
Scaling Up Part II: Mixture of 
Experts



Scaling Up

• Last lecture, we learnt that scaling up the language model can
• Improve the model’s capacity 
• Make the model training converge faster (in terms of number of flops)

• Downside: During inference time, the cost is much higher.



Reducing Inference Cost

• In the these two lectures, we will learn multiple techniques to 
reduce inference cost:
• This lecture: Mixture of Experts model architecture (more efficient 

on the MLP layer)
• Next lecture: KV caching, VLM and paged attention (more efficient 

on the attention layer)



Mixture of Experts

• GPT-4: 8x200B mixture of expert model.
• GPT-3.5: 8x20B mixture of expert model.



Motivation

• Human knowledge is “sparse”
• The model is an AGI, but
• When we ask the model “write me an essay about the history of CMU.”

• The model only need to extract a tiny fraction of the knowledge it stored, centered 
around CMU.

• We want to make the model more “inference efficient” by only 
using a “tiny fraction of model” for each prompt (the exact fraction 
differ for every prompt).



“Sparsified Inference”

• How do we make sure that for every prompt, only a tiny fraction of 
the model weights are “used” to increase efficiency?
• The mixture of expert architecture.



Mixture of Experts: Definition

• A mixture of Expert layer with M experts, top-k routing is defined as 
the following:
• Given input x in R^d, the output of MoE(x) is computed as:
• (1). Compute r = Router(x) in R^M, where Router is a linear function.
• (2). Compute s = softmax(r).

• And sk in R^M such that sk[i] = 1 if i is in the top-k largest entry of s, otherwise sk[i] = 
0.

• If k > 1, compute s’[i] = s[i]  sk[i] / sum_j s[j] sk[j] (expert normalization). Otherwise s’ 
= s.

• (3). Compute Expert_i(x) for each i such that sk[i] = 1, where Expert_i is a 
MLP layer.
• (4). Compute MoE(x) = sum_i Expert_i(x) * sk[i] * s’



Mixture of Experts: Usage

• In transformer, using MoE layer is simple:
• We just replace the MLP layer in the transformer block with MoE

layer
• A typical choice (used by OpenAI MoE model) for the MoE layer is 

the following:
• Top-2 routing, M = 16

• Each MoE layer is a MLP of the following architecture:
• Linear (d -> 2d ) -> GeLU -> Linear (2d -> d).

• For each x, the “active parameter” in the MLP layer is 8d^2, the 
same as traditional transformer (a single MLP of shape d->4d -> d)



MoE: Effective versus Total parameter
• We typically use the MoE layer to replace the MLP layer in a transformer 

block
• Total parameter of an MoE transformer:

• The total number of parameters in the network.
• Which is

• parameters in embedding layer/LM-head
• Parameters in the attention layer
• Parameters in all the experts (M * parameter per expert)

• Effective parameter of an MoE transformer:
• The maximum number of parameters that are “activated” for each token.

• parameters in embedding layer/LM-head
• Parameters in the attention layer
• Parameters in activated the experts (k * parameter per expert)



Mixture of Expert: Scaling Law (1--1.5 bit 
/total parameter, 32 experts)



Mixture of Expert: Scaling Law

• 1--1.5 bit /total parameter, 32 experts
• Effective parameter when using 32 experts: 1/11 of the total parameter.

• (parameter that’s activate per token, roughly equal to inference cost)
• Effective parameters  = 1/11 total parameters

• > 5x more efficient than Dense model!!!



Mixture of Expert: Actual implementation 
(training)
• Main Challenge: For each token x, it can use different experts.
• We don’t want to compute expert_i(x) for all i for each x, we want 

to compute the set of expert_i differently for each x (the experts 
that are “activate” for this x)



Fast Encode + Fast Decode

• Fast Encode operation:
• Given a sequence N of vectors x_j (each in R^d), we first compute 

sk(x_j) for each j.
• Then we reshape the input from size N x d to size 
• M x N’ x d.

• Where N’ = N * k * capacity_factor / M
• For each i in [M], the corresponding entry N’ x d is the collection of x_j such that 

sk(x_j)[i] = 1.

• Then we apply expert_i on the N’ x d vectors.



Expert Parallel

• Typically , MoEs are trained with Expert Parallel
• Meaning that in one layer, each expert weight is stored in different 

GPU nodes.
• Fast Encode
• N x d -> M x N’ x d

• Then we can send each N’ x d tensor to each GPU node and 
compute the forward/backward for that expert.



Token Dropping

• Fast Encode
• N x d -> M x N’ x d
• Where N’ = N * k * capacity_factor / M
• Usually, capacity_factor is set as 1.1 -- 1.25.

• However, if all x_j uses the same set of i as “activate” experts, 
then N’ might not be able to contain all the x_j (token dropping)
• We want x_j to use the experts “uniformly”.



Load Balancing Loss

• When training an MoE, we add the following load-balancing loss:
• Load-Balancing Loss = sum_{i in [M]} f_i * p_i
• f_i = fraction of tokens x_j such that sk(x_j)[i] = 1
• Fraction of tokens x_j that uses expert i.

• p_i = sum_j s(x_j)[i] 
• The total probability assigned to the expert i (before normalization).

• Observation: Load balancing loss is minimized if
• The routing is uniform
• The probability is uniform
• To see this: Note that sum f_i is constant, and sum p_i is constant.


