Scaling Up Part lll: Attention



We learned how to accelerate MLP
computation using MoE

* MLP is responsive for knowledge, and knowledge is “very sparse”

* Only a tiny fraction of human knowledge is needed to solve each
problem

* But we need to know the correct “fraction” — Using a Router.



Speeding Up Attention Computation

* We will learn a few tricks to speed up the computation
* Flash Attention
* Multi-Query Attention
* Paged Attention



The most fundamental layer in the transformer: Multi-
head attention (m attention heads).

Given vectors v4, V5, ..., U, €ach in Rd, a multi-head
attention layer is defined as:

v, = Cxconcatenate(V," ¥;af; v])re am T b

Where (af;) ... = softmax(v{ QrKlvj +pi;) ..

j€[n]

Here, C is a d Xd trainable matrix.

Each v; looks for the “most similar v, according to
[d/m] many projection matrices (,- and K,..



Transformer Architecture

* A (post-layernorm) transformer block is defined as:

. Given input W =wvy,v,,...,v,, each v; in RY.

Apply ML(l E %ad Att?ntlon input dimension d, output dimension d) on W to
get y = =V, O

* (2). Apply layer-norm on each of the v,

(3) Apply residual link: v( ) = v( ) + v;.

QW aone hldden lay%r MLP h (input dimension d, output dimension d) o

each to get v ) (allthe v;" in the uses the same h per layer,
different h for dlfferent layers

* (5). Apply layer-norm on each of the v(4) to get v( )
* (6). Apply residual link: v( ) — (5) + v(3)

* The output V(6 = v(6) 2(6), v,g ), each vl@ in R4,

")

to get v,



Transformer Architecture

* A (pre-layernorm) transformer block is defined as:

* Given input W = vy, vy, ..., v,,, each v; in R%.
(1)

had
(2). Apply Multi-Head Attention on V(1 to get V(2 = v1(2)’ vz(z), . v,gz).
* (3). Apply residual link: vi(B) = vi(z) + v;.
(4

* (1). Apply layer-norm on each of the v; togetwv

). Apply layer-norm on each of the vi(?’) to get vi(4).

* (5). Apply a one hidden layer MLP h on each vi(4) to get vl-(s) = h(vi(4)) (all

the v;" in the uses the same h per layer, different h for different layers).
©) = vi(s) + vi(g).

i

* (6). Apply residual link: v



Computation
Time of

Transformer
Block

* Atransformer block=MHA (m
heads) + MLP.

* Assuming the context lengthis n
and the embedding dimension is
d.

 Forward/Backward time:
* nd?(mlp) + (nd? + n*d) (MHA)

* (Forward) Backward Memory:
* nd(mlp) + (nd + n*m) (MHA)



Reducing Memory Usage of Attention

Main Memory Usage:
For each attention head, we need to store the nXn attention matrix:

[softmaX(UiTQrngj T pl?:]')je[n]]

1E[Nn]

Let’s just consider one row:
[ ] T T . r
softmax(vi QK- vj + pi'j)je[n]

Key idea of Flash-Attention:
* We store K; v, Qf v; for every r and j, this takes memory dxn.

* We do not store the full softmax matrix, we will “compute them on the fly” to
save memory.



* Consider 0 = Zie[n] yiXsoftmax(x);

* Where for each x;, y;, we need computation time d/m to
retrieve it.

e Stupid-Attention computation:
* Foriinrange(n):
 Compute norm_factor = norm_factor + exp(x;).
« Compute 0 = 0 + y; exp(x;)
* Return O/norm_factor

* This only requires memory O(M), where M =d/m is the
dimension of y;



From Stupid Attention to Flash Attention

* Why is Stupid Attention Stupid?

* Floating Point accuracy. We can not compute ) exp(x;)
accurately! No such accuracy.

e Stupid Attention V2:
* Go through i, compute the max of x; as m(x)
* Foriinrange(n):
 Compute norm_factor = norm_factor + exp(x; —m(x)).
* Compute 0 = 0 + y; exp(x; —m(x))
* Return O/norm_factor
* But then we need to compute x; twice, unless we store
It in the memory...



From Stupid Attention V2 to Flash Attention

* Stupid Attention V3 is an upgrade of stupid attention v2, where we
only compute x; once and maintain the correct floating-point

accuracy.
* Foriinrange(n):
« Compute My, (x) = max( m(x), x;)
« Compute norm = exp(m(x) — Myew (x)) norm + exp(xl- — mnew(x)) .
* Compute 0 = exp(m(x) — Mpew (x))0 + y; exp(x; — Mpew (X))
* Update m(x) = myep(X)

* Output O/norm.



s NOW the memory usage is good.

=l Main problem: Foriin range(n).

¢ Cuda operates on the so-called “Thread Block”, so the computation is very
fast for operations of “certain sizes”.

In stupid attention v3, the computation inside for loop is:

¢ \Vector of size M = d/m peri. This is typically smaller than the “certain
sizes” when m is large.

sl SO We need to do some chunking...




Flash Attention

* Flash attention is a little bit more involved than the previous slides.
* |tdivides the computation in chunks of R

* Foriinrange(n//R):
* Compute the softmax for x[iR:iR +R] using the fastest way, which uses memory R. Then

compute
* 0; = Xjepirir+r) YjXsoftmax(x[iR: iR + R]); (only store this
0; in SRAM).

* Store the max of x[j] forjin [iR, iR + R) in memory as m[i].

» Store the normalization factor of the softmax (after subtracting the max) of x[iR: iR + R] in
memory as norm(i].

« Update m,,,, (x) = max(m(x), m[i])

» Update 0 = 0 exp(m(x) — mnew(x)) + exp(m[i] - mnew(x)) 0;xnorm|i]

» Update norm = exp(m(x) — My, (x)) norm + norm[i]Xexp(m[i] — myey (x)).
* Updatem(x) = my,, (x)



Recall in the autoregressive training objective

Given X[0:i], we want to predict X[i], for every i in [context_length]

Naive implementation: Treat X[0:i] as a separate input with label X[i].

Total computation time: context_length * computation time on
input X[0:context_length]

Can we do it more efficiently in computation time of a single
X[0:context_length]?




The core of MHA is the soft-max attention
score:

(a{jj)je[n] = softmax (v Q K. v; + p}jj)je[n]
Key observation: We can set P{j = —oo if and
only if i <j (attention mask).
In this way, the new value

« v, =CX

concatenate(V;" ¥ af ; vj)re[d o T b

v; only dependsonvjforj < i.



After autoregressive training, we
can use the autoregressive
language model to generate texts.

Given a prompt s (text), we can

* Feed S into the

Tokenize the prompt s autoregressive Update S =
into a list of integers  language model, and concatenate(S, Repeat Step *.
S. obtain its prediction Sl

Spred-




* Optimized for inference speed.

* Time-consuming step for inference:

* Feed Sinto the autoregressive
language model, and obtain its
prediction Syeq-

* We do not want to recompute
model(S) every time we update S.

* Key observation: Caching.

* We can cache the past K,ij and

Vrij values for all j < len(S), and no
need to recompute them.

* However, this requires us to cache
e dX len(S) many values.




Multi-query attention:

Instead of using (a =

softmax(v] QTKTU] if)]e -

v} = Cxconcatenate(V! $;al;v)

We now use (au) = Softmax(vl QTKij +
P e

v = CXConcatenate(VT Ya v])re am T b

[n]

So every head shares the same K, V
* (of dimension embed_dim x head_dim).



