Vision Language Model

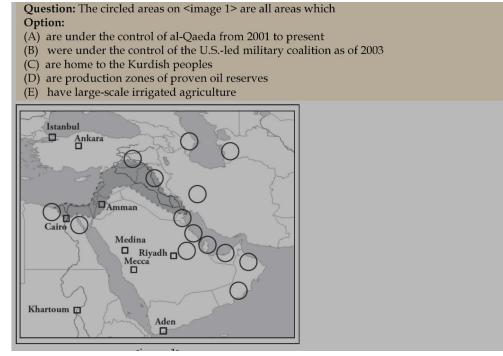
AGI = Artificial General Intelligence

- AGI should be able to take any forms of input and produce any forms of output.
- Forms: Audio, Video, Image, Text.
- We focus on Image for this lecture, Audio and Video will be deferred to the next lecture.

So, what is VLM?

• VLM takes input that contains both text and images, and output texts (also can potentially output image, but that's not the main

focus)



VLM intuition:

- Standard Text-only transformer: Take an input text (like "How to feed a pig efficiently? ... "), transfer it into a sequence of tokens.
 - [182142, 5123, 99817, 52321, 477, 325, ...]
- Transformer "accepts" input like a sequence of tokens.
- VLM input:
 - Here is an image <|image_1|>, tell me what is in this image.
- VLM encoder transfers the special token <|image_1|> to a sequence of tokens, which is acceptable by transformer as input.

VLM Encoder

- Roughly speaking, there are two types of VLM encoders.
 - CLIP based VLM encoder (Used in GPT-V)
 - VQ-VAE based VLM encoder (Used in Gemini)

VQ-VAE based VLM encoder

- VQ-VAE encodes a image into a sequence of tokens (integers)
- VQ-VAE-Encoder(image) = a list of integers, each integer is in [image_vocab_size] (something like 8096).
- How do we ensure that those integers are good and maintaining all the information of the original image?

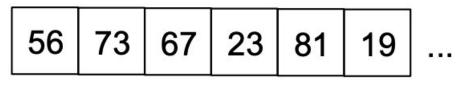
VQ-VAE based VLM encoder

- AE: Auto-Encoder.
- Roughly speaking, we want to train two models:
 - VQ-VAE-Encoder
 - VQ-VAE-Decoder
- Such that for any image,
 - VQ-VAE-Decoder(VQ-VAE-Encoder(image)) = image.
- So, we can recover the original image from the list of integers output by VQ-VAE-Encoder.

Encoder

image to discrete codes				¥			
ļ	56	73	67	23	81	19	

Decoder



discrete codes to image

Training a VQ-VAE

- Quantizing the output of standard VAE.
- VAE takes an input image, and output (a sequence of) vectors.
 - VAE(image) = vector1, vector2, ..., vectork. Those vectors can take any value.
- We want to map each vector to a vector from a finite set (e1, e2, ..., en).
 - Training objective:
 - Maintain a set of vectors e1, e2, ..., en.
 - For each vector vectori, map it to the argmin of $||e_j vector_i||^2$ (for all j in [n]), let's call the argmin R(i)
 - Add to the loss function: sum of $||e_{R(i)} vector_i||^2$ for all i.
 - Argmin is not differentiable, but we just treat the gradient as 0.

Using VQ-VAE in VLM

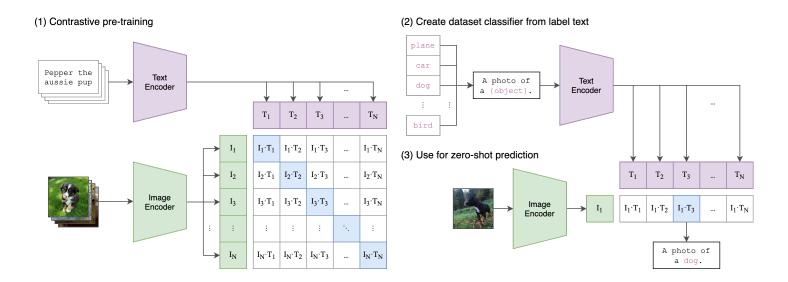
- Input to the transformer:
 - [text_token1, text_token2,, text_tokenk, image_token1, image_token2, ..., image_tokenm, text_token{k+1},]
- Transformer embedding layer -> We change this to
 - Transformer Embedding Layer (Text) (WTE_T, [text_vocab_size] -> R^{emb})
 - Transformer Embedding Layer (Image) (WTE_I, [image_vocab_size] -> R^{emb})
- Then we apply WTE_T to text_tokens, and apply WTE_I to image_tokens
- Training objective: Next token prediction (loss on both image and text tokens).

CLIP-based VLM encoder

- CLIP: Maps an image into a sequence of vectors (not tokens), where each vector is in R^{clip_dimension} (usually clip_dimension = 1024).
- Then, input to the transformer looks like
- [text_token1, text_token2,, text_tokenk, image_vector1, image_vector2, ..., image_vectorm, text_token{k+1},]
- Transformer embedding layer -> We change this to
 - Transformer Embedding Layer (Text) (WTE_T, [text_vocab_size] -> R^{emb})
 - Transformer Embedding Layer (Image) (WTE_I, R^{clip_dimension} -> R^{emb})
- Training objective: Next token prediction, no loss on the image_vectors.

Training a CLIP

• How do we make sure the sequence of vectors are good? (preserving the information of the original images?)



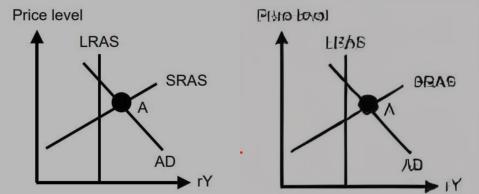
CLIP Training Objective

- Given an image I, we can define R(I) as some augmentation of the image I (such as crop, resize, jittering, etc.)
- We also have the corresponding text label of the image I, we call it $T({\rm I})$
- We want to make sure that the output of the CLIP (sequence of vectors) satisfies that
 - CLIP(R(I)) is close to Transformer(T(I)), for some Text-Only Transformer model.
 - CLIP(R(I)) is far from Transformer(T(I')), for all other texts.
 - Maximize:
 - Exp(< CLIP(R(I)), Transformer(T(I))>)/ E[Exp(< CLIP(R(I)), Transformer(T(I'))>)]

CLIP versus VQ-VAE

- VQ-VAE:
 - Can be used to generate images (loss on image tokens), support arbitrary resolution/aspect-ratio (different images will be mapped to different length of image tokens).
- CLIP:
 - It is used by OpenAI.
 - Vectors encode more information than discrete tokens, so CLIP preserves more details of the original image.

VQVAE decoding:



VLM: Training Data

- I don't know what Gemini or GPT-V used exactly, here's the common source of VLM training data.
- But the standard ones are:
 - Image Caption pairs data (such as Google Images, Bing Images)
 - Interlacing Image and Text data (standard websites, arxiv papers etc)
 - Textbook Exercises
 - ChartQA/TableQA (synthetically generated)
 - Document layout understanding/screenshot understanding (mostly human labeled)
 - OCR training data (such as PDF images to markdown)
 - Etc.

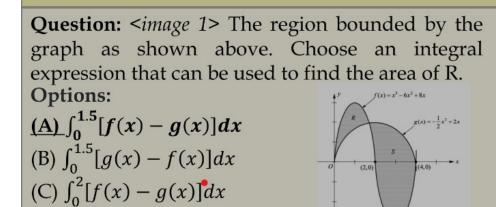
VLM: Common Benchmarks

Benchmark Name	Category
MMMU (Val)	Multi-discipline college-level problems
TextVQA (val)	Text reading on natural images
DocVQA (test)	Document understanding
ChartQA (test)	Chart understanding
InfographicVQA (test)	Infographic understanding
MathVista (testmini)	Mathematical reasoning
AI2D (test)	Science diagrams
V-star	Visual detail understanding

OCRBench

comprehensive OCR evaluation benchmark

VLM: Common Benchmarks

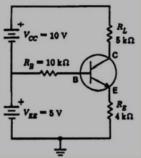


(D) $\int_0^2 [g(x) - x(x)] dx$

Question: Find the VCE for the circuit shown in *<image 1>*. Neglect VBE

Answer: <u>3.75</u>

Explanation: ...IE = [(VEE) / (RE)] = [(5 V) / (4 k-ohm)] = 1.25 mA; VCE = VCC - IERL = 10 V - (1.25 mA) 5 k-ohm; VCE = 10 V - 6.25 V = 3.75 V



VLM: Training Tricks

- Training VLM usually requires two phases: Pretraining phase and an Instruction Finetuning phase.
- In the pretraining phase, we take data that are "interlacing of images and texts".
 - Bob is a very magical student </image_1/> (image showing Bob's grade transcript), Bob usually plays football 24/7 everyday and Bob still got A+ in all of his classes, except getting an A++++ in Elementary SpaceShip Maintaince.
- In the finetuning phase, we take data that are more QA-like.
 - <|user|> Here is an image of Bob's transcript <|image_1|>, what score did Bob get in the class named "Advanced Chicken Cooking?"
 <|end|><|assistant|>Bob got A+ in this class.<|end|>

VLM: Training Tricks

- Resolution Matters A Lot, we need the VLM encoder to support high resolution images.
 - Standard VLM uses resolution 336x336 for input images.
 - GPT-V uses 1K x 1K resolution for input images.
- Native Aspect Ratio:
 - Models like VIT only takes square images, but some image has bad aspect ratio (like an image of a formula).
 - Sora uses NaVIT (patching + 2D positional encoding).