
Distributed Training



So we want to train large language models

Main question: Can we do it simply by writing a pytorch module 
called LargeLanguageModel and then do
loss = loss_fn(LargeLanguageModel(input), label)
And then
loss.backward()?



Difficulty of training large language models

• Main challenge: Memory consumption
• Memory consumption comes from two folds:
• Storing the models weights in memory (usually in FP16)
• Storing the optimizer states (the momentums) in memory  (usually in 

FP32, for accuracy purpose)

• For a 7B model, storing the model’s weights in FP16 requires 14G 
of memory.
• Storing the optimizer states in FP32 requires 56G memory
• In total 70G memory used! Recall that H100 GPU only has 80G memory



Memory is the biggest concern

• We can not train models larger than 7B in a single GPU…
• Can not be stored in memory

• We need some other way to scale up the model.
• Distributed Training (on multiple GPUs)



Sharded Optimization

• Spirit: Store things across multiple GPUs.
• Store Model’s weights on different GPUs
• Store Optimizer states on different GPUs.



Optimizer Sharding

• For a 7B model, storing the model’s weights in FP16 requires 14G 
of memory.
• Storing the optimizer states in FP32 requires 56G memory
• In total 70G memory used! Recall that H100 GPU only has 80G memory

• Storing the optimizer states requires a lot of memory!!!
• Sharding: We store optimizer states in different GPUs.



Sharding Optimizer States

• Suppose we have m GPUs.
• Suppose the optimizer state is w
• We partition w into m same size parts w = (w1, w2, …, wm)
• We store wi on the i-th GPU.



Fully Sharding

• Instead of Sharding only optimizer states, we can also shard the 
model weights:
• We split the model weights W into m parts, and store each part on 

each GPU.



Tensor Parallel (Model Parallel)

• Sharding versus Tensor Parallel:
• For sharding, we aggregate model weights across GPUs and then 

we still do forward/backward in each single GPU.
• Tensor Parallel: Forward/Backward are Done across different 

GPUs.
• RowParallelLinearLayer
• ColumParallelLinearLayer



Tensor Parallel

• Parallel Linear Layer:

• f(A x), we want to distributedly compute forward Ax and the 
backward A^T y

• We store A across different GPUs, we distribute x/y to those GPUs 
in order to compute the forward/backward.



Pipeline Parallel

• We convert the model into a nn.Sequential module (a sequential 
of layers)
• We store each layer on each GPU.

• Forward/backward pass is run through each layers


