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Reminders
• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Jan 17
– Due: Wed, Jan 24 at 11:59pm
– Two parts: 

1. written part to Gradescope
2. programming part to Gradescope

– unique policy for this assignment: we will grant (essentially) any and 
all extension requests

• Homework 1: Generative Models of Text
– Out: Thu, Jan 25
– Due: Wed, Feb 7 at 11:59pm
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Q&A
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Q: How will I earn the 5% participation points?

A: Very gradually. There will be a few aspects of the course 
(polls, surveys, meetings with the course staff) that we 
will attach participation points to.



Q&A
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Q: I’m already feeling a bit lost. The deep learning content is going really 

fast. What should I do?

A: We are not expecting you to know deep learning already. 

Consider reviewing the Neural 

Networks module 

(Lectures 11 – 13) from 

10-301/10-601 Fall 2023.

(Links: Slides and Videos)

Q: But I took 10-301/601 with you and I’m still feeling lost!

A: Uh oh! I must be doing something wrong. Come talk to me and let’s 

figure out together how to fix it.

https://www.cs.cmu.edu/~mgormley/courses/10601-f23/schedule.html
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx


RECAP
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Module-based AutoDiff (OOP Version) 

Object-Oriented Implementation:
– Let each module be an object
– Then allow the control flow dictate the creation of the computation graph
– No longer need to implement NNBackward(·), just follow the computation 

graph in reverse topological order
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1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ! b ! (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga

Recall…



Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable 

corresponding to the hidden unit
• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
how a matrix can be used to indicate the 
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss
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J = 1
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Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 8

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Recall…



Sampling from a Language Model
Question: How do we sample from a Language Model?

Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die

2. Pick the die corresponding to p(wt | wt-2, wt-1)

3. Roll that die and generate whichever word wt lands face up

4. Repeat
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Recap So Far
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() 
by chaining existing modules together

• Computation Graphs
– are another way to define f (more 

conducive to slides)

– so far, we saw two (deep) computation 
graphs
• 1) RNN-LM
• 2) Transformer-LM
• (Transformer-LM was kind of complicated)

Language Modeling
• key idea: condition on previous 

words to sample the next word
• to define the probability of the next 

word…
– …n-gram LM uses collection of massive 

50k-sided dice
– …RNN-LM or Transformer-LM use a 

neural network

• Learning an LM
– n-gram LMs are easy to learn: just count

co-occurrences!

– so far, we said nothing about how to 
learn an RNN-LM or Transformer-LM

– So let’s figure that out next…
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Two parts: Deep Learning and Language Modeling



LEARNING A NEURAL NETWORK
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

13

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Recall…



Example:
Neural Network

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−b)
gb = gy

∂y

∂b
,
∂y

∂b
= y(1− y)

b =
D∑
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βjzj gβj
= gb

∂b

∂βj

,
∂b

∂βj

= zj

gzj = gb
∂b

∂zj
,
∂b

∂zj
= βj
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1 + exp(−aj)
gaj
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∂zj

∂aj
,
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∂aj
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∂xi

= αji

…

…

Recall…



Example:
Neural Network

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Forward Backward
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Recall…

This whole 
“Backward” columns 
is now computed for 
us automatically by 

AutoDiff



SGD with Backprop
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Example: 1-Hidden Layer Neural Network

Recall…



SGD and Mini-batch SGD
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Algorithm 1 SGD

1: Initialize θ(0)

2:
3:
4: s = 0
5: for t = 1, 2, . . . , T do
6: for i ∈ shufÒe(1, . . . , N) do
7: Select the next training point (xi, yi)
8: Compute the gradient g(s) = ∇Ji(θ

(s−1))
9: Update parameters θ(s) = θ(s−1)

− ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



SGD and Mini-batch SGD
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Algorithm 1Mini‐Batch SGD

1: Initialize θ(0)

2: Divide examples {1, . . . , N} randomly into batches {I1, . . . , IB}
3: where

⋃
B

b=1 Ib = {1, . . . , N} and
⋂

B

b=1 Ib = ∅
4: s = 0
5: for t = 1, 2, . . . , T do
6: for b = 1, 2, . . . , B do
7: Select the next batch Ib, wherem = |Ib|
8: Compute the gradient g(s) = 1

m

∑
i∈Ib

∇Ji(θ
(s))

9: Update parameters θ(s) = θ(s−1) − ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



LEARNING A TRANSFORMER LM
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Learning a Language Model
Question: How do we learn the probabilities for the n-Gram 
Model?

20

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE



Learning a Language Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE

MLE for Deep Neural LM
• We can also use maximum likelihood estimation 

to learn the parameters of an RNN-LM or 
Transformer-LM too!

• But not in closed form – instead we follow a 
different recipe:
– Write the likelihood of the sentences under the 

Deep Neural LM model
– Compute the gradient of the (batch) likelihood w.r.t. 

the parameters by AutoDiff

– Follow the negative gradient using Mini-batch SGD 
(or your favorite optimizer)



RNN
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y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = Wyh · ht + by



RNN
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Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4



RNN + Loss
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Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?



RNN-LM + Loss   _
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y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?

w1 w2 w3w0=START

w1 w2 w3 w4

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + … + log p(w2 | hT) Algorithm 1 Elman RNN + Loss

1: procedure FORWARD(x1:T , y
∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t



RNN-LM + Loss   _
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w1 w2 w3w0=START

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + … + log p(w2 | hT)

ℓ = log p(w)

h1 h2 h3 h4

w4

x1 x2 x3 x4 x5

How can we use this to compute 
the loss for an RNN-LM?

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t



Learning an RNN-LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 

J(θ) = !i log pθ(w(i))
• We train by mini-batch 

SGD (or your favorite 
flavor of mini-batch SGD)

29

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

+

J = log p(w)

END



Learning a Transformer LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 

J(θ) = !i log pθ(w(i))
• We train by mini-batch 

SGD (or your favorite 
flavor of mini-batch SGD)

30

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

Transformer LM

+

J = log p(w)

END

Training a Transformer-LM 
is the same, except we 

swap in a different deep 
language model.



Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks 

(e.g. GPT-2)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA 

architectures

32
Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word


EFFICIENT TRANSFORMERS

33



Why does efficiency matter?

Case Study: GPT-3
• # of training 

tokens = 500 
billion

• # of 
parameters = 
175 billion

• # of cycles = 50 
petaflop/s-days 
(each of which 
are 8.64e+19 
flops)

34
Figure from https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


Efficient Parallelism for Transformers
Transformers can be trained very efficiently!
(This is arguably one of the key reasons they 
have been so successful.)
• Batching: Rather than processing one 

sentence at a time, Transformers take in 
a batch of B sentences at a time. The 
computation is identical for each batch 
and is trivially parallelized.

• Scaled Dot-product Attention: can be 
easily parallelized because the attention 
scores of one timestep do not depend on 
other timesteps.

• Multi-headed Attention: computes each 
head independently, which permits yet 
more parallelism.

• Matrix multiplication: The core 
computation in attention is matrix 
multiplication, and specialized hardware 
(GPUs and TPUs) makes this very fast.

• Model parallelism: For huge models, we 
can divide the model over multiple 
GPUs/machines.

• Key-value caching: The keys and values 
are re-used over many timesteps, but we 
do not need to cache the queries, 
similarity scores, and attention weights.

35



Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning

36

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length



Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens <PAD>

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning <PAD> <PAD>

37

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length



Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 2 41 17 19 41 13 42 23 6 16

2 3 20 32 10 40 36 53 51 49 8

3 3 50 41 9 30 46 21 50 41 55 of times

4 1 25 39 6 22 45 0 0 0 0

5 4 26 40 56 34 41 26 44 56 54 know

6 5 7 15 12 31 28 24 53 14 0

7 4 38 11 29 35 21 50 48 52 47 play

8 4 18 43 20 47 27 37 33 0 0

38

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length

Vocabulary:
{
    '<PAD>': 0,
    'Even': 1,
    'In': 2,
    'It': 3,
    'The': 4,
    "We'll": 5,
    'a': 6,
    'always': 7,
    'are': 8,
    'best': 9,
    …
    'what': 53,
    'will': 54,
    'worst': 55,
    'you': 56
}



i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1

2

3 of times

4

5 know

6

7 play

8

Batching: Padding and Truncation
• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length

Embeddings:
{
 0 :
 1 :
 2 : 
 3 : 
 4 : 
 5 :
 6 :
 7 : 
 …
 55 :
 56 :
}



Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens <PAD>

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning <PAD> <PAD>
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• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length

Don’t do this!
(Can you spot the bug?)



Efficient Parallelism for Transformers
Transformers can be trained very efficiently!
(This is arguably one of the key reasons they 
have been so successful.)
• Batching: Rather than processing one 

sentence at a time, Transformers take in 
a batch of B sentences at a time. The 
computation is identical for each batch 
and is trivially parallelized.

• Scaled Dot-product Attention: can be 
easily parallelized because the attention 
scores of one timestep do not depend on 
other timesteps.

• Multi-headed Attention: computes each 
head independently, which permits yet 
more parallelism.

• Matrix multiplication: The core 
computation in attention is matrix 
multiplication, and specialized hardware 
(GPUs and TPUs) makes this very fast.

• Model parallelism: For huge models, we 
can divide the model over multiple 
GPUs/machines.

• Key-value caching: The keys and values 
are re-used over many timesteps, but we 
do not need to cache the queries, 
similarity scores, and attention weights.
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Key-Value Cache
• At each timestep, we reuse all 

previous keys and values (i.e. 

we need to cache them)

• But we can get rid of the 

queries, similarity scores, and 

attention weights (i.e. we can 

let them fall out of the cache)
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this 

timestep



TOKENIZATION

43



Tokenization

Pros/Cons:
• Can have difficulty trading off between vocabulary size and computational 

tractability
• Similar words e.g., “transformers” and “transformer” can get mapped to 

completely disparate representations
• Typos will typically be out-of-vocabulary (OOV)

44
Slide adapted from Henry Chai

Input: “Henry is giving a lecture on transformers”

Output: [“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”]

Word-based Tokenizer:



Tokenization

Pros/Cons:
• Can have difficulty trading off between vocabulary size and computational 

tractability
• Similar words e.g., “transformers” and “transformer” can get mapped to 

completely disparate representations
• Typos will typically be out-of-vocabulary (OOV)

45
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers” 

Output: [“henry”, “is”, <OOV>, “a”, <OOV>, “on”, “transformers”]

Word-based Tokenizer:



Tokenization

Pros/Cons:
• Much smaller vocabularies but a lot of semantic meaning is lost…
• Sequences will be much longer than word-based tokenization, potentially 

causing computational issues
• Can do well on logographic languages e.g., Kanji 漢字

46
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers” 

Output: [“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, … ]

Character-based Tokenizer:



Tokenization

Pros/Cons:
• Split long or rare words into smaller, semantically meaningful components 

or subwords
• No out-of-vocabulary words – any non-subword token can be constructed 

from other subwords (always includ all characters as subwords)
• Examples algorithms for learning a subword tokenization: 

– Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

47
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers” 

Output: [“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lec” “##true”, “on”, “transform”, “##ers”]

Subword-based Tokenizer:



GREEDY DECODING FOR A LANGUAGE MODEL
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Background: Greedy Search
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Greedy Search:
• At each node, selects 

the edge with lowest 
(immediate) weight

• Heuristic method of 
search (i.e. does not 
necessarily find the 
best path)

• Computation time: 
linear in max path 
length

Goal:
• Search space consists 

of nodes and weighted 
edges

• Goal is to find the 
lowest (total) weight 
path from root to a 
leaf
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Background: Greedy Search
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Greedy Search:
• At each node, selects 

the edge with lowest 
(immediate) weight

• Heuristic method of 
search (i.e. does not 
necessarily find the 
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• Computation time: 
linear in max path 
length
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path from root to a 
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Setup:

• Assume a 
character-based 
tokenizer

• Each node has all 
characters 
{a,b,c,…,z} as 
neighbors

• Here we only 
show the high 
probability 
neighbors for 
space

Greedy Decoding for a Language Model
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Greedy Search:
• At each node, selects the edge 

with lowest negative log 
probability

• Heuristic method of search (i.e. 
does not necessarily find the best 
path)

• Computation time: linear in max 
path length
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• Search space consists of nodes 

(partial sentences) and weighted by 
negative log probability
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Setup:

• Assume a 
character-based 
tokenizer

• Each node has all 
characters 
{a,b,c,…,z} as 
neighbors

• Here we only 
show the high 
probability 
neighbors for 
space

Sampling from a Language Model
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t

Start
State

Ancestral Sampling:
• At each node, randomly pick an 

edge with probability (converting 
from negative log probability)

• Exact method of sampling, 
assuming a locally normalized 
distribution (i.e. does not 
necessarily find the best path)

• Computation time: linear in max 
path length
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Goal:
• Search space consists of nodes 

(partial sentences) and weighted by 
negative log probability

• Goal is to sample a path from root to 
a leaf with probability according to 
the probability of that path
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