

10-423/10-623 Generative Al

Machine Learning Department School of Computer Science Carnegie Mellon University

+ Modern Transformers (RoPE, GQA, Longformer) + CNNs

Matt Gormley Lecture 4 Jan. 29, 2024

Reminders

- Homework 0: PyTorch + Weights & Biases
 - Out: Wed, Jan 17
 - Due: Wed, Jan 24 at 11:59pm
 - unique policy for this assignment: we will grant (essentially) any and all extension requests
- Homework 1: Generative Models of Text
 - Out: Thu, Jan 25
 - Due: Wed, Feb 7 at 11:59pm
- Quiz 1: Wed, Jan 31

Recap So Far

Deep Learning

- AutoDiff
 - is a tool for computing gradients of a differentiable function, b = f(a)
 - the key building block is a module with a forward() and backward()
 - sometimes define f as code in forward() by chaining existing modules together
- Computation Graphs
 - are another way to define f (more conducive to slides)
 - so far, we saw two (deep) computation graphs
 - 1) RNN-LM
 - 2) Transformer-LM
 - (Transformer-LM was kind of complicated)

Language Modeling

- key idea: condition on previous words to sample the next word
- to define the **probability** of the next word...
 - ... n-gram LM uses collection of massive 50k-sided dice
 - ... RNN-LM or Transformer-LM use a neural network
- Learning an LM
 - n-gram LMs are easy to learn: just count co-occurrences!
 - a RNN-LM / Transformer-LM is trained by optimizing an objective function with SGD; compute gradients with AutoDiff

PRE-TRAINING VS. FINE-TUNING

The Start of Deep Learning

- The architectures of modern deep learning have a long history:
 - 1960s: Rosenblatt's 3-layer multi-layer perceptron, ReLU)
 - 1970-80s: RNNs and CNNs
 - 1990s: linearized self-attention
- The spark for deep learning came in 2006 thanks to **pre-training** (e.g., Hinton & Salakhutdinov, 2006)

Deep Network Training

Idea #1:

1. Supervised fine-tuning only

• Idea #2:

- 1. Supervised layer-wise pre-training
- 2. Supervised fine-tuning

Idea #3:

- 1. Unsupervised layer-wise pre-training
- 2. Supervised fine-tuning

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Idea #3: Unsupervised Pre-training

Idea #3: (Two Steps)

- Use our original idea, but **pick a better starting point**
- Train each level of the model in a greedy way
- 1. Unsupervised Pre-training
 - Use unlabeled data
 - Work bottom-up
 - Train hidden layer 1. Then fix its parameters.
 - Train hidden layer 2. Then fix its parameters.
 - •••
 - Train hidden layer n. Then fix its parameters.
- 2. Supervised Fine-tuning
 - Use **labeled** data to train following "Idea #1"
 - Refine the features by backpropagation so that they become tuned to the end-task

Unsupervised pretraining of the first layer:

- What should it predict?
- What else do we observe?
- The input!

Unsupervised pretraining of the first layer:

- What should it predict?
- What else do we observe?
- The input!

This topology defines an Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:

- x' is the reconstruction of x
- Loss = $|| x DECODER(ENCODER(x)) ||^2$
- Train with the same backpropagation algorithm for 2-layer Neural Networks with x_m as both input and output.

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1.
 Then fix its parameters.
 - Train hidden layer 2.
 Then fix its parameters.
 - • Hidden Layer
 - Train hidden layer n.
 Then fix its parameters.

Input

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1. Then fix its parameters.
 - Train hidden layer 2. Then fix its parameters.
 - Hidden Layer
 - Train hidden layer n. Then fix its parameters.

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1.
 Then fix its parameters.
 - Train hidden layer 2.
 Then fix its parameters.
 - • Hidden Layer
 - Train hidden layer n.
 Then fix its parameters.

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1.
 Then fix its parameters.
 - Train hidden layer 2. Hidden Layer Then fix its parameters.
 - ...
 - Train hidden layer n. Hidden Layer Then fix its parameters.

Supervised fine-tuning Backprop and update all

parameters

Deep Network Training

Idea #1:

1. Supervised fine-tuning only

• Idea #2:

- 1. Supervised layer-wise pre-training
- 2. Supervised fine-tuning

Idea #3:

- 1. Unsupervised layer-wise pre-training
- 2. Supervised fine-tuning

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

Transformer Language Model

Generative pre-training for a deep language model:

- each training example is an (unlabeled) sentence
- the objective function is the likelihood of the observed sentence

Practically, we can **batch** together many such training examples to make training more efficient

Training Data for LLMs

GPT-3 Training Data:

	Quantity	Weight in	Epochs elapsed when
Dataset	(tokens)	training mix	training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Training Data for LLMs

Composition of the Pile by Category

Academic Internet Prose Dialogue Misc

The Pile:

- An open source dataset for training language models
- Comprised of 22 smaller datasets
- Favors high quality text
- 825 Gb \approx 1.2 trillion tokens

MODERN TRANSFORMER MODELS

Modern Tranformer Models

- PaLM (Oct 2022)
 - 540B parameters
 - closed source
 - Model:
 - SwiGLU instead of ReLU, GELU, or Swish
 - multi-query attention (MQA) instead of multi-headed attention
 - rotary position embeddings
 - shared input-output embeddings instead of separate parameter matrices
 - Training: Adafactor on 780 billion tokens
- Llama-1 (Feb 2023)
 - collection of models of varying parameter sizes: 7B, 13B, 32B, 65B
 - semi-open source
 - Llama-13B outperforms GPT-3 on average
 - Model compared to GPT-3:
 - **RMSNorm** on inputs instead of LayerNorm on outputs
 - SwiGLU activation function instead of ReLU
 - rotary position embeddings (RoPE) instead of absolute
 - Training: AdamW on 1.0 1.4 trillion tokens
- Falcon (June Nov 2023)
 - models of size 7B, 40B, 180B
 - first fully open source model, Apache 2.0
 - Model compared to Llama-1:
 - (GQA) instead of multi-headed attention (MHA) or **grouped query attention multi-query attention** (MQA)
 - rotary position embeddings (worked better than Alibi)
 - GeLU instead of SwiGLU
 - Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for stability and weight decay

- Llama-2 (Aug 2023)
 - collection of models of varying parameter sizes: 7B, 13B, 70B.
 - introduced Llama 2-Chat, fine-tuned as a dialogue agent
 - Model compared to Llama-1:
 - grouped query attention (GQA) instead of multi-headed attention (MHA)
 - context length of 4096 instead of 2048
 - Training: AdamW on 2.0 trillion tokens
- Mistral 7B (Oct 2023)
 - outperforms Llama-2 13B on average
 - introduced Mistral 7B Instruct, fine-tuned as a dialogue agent
 - truly open source: Apache 2.0 license
 - Model compared to Llama-2
 - **sliding window attention** (with W=4096) and grouped-query attention (GQA) instead of just GQA
 - context length of 8192 instead of 4096 (can generate sequences up to length 32K)
 - **rolling buffer cache** (grow the KV cache and the overwrite position i into position i mod W)
 - variant Mixtral offers a mixture of experts (roughly 8 Mistral models)

In this section we'll look at three techniques:

- 1. rotary position embeddings (RoPE)
- 2. grouped query attention (GQA)
- 3. sliding window attention

- Rotary position embeddings are a kind of relative position embeddings
- Key idea:
 - break each ddimensional input vector into d/2 vectors of length 2
 - rotate each of the d/2 vectors by an amount scaled by m
 - m is the relative position between the query and key

ROPE attention:

$$\mathbf{q}_j = \mathbf{W}_q^T \mathbf{x}_j, \forall j$$

 $\tilde{\mathbf{q}}_j = \mathbf{R}_{\Theta,j} \mathbf{q}_j$
 $s_{t,j} = \tilde{\mathbf{k}}_j^T \tilde{\mathbf{q}}_t / \sqrt{d_k}, \forall j, t$
 $\mathbf{a}_t = \mathsf{softmax}(\mathbf{s}_t), \forall t$ $\mathbf{k}_j = \mathbf{W}_k^T \mathbf{x}_j, \forall j$
 $\tilde{\mathbf{k}}_j = \mathbf{R}_{\Theta,j} \mathbf{k}_j$

where $d = d_k/2$, \mathbf{W}_k , $\mathbf{W}_q \in \mathbb{R}^{d_{model} \times d_k}$. For some fixed absolute position m, the rotary matrix $\mathbf{R}_{\Theta,m} \in \mathbb{R}^{d_k \times d_k}$ is given by:

$$R_{\Theta,m} = \begin{pmatrix} \cos m\theta_1 & -\sin m\theta_1 & 0 & 0 & \dots & 0 & 0 \\ \sin m\theta_1 & \cos m\theta_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos m\theta_2 & -\sin m\theta_2 & \dots & 0 & 0 \\ 0 & 0 & \sin m\theta_2 & \cos m\theta_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \cos m\theta_{d_k/2} & -\sin m\theta_{d_k/2} \\ 0 & 0 & 0 & 0 & \dots & \sin m\theta_{d_k/2} & \cos m\theta_{d_k/2} \end{pmatrix}$$

The θ_i parameters are fixed ahead of time and defined as below.

$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, \dots, d/2]\}$$

 $\begin{array}{l} Q_{t} = W_{q}^{T} \times_{t} = \begin{bmatrix} 1, 3, 1, 3, 1, 3, 1, 3 \\ 3 \end{bmatrix} \\ k_{j} = W_{k}^{T} \times_{j} = \begin{bmatrix} 3, 1, 3, 1, 3, 1, 3, 1 \\ 3 \end{bmatrix} \end{array}$

RoPE attention:
 $\mathbf{q}_j = \mathbf{W}_q^T \mathbf{x}_j, \forall j$
 $\tilde{\mathbf{q}}_j = \mathbf{R}_{\Theta,j} \mathbf{q}_j$
 $s_{t,j} = \tilde{\mathbf{k}}_j^T \tilde{\mathbf{q}}_t / \sqrt{d_k}, \forall j, t$
 $\mathbf{a}_t = \operatorname{softmax}(\mathbf{s}_t), \forall t$ $\mathbf{k}_j = \mathbf{W}_k^T \mathbf{x}_j, \forall j$
 $\tilde{\mathbf{k}}_j = \mathbf{R}_{\Theta,j} \mathbf{k}_j$

Because of the block sparse pattern in $\mathbf{R}_{\theta,m}$, we can efficiently compute the matrix-vector product of $\mathbf{R}_{\theta,m}$ with some arbitrary vector \mathbf{y} in a more efficient manner:

Matrix Version of RoPE

RoPE attention:			Matrix Version:		
$\mathbf{q}_j = \mathbf{W}_q^T \mathbf{x}_j$	$_{j}, orall j$	$\mathbf{k}_j = \mathbf{W}_k^T \mathbf{x}_j, \forall j$	$\mathbf{Q}=\mathbf{X}\mathbf{W}_{q}$	$\mathbf{K} = \mathbf{X}\mathbf{W}_k$	
$ ilde{\mathbf{q}}_j = \mathbf{R}_{\Theta,j}$ (\mathbf{q}_{j}	$ ilde{\mathbf{k}}_j = \mathbf{R}_{\Theta,j} \mathbf{k}_j$	$\tilde{\mathbf{Q}} = g(\mathbf{Q}; \Theta)$	$\tilde{\mathbf{K}} = g(\mathbf{K}; \Theta)$	
$s_{t,j} = \tilde{\mathbf{k}}_j^T \tilde{\mathbf{q}}_{t,j}$	$\sqrt{d_k}, \forall j, t$		$\mathbf{S} = ilde{\mathbf{Q}} ilde{\mathbf{K}}^T / \sqrt{d_k}$		
$\mathbf{a}_t = softmax(\mathbf{s}_t), \forall t$		$\mathbf{A} = softmax(\mathbf{S})$			
Goal: to construct a new matrix $\tilde{\mathbf{Y}} = g(\mathbf{Y}; \Theta)$ such that $\tilde{\mathbf{Y}}_{m,\cdot} = \mathbf{R}_{\Theta,m} \mathbf{y}_m$					
		$\begin{bmatrix} 1 \theta_1 & \cdots & 1 \end{bmatrix}$	$\theta_{\frac{d}{2}} \mid 1\theta_1 \cdots 1\theta_{\frac{d}{2}} \mid$		
	$\mathbf{C} = \left[\begin{array}{cccc} \vdots & \vdots & \vdots \\ N\theta_1 & \cdots & N\theta_d \end{array} \right] \left[\begin{array}{cccc} \vdots & \vdots & \vdots \\ N\theta_1 & \cdots & N\theta_d \end{array} \right]$				
	$\tilde{\mathbf{Y}} = g(\mathbf{Y}; \Theta)$				
	$= \begin{bmatrix} \mathbf{Y}_{\cdot,1:d/2} \mid \mathbf{Y}_{\cdot,d/2+1:d} \end{bmatrix} \otimes \cos(\mathbf{C})$				
$+ \left[egin{array}{c c c c c } - \mathbf{Y}_{\cdot,d/2+1:d} & \mathbf{Y}_{\cdot,1:d/2} \end{array} ight] \otimes \sin(\mathbf{C})$					

Matrix Version of Multi-Headed (Causal) Attention

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each *group* of query heads, interpolating between multi-head and multi-query attention.

Grouped Query Attention (GQA)

- Key idea: reuse the same key-value heads for multiple different query heads
- Parameters: The parameter matrices are all the same size, but we now have fewer key/value parameter matrices (heads) than query parameter matrices (heads)

- h_q = the number of query heads = \$
- h_{kv} = the number of key/value heads = 4
- Assume h_q is divisible by h_{kv}
- $g = h_q / h_{kv}$ is the size of each group = 2 (i.e. the number of query vectors per key/value vector). $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T]^T$ $X = [\mathbf{x}_1, \dots, \mathbf{x}_T]^T$ $\mathbf{V}^{(i)} = \mathbf{X} \mathbf{W}_{v_{-1}}^{(i)}, \forall i \in \{1, \dots, d_{kv}\}$ $\mathbf{K}^{(i)} = \mathbf{X} \mathbf{W}_{k}^{(i)}, \forall i \in \{1, \dots, d_{kv}\}$ $\mathbf{Q}^{(i,j)} = \mathbf{X} \mathbf{W}_{q}^{(i,j)}, \forall i \in \{1, \dots, d_{kv}\}, \forall j \in \{1, \dots, g\}$

Grouped-query

Sliding Window Attention

Sliding Window Attention

- also called "local attention" and introduced for the Longformer model (2020)
- The problem: regular attention is computationally expensive and requires a lot of memory
- The solution: apply a causal mask that only looks at the include a window of (1/2w+1) tokens, with the rightmost window element being the current token (i.e. on the diagonal)

$$\mathbf{X}' = \operatorname{softmax} \left(rac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d_k}} + \mathbf{M}
ight) \mathbf{V}$$

sliding window attention (w=6)

Sliding Window Attention

Sliding Window Attention

- also called "local attention" and introduced for the Longformer model (2020)
- The problem: regular attention is computationally expensive and requires a lot of memory
- The solution: apply a causal mask that only looks at the include a window of (1/2w+1) tokens, with the rightmost window element being the current token (i.e. on the diagonal)

$$\mathbf{X}' = \operatorname{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}} + \mathbf{M} \right) \mathbf{V}$$

3 ways you could implement

- 1. *naïve implementation:* just do the matrix multiplication, but this is still slow
- 2. for-loop implementation: asymptotically faster / less memory, but unusable in practice b/c for-loops in PyTorch are too slow
- 3. sliding chunks implementation: break into Q and K into chunks of size w x w, with overlap of ½w; then compute full attention within each chunk and mask out chunk (very fast/low memory in practice)

BACKGROUND: COMPUTER VISION
Example: Image Classification

- ImageNet LSVRC-2011 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

Figures from http://opencv.org

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

CNNs for Image Recognition

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and **recurrent neural networks** (RNNs) are simply fancy computation graphs (aka. hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on the **backpropagation algorithm** to compute the necessary gradients.

CONVOLUTION

What's a convolution?

- Basic idea:
 - Pick a 3x3 matrix F of weights
 - Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
 - Different convolutions extract different types of low-level "features" from an image
 - All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Convolution

0	0	0
0	1	1
0	1	0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Convolution0001

0 1 1 0 1 0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

			0	0	0	0
	1	1	1	1	1	0
	1		0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0				0	0	0
0		1	1	1	1	0
0		0		1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0				0	0
0	1		1	1	1	0
0	1		0		0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0				0
0	1	1		1	1	0
0	1	0		1		0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Convolution

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0			
0	1	1	1		1	0
0	1	0	0		0	
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
			1	1	1	0
	1	0	0	1	0	0
	1		1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Convolution

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0				1	1	0
0		0	0	1	0	0
0		0		0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0			

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Identity Convolution						
0	0	0				
0	1	0				
0	0	0				

1	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Input Image

Blurring Convolution							
.1	.1 .1 .1						
.1	.2	.1					
.1	.1	.1					

.4	•5	•5	•5	•4
.4	.2	•3	.6	•3
•5	•4	•4	.2	.1
•5	.6	.2	.1	0
.4	•3	.1	0	0

Original Image

Smoothing Convolution

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Gaussian Blur

.01	.04	.06	.04	.01
.04	.19	.25	.19	.04
.06	.25	•37	.25	.06
.04	.19	.25	.19	.04
.01	.04	.06	.04	.01

Sharpening Kernel

0	-1	0
-1	5	-1
0	-1	0

Edge Detector

-1	-1	-1
-1	8	-1
-1	-1	-1

What's a convolution?

- Basic idea:
 - Pick a 3x3 matrix F of weights
 - Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
 - Different convolutions extract different types of low-level "features" from an image
 - All that we need to vary to generate these different features is the weights of F

Slide adapted from William Cohen

DOWNSAMPLING

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

Downsampling by Averaging

- Downsampling by averaging is a special case of convolution where the weights are fixed to a uniform distribution
- The example below uses a stride of 2

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

Convolution

Max-Pooling

- Max-pooling with a stride > 1 is another form of downsampling
- Instead of averaging, we take the max value within the same range as the equivalently-sized convolution
- The example below uses a stride of 2

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Input Image

$$y_{ij} = \max(x_{ij}, x_{i,j+1}, x_{i+1,j}, x_{i+1,j+1})$$

CONVOLUTIONAL NEURAL NETS

Background

A Recipe for Machine Learning

1. Given training data: $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

– Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small stepsopposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Convolutional Layer

•4	•5	•5	•5	•4
•4	.2	•3	.6	•3
•5	.4	•4	.2	.1
•5	.6	.2	.1	0
•4	.3	.1	0	0

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

7

TRAINING CNNS

Background

A Recipe for Machine Learning

1. Given training data: $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small stepsopposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

SGD for CNNs

LAYERS OF A CNN

Softmax Layer

Fully-Connected Layer

Convolutional Layer

Convolutional Layer

Max-Pooling Layer

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

7

Architecture #2: AlexNet

CNNs for Image Recognition

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Typical Architectures

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Microsoft[®]

Research

In-Class Poll

Question:

Why do many layers used in computer vision not have location specific parameters?

Answer:

Convolutional Layer

0

0

0

0

0

0

0

0

For a convolutional layer, how do we pick the kernel size (aka. the size of the convolution)?

A large kernel can see more of the image, but at the • expense of speed

CNN VISUALIZATIONS

Visualization of CNN

https://adamharley.com/nn_vis/cnn/2d.html

Convolution of a Color Image

- Color images consist of 3 floats per pixel for RGB (red, green blue) color values
- Convolution must also be 3-dimensional

Animation of 3D Convolution

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs (in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Figure from Andrej Karpathy

CNN Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers