
Vision Language Model



AGI = Artificial General Intelligence

• AGI should be able to take any forms of input and produce any 
forms of output.
• Forms: Audio, Video, Image, Text.
• We focus on Image for this lecture, Audio and Video will be 

deferred to the next lecture.



So, what is VLM?

• VLM takes input that contains both text and images, and output 
texts (also can potentially output image, but that’s not the main 
focus)



VLM intuition:

• Standard Text-only transformer: Take an input text (like “How to 
feed a pig efficiently? … ”), transfer it into a sequence of tokens.
• [182142, 5123, 99817, 52321, 477, 325, …] 

• Transformer “accepts” input like a sequence of tokens.
• VLM input:

• Here is an image <|image_1|>, tell me what is in this image.

• VLM encoder transfers the special token <|image_1|> to a 
sequence of tokens, which is acceptable by transformer as input.



VLM Encoder

• Roughly speaking, there are two types of VLM encoders.
• CLIP based VLM encoder (Used in GPT-V)
• VQ-VAE based VLM encoder (Used in Gemini)



VQ-VAE based VLM encoder

• VQ-VAE encodes a image into a sequence of tokens (integers)
• VQ-VAE-Encoder(image) = a list of integers, each integer is in 

[image_vocab_size] (something like 8096).
• How do we ensure that those integers are good and maintaining 

all the information of the original image?



VQ-VAE based VLM encoder

• AE: Auto-Encoder.
• Roughly speaking, we want to train two models:

• VQ-VAE-Encoder
• VQ-VAE-Decoder

• Such that for any image,
• VQ-VAE-Decoder(VQ-VAE-Encoder(image)) = image.

• So, we can recover the original image from the list of integers 
output by VQ-VAE-Encoder.





Training a VQ-VAE

• Quantizing the output of standard VAE.
• VAE takes an input image, and output (a sequence of) vectors.

• VAE(image) = vector1, vector2, …, vectork. Those vectors can take any value.
• We want to map each vector to  a vector from a finite set (e1, e2, …, en).

• Training objective:
• Maintain a set of vectors e1, e2, …, en.

• For each vector vectori, map it to the argmin of 𝑒! – 𝑣𝑒𝑐𝑡𝑜𝑟"
#

(for all j in [n]), 
let’s call the argmin R(i)

• Add to the loss function: sum of 𝑒$ " − 𝑣𝑒𝑐𝑡𝑜𝑟"
#

for all i.
• Argmin is not differentiable, but we just treat the gradient as 0.



Using VQ-VAE in VLM

• Input to the transformer:
• [text_token1, text_token2, …., text_tokenk, image_token1, image_token2, …, 

image_tokenm, text_token{k+1}, ….]

• Transformer embedding layer -> We change this to 
• Transformer Embedding Layer (Text) (WTE_T, [text_vocab_size] -> R^{emb})
• Transformer Embedding Layer (Image) (WTE_I, [image_vocab_size] -> R^{emb})

• Then we apply WTE_T to text_tokens, and apply WTE_I to image_tokens
• Training objective: Next token prediction (loss on both image and text 

tokens).



CLIP-based VLM encoder

• CLIP: Maps an image into a sequence of vectors (not tokens), where 
each vector is in R^{clip_dimension} (usually clip_dimension = 1024).
• Then, input to the transformer looks like
• [text_token1, text_token2, …., text_tokenk, image_vector1, 

image_vector2, …, image_vectorm, text_token{k+1}, ….]
• Transformer embedding layer -> We change this to 

• Transformer Embedding Layer (Text) (WTE_T, [text_vocab_size] -> R^{emb})
• Transformer Embedding Layer (Image) (WTE_I, R^{clip_dimension} -> R^{emb})

• Training objective: Next token prediction, no loss on the image_vectors.



Training a CLIP

• How do we make sure the sequence of vectors are good? 
(preserving the information of the original images?) 



CLIP Training Objective

• Given an image I, we can define R(I) as some augmentation of the 
image I (such as crop, resize, jittering, etc.)
• We also have the corresponding text label of the image I, we call it 

T(I)
• We want to make sure that the output of the CLIP (sequence of 

vectors) satisfies that
• CLIP(R(I)) is close to Transformer(T(I)), for some Text-Only Transformer 

model.
• CLIP(R(I)) is far from Transformer(T(I’)), for all other texts.
• Maximize: 

• Exp(< CLIP(R(I)) , Transformer(T(I))>)/ E[Exp(< CLIP(R(I)) , Transformer(T(I’))>)]



CLIP versus VQ-VAE

• VQ-VAE: 
• Can be used to generate images (loss on image tokens), support arbitrary 

resolution/aspect-ratio (different images will be mapped to different 
length of image tokens).

• CLIP:
• It is used by OpenAI.
• Vectors encode more information than discrete tokens, so CLIP preserves 

more details of the original image.



VQVAE decoding:



VLM: Training Data

• I don’t know what Gemini or GPT-V used exactly, here’s the 
common source of VLM training data.
• But the standard ones are:

• Image Caption pairs data (such as Google Images, Bing Images)
• Interlacing Image and Text data (standard websites, arxiv papers etc)
• Textbook Exercises
• ChartQA/TableQA (synthetically generated)
• Document layout understanding/screenshot understanding (mostly 

human labeled)
• OCR training data (such as PDF images to markdown)
• Etc.



VLM: Common Benchmarks

Benchmark Name Category

MMMU (Val) Multi-discipline college-level problems

TextVQA (val) Text reading on natural images

DocVQA (test) Document understanding

ChartQA (test) Chart understanding 

InfographicVQA (test) Infographic understanding

MathVista (testmini) Mathematical reasoning

AI2D (test) Science diagrams

V-star Visual detail understanding 

OCRBench comprehensive OCR evaluation benchmark 



VLM: Common Benchmarks



VLM: Training Tricks

• Training VLM usually requires two phases: Pretraining phase and 
an Instruction Finetuning phase.
• In the pretraining phase, we take data that are “interlacing of 

images and texts”.
• Bob is a very magical student <|image_1|> (image showing Bob’s grade 

transcript), Bob usually plays football 24/7 everyday and Bob still got A+ in 
all of his classes, except getting an A++++ in Elementary SpaceShip
Maintaince.

• In the finetuning phase, we take data that are more QA-like.
• <|user|> Here is an image of Bob’s transcript <|image_1|>, what score did 

Bob get in the class named “Advanced Chicken Cooking?” 
<|end|><|assistant|>Bob got A+ in this class.<|end|>



VLM: Training Tricks

• Resolution Matters A Lot, we need the VLM encoder to support 
high resolution images.
• Standard VLM uses resolution 336x336 for input images.
• GPT-V uses 1K x 1K resolution for input images.

• Native Aspect Ratio:
• Models like VIT only takes square images, but some image has bad aspect 

ratio (like an image of a formula).
• Sora uses NaVIT (patching + 2D positional encoding).


