

Editing Images with Text

down-weight existing
descriptor in the prompt

“clildren drawing of a castle next to a river.”

phrase insertion for style
change

swap one word for another

Pl N e S 7.
“Photo of a cat riding on a l')(\lcyclc
ar

“a cake with.decorations.”
Jelly bedng

phrase insertion for content
change

LATENT DIFFUSION MODEL (LDM)

Latent Diffusion Model

Motivation:

diffusion models typically operate in pixel
space

yet, training typically takes hundreds of GPU
days

— 150 — 1000 V100 days [Guided Diffusion]
(Dhariwal & Nichol, 2021)

— 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]
(Sharia et al., 2022)

inference is also slow

— 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

— 15 seconds per image

Key Idea:

train an autoencoder (i.e. encoder-decoder
model) that learns an efficient latent space
that is perceptually equivalent to the data
space

keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z, =

encoder(x)
— forward model: l[atent representation z, = noise
Z7
— reverse model: noise z; = latent representation
ZO

to generate an image:
— sample noise z;

— apply reverse diffusion model to obtain a latent
representation z,

— decode the latent representation to an image x

condition on prompt via cross attention in
latent space

ion Model

Latent Diffus

UNet w/cross

attention

Latent Diffusion Model (LDM)

-
.
* Ve,
* o
* ‘.
L3 e,
‘e e
LR Yo,
= conv 3x3, ReLU . Yo,
~» copy and crop s . T,
r
¥ max pool 2x2 = . . v,
4 up-conv 2x2 s ’0‘ ‘e,
= conv 1x1 | N .
" iR te,
- L
=) * ‘e,
] o, Yo,
[e Ta,
k3 .
» ., .
o
.
[atent Space ‘e, plxel Space
”0 T,
3 a, _Ne_ .
iR 3
03 e, (Z
.
R Yo,
£ .
- ‘.
. .
03 ‘e
* e

Do (ZT—l. | ZTaif\)

2t+173’\) pe(Zo] Zh?)

Do (Zt

q¢(21 | 20)

/_\

16

LDM: Autoencoder

latent space pixel space

LDM: Autoencoder

* The autoencoderis chosen so that it can project
high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

* The original LDM paper considers two options:

1. a VAE-like model (regularizes the noise towards a
Gaussian)

2. aVQGAN (performs vector quantization in the decoder;
i.e., it uses a discrete codebook)

* This model is trained ahead of time just on raw
images (no text prompts) and then frozen

e The frozen encoder-decoder can be reused for all
subsequent LDM training

latent space

pixel space

18

LDM: the Prompt Model

* The prompt model is just a Transformer LM

* We learn its parameters alongside the diffusion
model

* The goal is to build up good representations of
the text prompts such that they inform the latent
diffusion process

JJ LDM: with DDPM

UNet w/cross
attention

-
G
* 0,
0. ..
. ",
‘e e,
0' ..
= conv 3x3, ReLU . e,
~» copy and crop s . Ye,
r . e
¥ max pool 2x2 X ‘. e,
4 up-conv 2x2 : ’o‘ ‘e v,
= conv 1x1 " - e,
* a,
H ‘e e
u
=) * ‘e,
] o, Yo,
[*. Y
’0. .'..
v, .
entspace ...
*
»
.
LR e,
iR ‘e .
’0. e,
Ld e
. e,
. e,
. .

po(zt 2t+173’\) pe(zo. 2173’\)

Do (ZT—l. | Zr, Sf\)

LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process:
q(zo) = data distribution

Qe (2t | 2t—1) ~ N(Vayzi—1, (1 — ap)l)

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:
T

po(z1.7) = po(zr) | [po(zi—1 | 26, 70(v)) po(zr) ~ N(0,1)
t=1 po(zt—1 | 2, 79(y)) ~ N(po(ze,t, 70(y)), Xo(2e, 1))

LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process: QLIEStiOI‘l: How do
q(zo) = data| we define the
mean to condition
Z 7+ ~J N
ToBe | %2-1) Y on the prompt
representation?

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:

po(ar.r) = polar) [po(a—1 | 2, 76(y)) po(ar) ~ N(0,1) Q
=1 Po(mi—1 | 2, 70(y)) ~ N (10 (72, To(y)), Zo (71, t))

Properties of forward and exact reverse proces

Property #1:
q(x¢ | x0) ~ N (Vauixo, (1 — a)I)

t
where a; = H Qg
s=1

= we can sample x; from x(at any timestep ¢
efficiently in closed form

= x; = /X + (1 — a;)e where € ~ N(0,1)

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/Ozif(= Oét)XO N \/ozi(= &t)xt
- e - e

(0)

t
= oy "X —|—a§)xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = y/ayxg + (1 — a;)e we have
that:

xg = (X0 + (1 — a¢)€) [/

Substituting this definition of xy into property
#2’s definition of 1, gives:

fiq(X¢,X0) = ago)xo + agt)xt

— a{” ((x0 + (1 — @)e) /Var) + oix,

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn ¥y (x;,t) just use what we

Later we will show that given a train- 5
know about ¢(x;_1 | x¢,Xg) ~ N(o7 1):

ing sample xq, we want

¥ t) = o1
el | 5 0(xi,t) = 0,

to be as close as possible to Idea #2: Choose uyg based on q(x:—1 | x¢,%p), i.e. we
want pg(x¢, t) to be close to fi,(x¢,Xp). Here are
q(x¢—1 | X¢,X0) three ways we could parameterize this:

Option C: Learnanetworkthat approximatesthe
e that gave rise to x; from xg in the forward
process from x; and ¢:

Intuitively, this makes sense: if the
learned reverse processis supposed
to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away .

exactly as exact reverse process would where Xéo) (x¢,t) = (x0 + (1 — ar)€ep(x4, 1)) /v
have. where €4 (x;,t) = UNety(xy, t)

— -

to(xg,t) = ago)xé()) (x¢,1) + ozit)xt

LDM: Noise Model
po(ze,t, 70(y)) ={UNet(z, t, 79(y)))

~ fem—— —
TTTITT ON e The noise model
includes cross
. t []
irg%:ee 1> Nt et ggémmaﬁon attention (
‘EEE| i) to the
representation of
the prompt text

* During training we
optimize both the
parameters of the

=» conv 3x3, RelLU

copy and crop UNet noise model
¥ max pool 2x2
up-conv 2x2 and the parameters
=» conv 1x1
of the LLM

simultaneously

LDM: Cross-Attention in Noise Model

* The cross-attention is placed within
a larger Transformer layer

Transformer Layer inside UNet

il'lput Rh XwXc
LayerNorm RhxwXxec
Convlixl th wXd-nyp
Reshape Rhur Xd-n h
SelfAttention RA-wXxd-np
h-wxd-n;
xT { MLP R 0
Rh-w Xd-nyp
CrossAttention
Reshape]Rh XwXd-n A
Convlixl RAhXwXc

Figure from http://arxiv.org/abs/2112.10752

The cross-attention modifies the keys and
values to be the prompt representation

The queries are the current layer of UNet

Attention(Q, K, V') = softmax (Q\I/{(_IT) -V, with
Q=W pi(z), K=WY 19(y), V=W - 74(
2 Q pi(zt), K - To(Y), v To(y).

Here, p;(z:) € RNV*d: denotes a (flattened) intermediate
representation of the UNet implementing ¢y and IfV‘(}) €
Réxd W) e RI*4- & Wi € R?*9" are learnable pro-

jection matrices [36,97]. See Fig. 3 for a visual depiction.

27

LDM: Learning the Diffusion Model + LLM

Given a training sample zg, wewant Objective Function:
po(zi—1 | 2¢,70(y)) Lipy = Eg(a),y,e~N(0,1) [Hf_f()(«f t,mo(y))|5 }

to be as close as possible to

Algorithm 1 Training

Q(Zt—l ‘ Zt,Zo) 1: initialize 6

2: foree {1,...,E}do
for zg,y € Ddo
t ~ Uniform(1,...,7T)

Intuitively, this makes sense: if the
learnedreverse process is supposed 3
to subtract away the noise, then

whenever we’re working with a spe- e ~N(0,1)
Xi < \/O_étXO + 1 — Ol €

cific zg it should subtract it away
exactly as exact reverse process would
have.

Kt(ﬁ) — ||€ — €9<Xt7 t TQ(Y))HQ
60— Vyl,(0)

Y B A

UNet w/cross

attention

Latent Diffusion Model (LDM)

-
G
* Ve,
0. ..
‘e
.
‘e e
LR Yo,
= conv 3x3, ReLU L3 Yo,
~+ copy and crop o e,
r . e
¥ max pool 2x2 = . v,
4 up-conv 2x2 s ’0‘ ‘e,
= conv 1x1 | N .
" iR te,
- L
=) * ‘e,
] o, Yo,
[e Ta,
k3 .
- ., .
o
.
[atent Space ‘e, plxel Space
*
»
.
LR e,
. v, .
0.’ e,
AN ‘e
- ‘.
.
0'. ‘e

Do (ZT—l. | ZTaif\)

pe(zo 1 21,3’\)

/Zt+1 ’ 3;)

Do (Zt

')h

CROSS-ATTENTION

Scaled Dot-Product Attention

/ _— . .
Xy = A4,5V;

j=1

ay = softmax(sy)

Q\Z 0 515 =k aa/Vdy

_ wl.
k1 2 k3 k4 T
10/ Oy 11 O kj = Wi x;
v1 VZ/ V3 V4 T
T IO OO OO v, = Wi X;
X

X3 X,

2
CrrrJ ey ey tiffd

attention weights

scores
queries
keys

values

Cross Attention

m

’ /

Ys y; = g at v, vt
[[1] ,

Ay a, A

: L] a; = softmax(s;),Vt attention weights
[softmax]

54\1 Sq2 S43 T

[- St.j = kj qt/\/& Vi, t scores
] #Q ngE—

\ . .
——

k, = Wix;,Vje{l,...,m} keys

k1 '\ > c-—.. k3/- N2
CTE———

v :W,UTXj,Vj c{l,...,m} values

\Z Vv, Vs
1] [} 1]
/ /] T
X X, X; Y1 Y2 Y5 Ya
[T [T [T] \

‘IIIIIIIIIIIII!'LE—_’— AN i

Wi

Cross Attention

’

Y4

Y y> Y3 Y4
1] 1] 1] 1]

m
/ § :

yt — at,jvj,Vt
J=1

a; = softmax(s;),Vt attention weights

St,j = kcjrqt/\/gv v]at
q+ — Wgyt,Vt c {1, e ,n}
k, = W.x;,Vje{l,...,m}

vi =Wix; Vjiec{l,...,m}

scores
queries
keys

values

Wi

Cross Attention

softmax(QK” /Vd)V
L—)

Y= AV =

attention weights

A = softmax(S)

——

/
/
S scores
,,,,,,,,
Y / ,/”' Rl e
/,, , //;';, |
i e W :
R e queries
e LT L1 1] L[] L[]
~%222F""7
S * /j /1/ \
=l k, k, ’, / k; E keys
' w
mnnJpuny S unn :
A A v values
| - |
LT LI L] I/I
X X, X; Y1 Y2 Y5 Ya

37

PROMPT-TO-PROMPT

Background: Image Editing

* Fixing the Random Seed: * Mask-based Image Editing:

— A simple baseline for image editing — standard approaches to text-based
with text: change part of the prompt, image editing typically require an
keep the random seed fixed (e.g. the image mask as well
noise at the start of diffusion), and — the mask specifies which part of the
then run diffusion sampler image should remain unchanged

— Problem: the entire structure of the — then the text prompt informs how
image may change dramatically the unmasked part should be

— Doesn’t feel like “editing” at all, more adapted (e.g. by a diffusion model)
like generation of unrelated images — (Example: Blended Diffusion)

e
.8 By .
& TN , v"‘
- .
| ”.A

- eoa
“monster cake.”

“lego cake.” “beet cake.” “pepperoni cake

input+mask “big mountain” “big wall” “New York City”
39
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818

Background: Image Editing

* Fixing the Random Seed:

— A simple baseline for image editing
with text: change part of the prompt,
keep the random seed fixed (e.g. the

noise at t

then run the composition is
— Problemy inconsistent in various

Image M4 ways: the background,

whole cake vs. single slice, pre
how much cake is in view

— Doesn’t f
like@

-
.
g 4
¢ L)
- - g 4 d
L ea _siv

-
“monster cake.”

“fish cake.”

“beet cake.” “pepperoni cake.”

“lego cake.”

Figure from http://arxiv.org/abs/2208.01626

* Mask-based Image Editing:

— standard approaches to text-based
image editing typically require an
image mask as well

ifes which part of the
ain unchanged

mpt informs how
rt should be
iffusion model)

here the composition
remains consistent
across images

input+mask “big mountain” “big wall” “New York City”
40

Figure from http://arxiv.org/abs/2111.14818

Prompt-to-Prompt

Prompt-to-Prompt:
* Goal: edit images with text onIy and do not “Photo of a cat riding on a bicycle.”
require the user to provide a mask T)

* Key ldea:

— given pre-trained latent diffusion model

— run diffusion model with original prompt and
store the attention weights and cross-
atte?tion weights (from the pixels back to the
text

— re-run diffusion with edited prompt, but
gcarefully) copy in the cross-attention weights
rom the previous run

— exactly how to copy in the attention weights
depends on the type of edit

* Inference only: no training is involved! we
only modify how the samples are drawn from
the pre-trained latent diffusion model

apples —> oranges

the composition remains consistent across images,
but with only the text for guidance (no mask)

Figure from http://arxiv.org/abs/2208.01626

UNet w/cross

attention

25

N
]

t

' 26 26 512 256
GI°I°II ——- ;ﬂ’l‘ll =>conv 3x3, ReLU
EEE LW

¥ |

~ copy and crop

PR 102 i R |22
Tl — i Teem max poo
Lo ™ L] 4 up-conv 2x2
I e w—
- % % L = conv 1x1

128 64 64 2
utput

o et bt bt egmentation

EEEE

Do (ZT—I. | ZT»?)

.

latent space ™~

/Zt-l-l ’ 3’\)

Do (Zt

Latent Diffusion Model (LDM)

pixel space

a,
L]
.
.
L]
L]
.
-
L]
.
a,
“,

pe(zo 1 21,3’\)

49

prompt space

y

LDM: Noise Model

Ho (Zt7 t, To (y)) — UNet(Zt7 t, To (y))

input
image
tile

572 x 572
570 x 570

¥

2842

* The noise model
includes cross
wput attention (ycllow

128 64 64

aga 38
388x388 W

boxes)tothe
representation of
the prompt text

* During training we

optimize both the

oy 546, ReLU parameters of the

=+ copy and crop UNet noise model
¥ max pool 2x2

up-conv 2x2 and the parameters

. of the LLM
simultaneously

Cross-Attention in LDM:

" the query matrixs buit LDM: Cross-Attention
rom a fayer ot UNet Y = AV = softmax(QK” /Vd)V

* the key/value matrices Y
are built from the text- D;FD
encoder representation
of the prompt A
A A = softmax(S)
/, /’ S,
’I /// .. ’
A~ S — CQI(jﬂ/\/;iGE RNXMm
g
W /,I//’/'?f—ﬂ"‘:_ ——————— — n X d
: AT Om Ol Ol OO Q=YW,eR
ik, k., /0K mXxd
mnnunsgann w, K=XW;eR
w, I A [
v v, Vs ' . mXd
O] O O V=XW, eR
X X, X; Y1 Y2 Y5 Ya

(T11] CCI11 Corr1 [l 11 1] 1]

big orange cat

Cross-Attention in LDM:

" the query matrixs buit LDM: Cross-Attention
rom a fayer ot UNet Y = AV = softmax(QK” /Vd)V

* the key/value matrices Y Yy Y’s Yy
are built from the text- , - OO OO OO
encoder representatiori
of the prompt--"~ 1 1 I]
o x R S . i A = softmax(S) (attention weights)
| g ﬁ# i
I J
é - \:viik' --------- O S = QK" /vd e R™™
AnEN
a] X5 :V3§|:|k3 //I:A/&I = Q:quERnxd
¢ [Sn m ' <~ L
- \ K = XW, ¢ R™*¢

G q. qs q4 L mXd
OO O 0 V=XW,eR

45

Cross-Attention in LDM:

the query matrix s buit LDM: Cross-Attention
rom a fayer ot UiRe Y = AV = softmax(QK” /Vd)V

the key/value matrices Y Yy Y’s Yy
are built from the text- , - OO OO OO
encoder represen’t’atiemx T T
of the prompt--~
o x v ek / J a2| aJ a4| \ A = softmax(S) (attention weights)
go—§ g7 B8 8 @
" attention
o [T—F : S O . (] S:QKT/\/gERnxm
g e wel gHtS
o 0% Ovigk Q=YW, c R
=0 H KD - - = The actual
- \ / K = XW, ¢ R™*?¢ |attention and
e - V—xW, k" | attention
[T CO1M [OCI1O CC v
y, v, y, V. blocks are
i R i [i S i multi-head

Prompt-to-Prompt: Editing Cross At'ﬁntlon

Prompt-to-Prompt:

* Goal: edit images with text only and do
not require the user to provide a mask

* Key ldea:
— given pre-trained latent diffusion model

— run diffusion model with original
prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

— re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

— exactly how to copy in the attention
weights depends on the type of edit

* Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

Figure from http://arxiv.org/abs/2208.01626

fon dey{, RQ Sf@(\w\ﬁ/

Algorithm 1 Prompt-to- Prompt)rﬁage editing /

—_
(@]

L2 X N VAW N2

: Input: A source prompty, a target prompt y*, and a random seed s.
Output: A source image z,,. and an edited image z 4.
z7 ~ N (0, I) a unit Gaussian random variable with random seed s;
z < Z7; -
fort=T,T—1,...,1do 4—

71, Ay DM(zt Y, 1, 9);

A} < DM(z;,y", 1.s);

A, — Edlt(At,A;‘, t);

z; |+ DMz}, y" t,s,t){A < Kt};

: return (zg, zj))

P o

Ay ift<T

Edit(A:, A t) :=
(As, Ars1) A,; otherwise.

Prompt-to-Prompt:
Editing Cross Attention

orange cat

pe(ZT—l | ZT;S’\)

latent space (or pixel space)

po(z¢ | 2e41,Y) po(2o | 21,Y)

encode the original
prompty
run diffusion ony and

obtain attention weights
AT—17"'7A1

49

Prompt-to-Prompt:
Editing Cross Attention

orange cat

LLM

o 1

tabby cat

=

/ \

pe(ZT—l | ZT;S’\)

latent space (or pixel space)

pa(zt | Zt—|—1>3;)

pe(zo | Zl,/};)

encode the original
prompty

run diffusion ony and
obtain attention weights
AT—17"'7A1

encode the modified
prompt y*

run diffusion again

a) reuse the noise z; from the
original run

b) use the attention weights
from the original run until
timestep T
AT—1;"' 7At

c) then switch to using
attention weights from
this current run
A*t—v" . rA*1

d) regardless of which
attention weights, you still
attend to y*

50

Prom pt-to_ Prom pt: 5. if running in latent space,

then use decoder to

Editing Cross Attention recover pixel space

representation

latent space pixel space

/y\
T D:Elﬁ\ (z1) po(zr—1 | 27,5) Po(2: | 241,5) Polio | 21,3)
/ LLM \ o @% @) (&) ()
v ? Tt @ t At

orange cat

y
P S polar_s | 20,9 poler | 2111,9) polan | 21,9)
[um clofsMeoRSoRe

Y- f Ay At AT A A

tabby cat

Attention Swapping

* Problem: What if A, and A*, are not the same shape?
* Solution: Swap in just the appropriate parts!
— The dimension in latent space will always remain constant (e.g. 1024)
— The dimension in text prompt space also remain constant if we use a fixed length

encoder
* e.g. Iength =77, if we use CLIP encoder Y orange cat sitting
. %range cat sitting <PAD> <PAD> ... <PAD> A A A
;‘z Flo cé&— e :
— However, the words might not align properly! <« original A
* Example:

— we replace “orange” with “big tabby”

— then copy the attention weights for
““orange” to both “big” and “tabby’’ in
the new attention weights

big tabby cat sitting

53

Attention Swapping

* Problem: What if A, and A*, are not the same shape?
* Solution: Swap in just the appropriate parts!
— The dimension in latent space will always remain constant (e.g. 1024)

— The dimension in text prompt space also remain constant if we use a fixed length

encoder

* e.g.length =77, if we use CLIP encoder y orange Sk sitting

« orange cat sitting <PAD> <PAD> ... <PAD> A3

a original A

A
23 edite
with same
¢ shape as A*

big tabby cat sitting

— However, the words might not align properly!

* Example:
— we replace “orange’ with “big tabby”

— then copy the attention weights for
““orange” to both “big” and “tabby’’ in
the new attention weights

Attention Swapping

We need to do this swapping for every batch, for every head, and for every timestep
(until tau)

Each row corresponds to a different latent space dimension
Efficiency trick: define a mapper matrix M such that A = AM

¥ -)
. orange cat sitting
A A, A, A
1711 (6 |1
2.0 21 7 (12
303 (8|3
414|094
5 || 51015 A A Az
v ﬁ E E

big tabby cat sitting
— L

original A

edited A
with same

shape as A*

55

Attention Swapping

We need to do this swapping for every batch, for every head, and for every timestep
(until tau)

Each row corresponds to a different latent space dimension

Efficiency trick: define a mapper matrix M such that A = AM
Instead of copying, we average over “big” and “tabby” ‘%

A

BEa 6 | 11
2k 12
32\ || 32 || 8 13
42 \|| 4/2 9 | 14
52§ 52 || 10 15

A M
116 |1 .5
2 |7 |12]|0
318113 0
419 |14
5 (10| 15

orange
—NE—

A

°)

cat

sitting
Az
a original A
A ; , A
: edited A
with same
¢ shape as A*

sitting

Attention Swapping

* We need to do this swapping for every batch, for every head, and for every timestep
(until tau)

* Eachrow corresponds to a different latent space dimension
* Efficiency trick: define a mapper matrix M such that A = AM
* Instead of copying, we average over “big”}ermd “orange”

A big orange cat sitting
A AN M
(+6)2 (b | 1%, 116|116l 5]0]0
(2+7)2 AR 2 | 7 ||2)17]|]|-5]0]|O0
(3+8)/2 «5 18, = 3|8 13(18| 0] 1| O
(4+9)/2 \a |14 4191419001
(5+10)/2 13 |29 5 10015 ‘\201
y* v v

tabby cat sitting

57

Attention Swapping

We need to do this swapping for every batch, for every head, and for every timestep
(until tau)

Each row corresponds to a different latent space dimension
Efficiency trick: define a mapper matrix M such that A = AM

A M y orange cat sitting
A A A
6 | 11 1l6|1||1]|0]o0 o i 3
p) 7 |12 2 7 |12 o|1]0 ﬁj ﬁj Ej
38113 B 38|13 o0 1
41914 419 |14
5 |10 | 15 5 10 | 15 A, A Az

tabby cat sitting

A

Attention Swapping

We need to do this swapping for every batch, for every head, and for every timestep
(until tau)

Each row corresponds to a different latent space dimension
Efficiency trick: define a mapper matrix M such that A = AM

Instead of copying, we average over “big” and “tabby”

1/2

1/2

11

2/2

2/2

12

3/2

3/2

13

4/2

4/2

6
/
8
9

14

5/2

The same approach applies if you
assume the same number of words

5/2

10

15

since one word might consist of

multiple tokens

M y apple in basket
A A, AL A,
116 |1 5 o|oO
2 | 7|12 o|lo|1]o0 a a a original A
318|13|]|0]|0|0]1
419 (14
1 1 A A A A "
5 (10]15 . .)2 3 odited A
a a with same
shape as A*
= .. | |
water## ##melon in basket
- —

| Hyperparameter tuning: |
Prompt_tO-Prompt; we can swap from Ato
A* at different
Alpha . .
timesteps for different
words .
pixel space
y
T po(zr—1 | 21,Y) po(zt | Zey po(zo | 21,Y)

orange cat

y
TO ? po(zr-1 | 21,5) po(zt | Ztv po(zo | 21,Y)
LLM \
/ @) @) -) @) - @) ()

k P
tabby cat : -

Prompt-to-Prompt: Alpha

We can swap from A to A* at different timesteps for different words "
/)

New hyperparameters: a+,..., @, D(},OA?; + (\ - Mt\%t

The matrix a, controls how/when we switch at timestep t

For example, if we want to allow one word to deviate from the attention pattern earlier than the
others, then that word’s column can change before the others

~

a; A, (1-ay) A%
101 1] 1 olo|o]|oO
101 1] 1 olo|o]|oO
11111 @ + olo|o|o Q
101 1] 1 olo|o]|oO
101 1] 1 olo|o]|oO

Prompt-to-Prompt: Alpha

We can swap from A to A* at different timesteps for different words
New hyperparameters: a+,..., @,
The matrix a, controls how/when we switch at timestep t

For example, if we want to allow one word to deviate from the attention pattern earlier than the
others, then that word’s column can change before the others

oO|O|[O|O
O|O0O|[O|O|O
O|Oo|[Oo|O|O

Aeq | A (1-) A%
1 o 1 1 V?‘““ o 1
1 o 1 1 ﬂ V 1 “v
1 o 1 1
;] /
;]
: N4

sitting

62

Prompt-to-Prompt: Alpha

We can swap from A to A* at different timesteps for different words
New hyperparameters: a+,..., @,
The matrix a, controls how/when we switch at timestep t

For example, if we want to allow one word to deviate from the attention pattern earlier than the
others, then that word’s column can change before the others

~

A A (1-) A)

1 1 1 1

1 1 1 1

1111@

|0 |O|O|O
O|O|O|O|O
O|O0O|O|O|O

O
+

big tabby cat sitting

Prompt-to-Prompt Results

* word/phrase cross-attention swapping automatically identifies the regions of the image that
need to remain constant and those that should be adapted

“..on grass.” *...on the ground.”

“..onamufiin.”

“..ona flute.” “...on a violin,"” “..on a present.” *...on a candy.”

Figure 5: Object preservation. By injecting only the attention weights of the word “butterfly”, taken from
the top-left image, we can preserve the structure and appearance of a single item while replacing its context.
Note how the butterfly sits on top of all objects in a very plausible manner.

64
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt
R e Su I t S e °°Ycle ‘

* varying the moment of the
attention swap to A* allows us
to see the effect of our cross-
attention manipulation

==

o’ ol e e < L 51l > .7_‘;‘ - ‘ S g 2 . o
W. tentidn injection Full attention igjégction
. a5 :
‘)\fh 9

gure 6: Attention injection through a varied number of diffusion steps. On the top, we sfiow the/source
image and prompt. In each row, we modify the content of the image by replacing a single word in the text and
injecting the cross-attention maps of the source image ranging from 0% (on the left) to 100% (on the right)
of the diffusion steps. Notice that on one hand, without our method, none of the source image content is
guaranteed to be preserved. On the other hand, injecting the cross-attention throughout all the diffusion steps
may over-constrain the geometry, resulting in low fidelity to the text prompt, e.g., the car (3rd row) becomes

. . bicycle with full cross-attention injection.
Figure from http://arxiv.org/abs/2208.01626 e S

Prompt-to-Prompt Results

down-weight existing swap one word for another
descriptor in the prompt

* Sofarwe’ve
focused on
swapping one
word/phrase for
another

* Prompt-to-prompt
supports different
types of edits

* Different types of
edits are achieved
through different
manipulations of - " .
cross-attention SchMiven dasog of 2 castle next to a river.” “a cake with.decorations.”

. — Jelly bedng
weights phrase insertion for style phrase insertion for content
change change

Figure from http://arxiv.org/abs/2208.01626

