
Scaling Up Part III: Attention



We learned how to accelerate MLP 
computation using MoE
• MLP is responsive for knowledge, and knowledge is “very sparse”
• Only a tiny fraction of human knowledge is needed to solve each 

problem
• But we need to know the correct “fraction” – Using a Router.



Speeding Up Attention Computation

• We will learn a few tricks to speed up the computation
• Flash Attention
• Multi-Query Attention
• Paged Attention



Multi-Head 
Attention 

Layer

• The most fundamental layer in the transformer: Multi-
head attention (m attention heads).

• Given vectors 𝑣!, 𝑣", … , 𝑣#, each in 𝑅$, a multi-head 
attention layer is defined as:

• 𝑣%& = 𝐶×𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑉'( ∑) 𝛼%,)' 𝑣) '∈ $/-
+ 𝑏

• Where 𝛼%,)' )∈[#]
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣%(𝑄'𝐾'(𝑣) + 𝑝%,)' )∈[#]

• Here, C is a 𝑑×𝑑 trainable matrix. 

• Each 𝑣% looks for the “most similar 𝑣) , according to 
[d/m] many projection matrices 𝑄' and 𝐾'.



Transformer Architecture
• A (post-layernorm) transformer block is defined as:
• Given input 𝑊 =𝑣!, 𝑣", … , 𝑣#, each 𝑣$ in 𝑅%.

• (1). Apply Multi-Head Attention (input dimension d, output dimension d) on 𝑊 to 
get 𝑉(") = 𝑣"

("), 𝑣$
("), … , 𝑣%

(").
• (2). Apply layer-norm on each of the 𝑣&

(") to get 𝑣&
($).

• (3). Apply residual link: 𝑣&
(') = 𝑣&

($) + 𝑣&.
• (4). Apply a one hidden layer MLP h (input dimension d, output dimension d) on 

each 𝑣&
(') to get 𝑣&

(() = ℎ(𝑣&
(')) (all the 𝑣&))) in the uses the same h per layer, 

different h for different layers).
• (5). Apply layer-norm on each of the 𝑣!

(#) to get 𝑣&
(*).

• (6). Apply residual link: 𝑣&
(+) = 𝑣&

(*) + 𝑣&
(').

• The output 𝑉(() = 𝑣!
((), 𝑣"

((), … , 𝑣#
((), each 𝑣$

(() in 𝑅%.



Transformer Architecture

• A (pre-layernorm) transformer block is defined as:
• Given input W = 𝑣;, 𝑣<, … , 𝑣=, each 𝑣> in 𝑅?.
• (1). Apply layer-norm on each of the 𝑣% to get 𝑣!

(#).
• (2). Apply Multi-Head Attention on 𝑉(#) to get 𝑉(%) = 𝑣#

(%), 𝑣%
(%), … , 𝑣&

(%).
• (3). Apply residual link: 𝑣!

(') = 𝑣!
(%) + 𝑣!.

• (4). Apply layer-norm on each of the 𝑣%
(1) to get 𝑣!

(().
• (5). Apply a one hidden layer MLP h on each 𝑣!

(() to get 𝑣!
()) = ℎ(𝑣!

(()) (all 
the 𝑣!*** in the uses the same h per layer, different h for different layers).
• (6). Apply residual link: 𝑣!

(+) = 𝑣!
()) + 𝑣!

(').



Computation 
Time of 

Transformer 
Block

• A transformer block = MHA (m 
heads) + MLP.
• Assuming the context length is n 

and the embedding dimension is 
d.
• Forward/Backward time: 
• 𝑛𝑑% 𝑚𝑙𝑝 + (𝑛𝑑% + 𝑛%𝑑) (𝑀𝐻𝐴)

• (Forward) Backward Memory:
• 𝑛𝑑 𝑚𝑙𝑝 + (𝑛𝑑 + 𝑛%𝑚) (𝑀𝐻𝐴)



Reducing Memory Usage of Attention

• Main Memory Usage:
• For each attention head, we need to store the 𝑛×𝑛 attention matrix:

• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣%(𝑄'𝐾'(𝑣) + 𝑝%,)' )∈ # %∈[#]

• Let’s just consider one row: 
• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣!"𝑄#𝐾#"𝑣$ + 𝑝!,$# $∈ '

• Key idea of Flash-Attention: 
• We store 𝐾#"𝑣$ , 𝑄#"𝑣$ for every r and j, this takes memory 𝑑×𝑛.
• We do not store the full softmax matrix, we will “compute them on the fly” to 

save memory.



Softmax Recomputation

• Consider 𝑂 = ∑$∈[#]𝑦$×𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥 $
• Where for each 𝑥$ , 𝑦$, we need computation time d/m to 

retrieve it. 
• Stupid-Attention computation:

• For i in range(n):
• Compute 𝑛𝑜𝑟𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑛𝑜𝑟𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 + exp(𝑥!).
• Compute 𝑂 = 𝑂 + 𝑦! exp(𝑥!)

• Return O/norm_factor
• This only requires memory O(M), where M = d/m is the 

dimension of 𝑦$



From Stupid Attention to Flash Attention
• Why is Stupid Attention Stupid?
• Floating Point accuracy. We can not compute ∑exp(𝑥$)accurately! No such accuracy. 
• Stupid Attention V2:

• Go through i, compute the max of  𝑥& as m(x)
• For i in range(n):

• Compute 𝑛𝑜𝑟𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑛𝑜𝑟𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 + exp(𝑥! −𝑚(𝑥)).
• Compute 𝑂 = 𝑂 + 𝑦! exp(𝑥! −𝑚(𝑥))

• Return O/norm_factor
• But then we need to compute 𝑥$ twice, unless we store 

it in the memory…



From Stupid Attention V2 to Flash Attention

• Stupid Attention V3 is an upgrade of stupid attention v2, where we 
only compute 𝑥> once and maintain the correct floating-point 
accuracy.
• For i in range(n):
• Compute 𝑚&,- 𝑥 = max( 𝑚 𝑥 , 𝑥!)
• Compute 𝑛𝑜𝑟𝑚 = exp 𝑚 𝑥 −𝑚&,- 𝑥 𝑛𝑜𝑟𝑚 + exp 𝑥! −𝑚&,- 𝑥 .
• Compute 𝑂 = exp(𝑚 𝑥 −𝑚&,-(𝑥))𝑂 + 𝑦! exp(𝑥! −𝑚&,-(𝑥))
• Update 𝑚(𝑥) = 𝑚&,-(𝑥)

• Output O/norm.



From Stupid 
Attention 
V3 to Flash 
Attention

Now the memory usage is good.

• Cuda operates on the so-called “Thread Block”, so the computation is very 
fast for operations of “certain sizes”.

Main problem: For i in range(n).

• Vector of size M = d/m per i. This is typically smaller than the “certain 
sizes” when m is large.

In stupid attention v3, the computation inside for loop is:

So we need to do some chunking…



Flash Attention
• Flash attention is a little bit more involved than the previous slides.

• It divides the computation in chunks of R

• For i in range(n//R):
• Compute the softmax for x[iR:iR +R] using the fastest way, which uses memory R. Then 

compute 

• 𝑂% = ∑)∈[%3,%343)𝑦)×𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥[𝑖𝑅: 𝑖𝑅 + 𝑅] ) (only store this 
𝑂% in SRAM).

• Store the max of x[j] for j in [iR, iR + R) in memory as m[i].
• Store the normalization factor of the softmax (after subtracting the max) of 𝑥[𝑖𝑅: 𝑖𝑅 + 𝑅] in 

memory as norm[i].
• Update 𝑚!"# 𝑥 = max(𝑚 𝑥 ,𝑚[𝑖])
• Update 𝑂 = 𝑂 exp 𝑚 𝑥 −𝑚!"# 𝑥 + exp 𝑚 𝑖 − 𝑚!"# 𝑥 𝑂$×𝑛𝑜𝑟𝑚[𝑖]
• Update 𝑛𝑜𝑟𝑚 = exp 𝑚 𝑥 −𝑚!"# 𝑥 𝑛𝑜𝑟𝑚 + norm i ×exp 𝑚[𝑖] − 𝑚!"# 𝑥 .
• Update 𝑚(𝑥) = 𝑚!"#(𝑥)



Autoregressive 
Training

Can we do it more efficiently in computation time of a single 
X[0:context_length]?

Naïve implementation: Treat X[0:i] as a separate input with label X[i].

Total computation time: context_length * computation time on 
input X[0:context_length]

Recall in the autoregressive training objective

Given X[0:i], we want to predict X[i], for every i in [context_length]



Attention Mask

• The core of MHA is the soft-max attention 
score:

• 𝛼%,)' )∈[#]
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣%(𝑄'𝐾'(𝑣) + 𝑝%,)' )∈[#]

• Key observation: We can set 𝑝%,)' = −∞ if and 
only if i < j (attention mask).

• In this way, the new value
• 𝑣%& = 𝐶×
𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑉'( ∑) 𝛼%,)' 𝑣) '∈ $/-

+ 𝑏

• 𝑣%& only depends on 𝑣) for 𝑗 ≤ 𝑖 .



Inference

Given a prompt s (text), we can

Tokenize the prompt s 
into a list of integers 

S.

* Feed S into the 
autoregressive 

language model, and 
obtain its prediction 

𝑆!"#$.

Update S = 
concatenate(S, 

𝑆!"#$).
Repeat Step *.

After autoregressive training, we 
can use the autoregressive 

language model to generate texts.



Multi-Query Attention

• Optimized for inference speed.
• Time-consuming step for inference:

• Feed S into the autoregressive 
language model, and obtain its 
prediction 𝑆5'6$.

• We do not want to recompute 
model(S) every time we update S.

• Key observation: Caching.
• We can cache the past 𝐾'(𝑣) and 
𝑉'(𝑣) values for all j < len(S), and no 
need to recompute them.

• However, this requires us to cache 
• 𝑑× 𝑙𝑒𝑛(𝑆)many values.



Multi-Query Attention

• Multi-query attention: 
• Instead of using 𝛼%,)' )∈[#]

=
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣%(𝑄'𝐾'(𝑣) + 𝑝%,)' )∈[#]

• 𝑣%& = 𝐶×𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑉'( ∑) 𝛼%,)' 𝑣) '∈ $/-
+ 𝑏

• We now use 𝛼%,)' )∈[#]
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥K

L
𝑣%(𝑄'𝐾(𝑣) +

𝑝%,)' )∈[#]
• 𝑣%& = 𝐶×𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑉( ∑) 𝛼%,)' 𝑣) '∈ $/-

+ 𝑏
• So every head shares the same K, V 

• (of dimension embed_dim x head_dim).


