ML 10-423/10-623 Generative Al

Machine Learning Department

e ——— School of Computer Science

MACHINE LEARNING ; A
EEEEEEEEEE Carnegie Mellon University

%

Learning Large
Language Models

(Pre-training, fine-tuning, decoding)

Matt Gormley
Lecture 3
Jan. 24,2024

Reminders

* Homework o: PyTorch + Weights & Biases
— Out: Wed, Jan 17
— Due: Wed, Jan 24 at 11:59pm

— Two parts:
1. written part to Gradescope
2. programming part to Gradescope

— unique policy for this assignment: we will grant (essentially) any and
all extension requests

e Homework 1: Generative Models of Text

— Out: Thu, Jan 25
— Due: Wed, Feb 7 at 11:59pm

Q&A

Q: How will | earn the 5% participation points?

A: Very gradually. There will be a few aspects of the course
(polls, surveys, meetings with the course staff) that we
will attach participation points to.

Q&A

I’m already feeling a bit lost. The deep learning content is going really
fast. What should | do?

We are not expecting you to know deep learning already.
Consider reviewing the Neural ——
NetWOrkS mOdUIe Wed, 4-Oct Lecture 11 : Neural Networks . lan Goodfellow and Yoshua

[11] [Poll] Bengio and Aaron Courville (2016). Deep Learning, Chapter

6.1-6.4
(Lectures 11 —13) from 1
Fri, 6-Oct Lecture 12 : Backpropagation | . lan Goodfellow, Yoshua
1 O _3 O 1 /1 0_6 01 Fa I I 2 O 2 3 . [][] [Poll] Bengio, & Aaron Courville (2016). Deep Learning, Chapter
6.5
. Hoeseong (Hayden) Kim,
(Li n kS . a n d) Abhishek Vijayakumar (2022) 106(2)"1 (L:ZILII?SC ;y‘:(?” "
.
Mon, 9-Oct Lecture 13 : Backpropagation Il HW4 Due
[Il Il] HWS Out

But | took 10-301/601 with you and I’'m still feeling lost!

Uh oh! I must be doing something wrong. Come talk to me and let’s
figure out together how to fix it.

https://www.cs.cmu.edu/~mgormley/courses/10601-f23/schedule.html
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx

RECAP

Module-based AutoDiff (oop version)

Object-Oriented Implementation:
— Let each module be an object

— Then allow the control flow dictate the creation of the computation graph
— No longer need to implement NNBackward(-), just follow the computation

graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
g.=8bOb® (1 —-Db)
return g,

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = 8, (diag(b) —bb")
return g,

class Linear (Module)
method forward(a, w)
b = wa
return b

method backward(a, w, b, gp)

8w = gbaT

8a — ngb
return g., g,

class CrossEntropy (Module)
method forward(a, a)
b= —alloga
return b
method backward(a, a, b, gp)
ga = —gr(a+a)
return g,

Ways of Drawing Neural Networks

(F) Loss Computation Graph
J=35(y—y*)? :

(E) Output (sigmoid) (E’) Label
. Given y*)
b= 370557

Y= Thexp(=n)
f .

?
[(C) Hidden (sigmoid)

[(D) Output (linear)

(C’) Parameters

T+exp(—a;)’ Given (3;,V)

\

f

[(B) Hidden (linear)

Given x;, V1

] (A’) Parameters
Given Qg V’L,]

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)
For neural networks:
— Each intercept term should appear as a node
(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph
— It’s perfectly fine to include the loss

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

TP(W1|h1) TP(WZIhZ) TP(W3|h3) Tp(w4lh4) 'r(Wslhs) T(W6Ih6) ']‘P(W7|h7)
' > * > > > > > >

h,

h,

hs

h,

A

hy

he

h,

[—L1

[—>

[—1]

[—> 1]

[> |

[1—>1

A

A

N

A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on

Transformer Language Model

[The

[bat] [made] [noise]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4. Repeat

Two parts: and Recap SO Far

Deep Learning Language Modeling
* AutoDiff * key idea: condition on previous
— is a tool for computing %radients of a words to sample the next word
differentiable function, b = f(a) * to define the probability of the next
— the key building block is a module with a word...
forward() and backward() , :
: . : — ...n-gram LM uses collection of massive
— sometimes define f as code in forward() sok-sided dice
by chaining existing modules together — _ RNN-LM or Transformer-LM use 2

* Computation Graphs neural network

— are another way to define f (more
conducive to slides)

— so far, we saw two (deep) computation * Learningan LM

graphs — n-gram LMs are easy to learn: just count
* 1) RNN-LM co-occurrences!
* 2)Transformer-LM — so far, we said nothing about how to
* (Transformer-LM was kind of complicated) learn an RNN-LM or Transformer-LM

— So let’s figure that out next...

LEARNING A NEURAL NETWORK

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:
{mi Y}t 3
i YiTi=1 o7 = argmin) (fo(@).)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (CE‘Z) (take small steps

opposite the gradient)
— Loss function

((9,y;) €ER 00D — 00 — VU fo(w:), y,)

Backpropagation

Forward Backward
Example: . . v (1 —y")
Neural Network Lo J=y logy+ (1 —y")log(l —y) gy = m i y—1
_ 1 _ % (1-1y)
D
ob 0Ob
b= BZ 93; = 9v 357> a5 — ~j
Z_% J*J B aﬁj 353_ J
Linear 1=
B ob Ob _ 3,
gZJ gb aZJ, azj - M)
1 8zj 8Zj
i 1 7= a; — gz T 1
Slngld 23 1+exp(—aj) Ya, 9z; aaj aaj ZJ(ZJ)
M
8613 8&3'
a; = ;O@zazz 9a;; = YGa; a%z, 8043'@' T
Linear D

Backpropagatio%

Backward
Example: . Yy i
Neural Network Loss This whole Iy = Y
{5 ”» — @ @
Sigmoid | Backward” columns | 4=4,7. 5
is now computed for o
us automaticallyby | 7 %os a5
Linear .
AutoDiff g =g 22 9 _ g
i 8zj’ 8zj J

| 0z; 0z,
Sigmoid = Ga; = Gz; 7 —J = 2j(1 — %)

S| + exp(—a,)

M
8aj 8aj
a; = Zafﬂxi - = . - = 0
1=0

Linear

SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D;)
2 Initialize parameters «, 3

3 fore € {1,2,...,E} do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:
o = object(x,a,b,z,y,J) = NNFORWARD(X,y, , 3)
Compute gradients via backprop:

8a = VaJ

8: = NNBACKWARD(X,y, &, (3, 0)
gs = VpJ

9: Update parameters:

10: a— o — V8q

1 B <+ B—ga

12: Evaluate training mean cross-entropy Jp (o, 3)

13: Evaluate test mean cross-entropy Jp, (¢, 3)

14: return parameters I6;

SGD and Mini-batch SGD

Algorithm 1SGD

: Initialize 0(©)

2:

3:

4: s =10

s: fort =1,2,...,7T do

6: for i € shuffle(1,..., N) do

7: Select the next training point (x;, v;)

8: Compute the gradient ¢(*) = V.J;((s= 1)
o: Update parameters (5) = §(s=1) — pq(s)
10: Increment time steps = s+ 1

1: Evaluate average training loss J(0) = + > J;(0)

n 1=

12: return 6%

SGD and Mini-batch SGD

Algorithm 1 Mini-Batch SGD

i: Initialize 0(°)

Divide examples {1, ..., N} randomly into batches {I;, ..., Ip}

where Ule I,={1,...,N}and ﬂle I, =10

s =10

fort =1,2,...,T do

forb=1,2,...,Bdo

Select the next batch Iy, where m = |[|
Compute the gradient g'*) = L 3" V.J;(6%))
Update parameters (s) = §(s=1) — pg(s)

10: Increment time steps = s+ 1

1: Evaluate average training loss J(0) = £+ >_1" . J;(0)

n

N

e 9N @V W

12: return ()

LEARNING A TRANSFORMER LM

Learning a Language Model

Question: How do we learn the probabilities for the n-Gram | MLE for n-gram LM

Model? * This counting method
: | _ ~ gives us the maximum
Answer: From data! Just count n-gram frequencies Plelihood estimate of
P(We| Wi, = cows, the n-gram LM
0 Wi, = eat) t
parameters

... the cows eat grass...

¢ hav dail w C1n°) * We can derive it in the
...](c)ur cowfs eat hay dal Z t 21 I usual way:
... Tactory- arm. cows eat corn... orn A _ Write the likelihood of
...0n an organic farm, cows eat hay and... the sentences under the
...do your cows eat grass or corn?... grass 311 n-gram LM
...what do cows eat if they have... — Set the gradient to zero
...cows eat corn when there is no... hay 2/11 and impose the constraint
...which cows eat which foods depends... that the probabilities sum-

. lf 1/11 tO"One

...if cows eat grass...

: — Solve for the MLE
...when cows eat corn their stomachs...

which 1/11
... should we let cows eat corn?...

Learning a Language Model

MLE for Deep Neural LM

* We can also use maximum likelihood estimation
to learn the parameters of an RNN-LM or
Transformer-LM too!

e But notin closed form - instead we follow a
different recipe:

— Write the likelihood of the sentences under the
Deep Neural LM model

— Compute the gradient of the (batch) likelihood w.r.t.

the parameters by AutoDiff

— Follow the negative gradient using Mini-batch SGD
(or your favorite optimizer)

MLE for n-gram LM

* This counting method
gives us the maximum
likelihood estimate of
the n-gram LM
parameters

e We can deriveitin the
usual way:
— Write the likelihood of

the sentences under the
n-gram LM

— Set the gradient to zero
and impose the constraint

that the probabilities sum-
to-one

— Solve for the MLE

RNN

Algorithm 1 Elman RNN

1: procedure FORWARD(z 1.7, Wan, Wag, ba, Wyn, by)
2: Initialize the hidden state hy to zeros

3 fortinltol do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:

6 at:Wah'ht—1+Wax'xt+ba

Vi ht — O'((],t)

8 Compute the output at time step ¢:

9 yt:Wyh'ht+by

RNN

Algorithm 1 Elman RNN

: procedure FORWARD(Z1.7, Wan, Waz, ba, Wyn, by)
Initialize the hidden state hg to zeros
fortinlto’l do
Receive input data at time step ¢: x;
Compute the hidden state update:
Ay — Wah . ht—l + Wam - Tt + ba
ht = a(at)
Compute the output at time step ¢:
Y = softmax(Wyp, - hy + b))

QRN R NR

How can we use this to compute

RNN + Loss the loss for an RNN-LM?

Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zthl /4

Oow can we use this to compute

H
RN N-LM + LOSS L the loss for an RNN-LM?

log p(w) = log p(wy, Wy, W3, ... , Wr)

— log p(w, | hy) + ... +log p(w, | hr) Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: /= Zthl /4

y; = p(wih;) Tz = p(whlh.) ys = pP(WAslhs) T4 = p(fvalhy)

L b, b L,

ow can we use this to compute

H
RN N-LN\ + LOSS L the loss for an RNN-LM?

og Pw) ;',‘;2 E((\\/,Vvl’m’)\i% ' i(;/;[))(wz Ihy) Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
L=logpw)[+ | 2 Initialize the hidden state h to zeros
A 3 fortinltol do
4: Receive input data at time step ¢: x;
L6) Lot)[40] (a6 | 5: Compute the hidden state update:
6 at:Wah'ht—1+Wax'It+ba
Y= p(Wilk) Y2 = p(walf) y; = p(wilhs) 7 hy = o(ay)
I T I 8 Compute the output at time step ¢:
9 Yt — SOftmaX(Wyh . ht + by)
10 Compute the cross-entropy loss at time step ¢:
" n 1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zthl /4

Learning an RNN-LM

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(w, | h)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log- T 0 - . s
likelihood of the training L) (2] L6) La6)) LaG)) LAG)) L)
examples: .

J(8) = £ log pe(w0))

* We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

one

training
example

[START] [The] [bat][made] [noise][at]

—

night | [END |

29

Learning a Transformer LM

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(w, | h)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is

typically the log- (20) (860) (500 (260) (860 (20) (60)

likelihood of the training
5) TP(W‘F 3) T](W5|) T(WGI 6) 4 p(w;|
| \

examples: 0 T T

J(e) = Zi |Og pG(W) A p(w|h) A p(w,|h,) A p(w;|

* We train by mini-batch
SGD (or your favorite

one

training
example

flavor of mini-batch SGD) / |
Training a Transformer-LM [\ : | T : \ \]
is the same, except we \ \ \ \ \ \
swap in a different deep (sTART) [The | [bat) [made) (noise] [at | [night) [END |
language model.

Language Modeling

An aside:

* State-of-the-art language models currently tend to rely on transformer networks
(e.g. GPT-2)

* RNN-LMs comprised most of the early neural LMs that led to current SOTA
architectures

Language Modelling on Penn Treebank (Word Level)

Leaderboard Dataset

View Test perplexity v | by Date v | for All models v

Zaremba et al. (2014) - LSTM (large)

Recurrént.highway networks

>
=
>
| AWD-LSTM -continuous cache pointer
o
e GL-LWGC,+ AWD-MoS-LSTM + dynamic eval
a.
5 GPT-2
L: BERT-Large-CAS
CPT-3_(Zero-Shot)
0
2015 2016 2017 2018 2019 2020 2021 2022
Other models Models with lowest Test perplexity

Figure from

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

EFFICIENT TRANSFORMERS

Why does efficiency matter?

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
c a S e S t u d y [G PT_3 Common Crawl] (filtered) 410 billion 60% 0.44
) WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix" refers to the fraction of examples during training

] L[]
* # of training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
t O e n S j— O O result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

[] L]
b I | I I O n Model Name Mparams M ayers dmodcl Mheads dhcad Batch Size Lcaming Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
° f GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
O GPT-3 Large 760M 24 1536 16 96 0.5M 2.5x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
t —_ GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
p a ra m e e rS — GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2x 1074
GPT-3 13B 13.0B 40 5140 40 128 M 1.0 x 10—4

1 7 5 b il I io n GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
° # Of Cy C l e S — 5 O which we trained. All models were trained for a total of 300 billion tokens.

10000

petaflop/s-days

(each of which

are 8.64e+19 II III

flops) . . | I ! I I
eﬁ"e@»*}oi@f & d«‘ éfe cg‘”j & f od

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
Fl gu re fro m is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

https://arxiv.org/pdf/2005.14165.pdf

Efficient Parallelism for Transformers

Transformers can be trained very efficiently!

(This is arguably one of the key reasons they
have been so successful.)

* Batching: Rather than processing one
sentence at a time, Transformers take in
a batch of B sentences at a time. The
computation is identical for each batch
and is trivially parallelized.

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10
* Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

i w, w, w, w, w, W w, Wy w, W, w, w,
1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times
4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop [questioning

36

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10
* Before collecting them into a batch, we:
1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

i w, w, w, w, w, w, w, Wy w, w,,
1 In the hole in the ground there lived a hobbit
2 It is our choices that show what we truly are

3 It was the best of times it was the worst
4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>
5 The more that you read the more things you will

6 We'll always have each other no matter what happens <PAD>
7 The sun did not shine it was too wet to

8 The important thing is to never stop |questioning| <PAD> <PAD>

Batching: Padding and Truncation

Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10

Before collecting them into a batch, we:
1.

truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length

i w, w, W Wy 0

1 2 41 17 19 41 13 42 23 6 16
2 3 20 32 10 40 36 53 51 49 8
3 3 50 41 9 30 46 21 50 41 55
4 1 25 39 6 22 45 0 0 0 0
5 4 26 40 56 34 41 26 44 56 54
6 5 7 15 12 31 28 24 53 14 0
7 4 38 11 29 35 21 50 48 52 47
8 4 18 43 20 47 27 37 33 0 0

Vocabulary:

{
'<PAD>': O,
'Even': 1,
'In': 2,
'It': 3,
'The': 4,
"We'll": 5,
'a': 6,
‘always': 7,
'are': 8,
'best': 9,
'what': 53,
'will': 54,
'worst': 55,
'you': 56

}

38

Batching: Padding and Truncation

Suppose we have 8 training sentences Embeddings:
* We set our block size (maximum sequence length) to 10 {
* Before collecting them into a batch, we:

1. truncate those sentences that are too long

0
1
2. pad the sentences that are too short 2 EE:EE%
3. convert each token to an integer via a lookup table (vocabulary) < TTT]
4. convert each token to an embedding vector of fixed length 4 [TTT]
> I
i w, w, w, w, w, W w, Wy w, W, 6 D:ED
, |II'D | | OO | 00 | O | O | O | O | O | 7 010
, |0IO |00 | 000 | O | OO0 | OO | OO | O | O | O
, | |OI'™ | 0T | O | OO | O | O | O | O | O 55 : [TTT3
, || OO OO0 O CO0|) | | | e 56 : [TTT]
s |D | 00| 0| 00| O OO0 00| 00|)| O
PO)) o o o
, | I OO O T O O O O OO OO0
s | D] O O OO| O OO0 0| O O O

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We ' ’

. v class PadSequence(torch.Callable):
def __init_ (self, pad_idx):

] self.pad_idx = pad_idx
i
1 def __call__(self, batch):
N def to_int_tensor(x):
return torch.from_numpy(np.array(x, dtype=np.int64, copy=False))

3 # Convert each sequence of tokens to a Tensor
4 sequences = [to_int_tensor(x[@]) for x in batch]
5 # Convert the full sequence of labels to a Tensor

labels = to_int_tensor([x[1] for x in batch])
6 sequences_padded = torch.nn.utils.rnn.pad_sequenke(sequences, batch_first=True)
7 return sequences_padded, labels
8

40

Efficient Parallelism for Transformers

Transformers can be trained very efficiently!

(This is arguably one of the key reasons they
have been so successful.)

Batching: Rather than processing one
sentence at a time, Transformers take in
a batch of B sentences at a time. The
computation is identical for each batch
and is trivially parallelized.

Scaled Dot-product Attention: can be
easily parallelized because the attention
scores of one timestep do not depend on
other timesteps.

Multi-headed Attention: computes each
head independently, which permits yet
more parallelism.

Matrix multiplication: The core
computation in attention is matrix
multiplication, and specialized hardware
(GPUs and TPUs) makes this very fast.

Model parallelism: For huge models, we
can divide the model over multiple
GPUs/machines.

Key-value caching: The keys and values
are re-used over many timesteps, but we
do not need to cache the queries,
similarity scores, and attention weights.

Key-Value Cache

D/D///?g

softmax

x!
X4

4
- § :a4,jvj *

j=1

a, = softmax(sy)

At each timestep, we reuse all
previous keys and values (i.e.
we need to cache them)

But we can get rid of the

queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

42

TOKENIZATION

Tokenization

Word-based Tokenizer:
Input: “Henry is giving a lecture on transformers”

Output: [“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”’]

Pros/Cons:

* Can have difficulty trading off between vocabulary size and computational
tractability

* Similar words e.g., “transformers’” and “transformer” can get mapped to
completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

Tokenization

Word-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”’; “is”, <O0V>, “a”, <O0V>, “on”, “transformers”]

Pros/Cons:

* Can have difficulty trading off between vocabulary size and computational
tractability

* Similar words e.g., “transformers’” and “transformer” can get mapped to
completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

Tokenization

Character-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

c [CEIRIY €69 €699 €699 €6y, 66399 €699 €€ 99 €€3IY) 66 ,9) 66399 (€ 99 (€))Y

Pros/Cons:
* Much smaller vocabularies but a lot of semantic meaning is lost...

* Sequences will be much longer than word-based tokenization, potentially
causing computational issues

* Cando well on logographic languages e.g., Kanji {5

Tokenization

Subword-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

OUtpUtI [((henry”’ “is”, ((giv”’ ((##in”’ €€ ¢ ”’ ((a”’ “IeC” “##true”, “On”, “tranSfOFm”, “##erS”]

Pros/Cons:

* Split long or rare words into smaller, semantically meaningful components
or subwords

* No out-of-vocabulary words — any non-subword token can be constructed
from other subwords (always includ all characters as subwords)

* Examples algorithms for learning a subword tokenization:
— Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

GREEDY DECODING FOR A LANGUAGE MODEL

Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalisto find the
lowest (total) weight
path from root to a

2 leaf
4
Greedy Search:
1 * Ateachnode, selects
Start the edge with lowest
State (immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

0 Computation time:
linear in max path
length

Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalisto find the
lowest (total) weight
path from root to a

2 leaf
4
Greedy Search:
1 * Ateachnode, selects
Start the edge with lowest
State (immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

0 Computation time:
linear in max path
length

Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges

States e Goalisto find the
lowest (total) weight
path from root to a
leaf

Greedy Search:

. At each node, selects
the edge with lowest
(immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

0 Computation time:
linear in max path
length

Greedy Decoding for a Language Model

Setup:

Assume a
character-based
tokenizer

Each node has all
characters
{a,b,c,...,z} as
neighbors

Start
State

Here we only
show the high
probability
neighbors for
space

Goal:

Search space consists of nodes
(partial sentences) and weighted by
negative log probability

Goal is to find the highest probably
(lowest negative log probability)
path from root to a leaf

Greedy Search:

At each node, selects the edge
with lowest negative log
probability

Heuristic method of search (i.e.
does not necessarily find the best
path)

Computation time: linear in max
path length

Setup:

Assume a
character-based
tokenizer

Each node has all
characters
{a,b,c,...,z} as
neighbors

Start
State

Here we only
show the high
probability
neighbors for
space

Sampling from a Language Model

Goal:

Search space consists of nodes
(partial sentences) and weighted by
negative log probability

Goal is to sample a path from root to
a leaf with probability according to
the probability of that path

Ancestral Sampling:

At each node, randomly pick an
edge with probability (converting
from negative log probability)

Exact method of sampling,
assuming a locally normalized
distribution (i.e. does not
necessarily find the best path)

Computation time: linear in max
path length

