ML 10-423/10-623 Generative Al

Machine Learning Department

e —— | School of Computer Science

MACHINE LEARNING ; T
EEEEEEEEEE Carnegie Mellon University

%

Pretraining vs. finetuning
+ Modern Transformers
(RoPE, GQA, Longformer)

+ CNNs

Matt Gormley
Lecture 4
Jan. 29, 2024

Reminders

* Homework 0: PyTorch + Weights & Biases
— Out: Wed, Jan 17
— Due: Wed, Jan 24 at 11:59pm

— unique policy for this assignment: we will grant (essentially) any
and all extension requests

* Homework 1: Generative Models of Text
— Out: Thu, Jan 25
— Due: Wed, Feb 7 at 11:59pm

* Quiz 1: Wed, Jan 31

Two parts: and Recap SO Far

Deep Learning Language Modeling
* AutoDiff * key idea: condition on previous
— is a tool for computing %radients of a words to sample the next word
differentiable function, b = f(a) * to define the probability of the next
— the key building block is a module with a word...
forward() and backward() , :
: . : — ...n-gram LM uses collection of massive
— sometimes define f as code in forward() sok-sided dice
by chaining existing modules together — _ RNN-LM or Transformer-LM use 2
¢ Computatlon GraphS hueural network

— are another way to define f (more
conducive to slides)

— so far, we saw two (deep) computation * Learningan LM

graphs — n-gram LMs are easy to learn: just count
* 1) RNN-LM co-occurrences!
* 2)Transformer-LM — a RNN-LM / Transformer-LM is trained by
« (Transformer-LM was kind of complicated) optimizing an objective function with

SGD; compute gradients with AutoDiff

PRE-TRAINING VS. FINE-TUNING

The Start of Deep Learning

* The architectures of modern deep
learning have a long history:

— 1960s: Rosenblatt’s 3-layer multi-layer
perceptron, ReLU)

— 1970-80s: RNNs and CNNs
— 1990s: linearized self-attention
* The spark for deep learning came in

2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

Figure from Vargas et al. (2017)

Publications

16500

14500

12500

10500

8500

6500

683

2006

7743

2007

8136

2008

8706

2009

10930

9194
9853

2010 2011 2012

Year

12200

2013 2

15

069

15

16288

2015 2016

Deep Network Training

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

1.

2.

ldea #3: Unsupervised
Pre-training

Idea #3: (Two Steps)
® Use our original idea, but pick a better starting point

® Train each level of the model in a greedy way

Unsupervised Pre-training
— Use unlabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

10

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

11

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

This topology defines an
Auto-encoder.

12

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:

— X’ is the reconstruction of x
— Loss = || x - DECODER(ENCODER(x)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x;, as both input and output.

DECODER: x’=h(W’z)

ENCODER: z = h(Wx)

Slide adapted from Raman Arora

13

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2.
Then fix its parameters.

nput”

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

Input

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. B
Then fix its parameters.

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

_ ' y - <

15

The sol
Unsupervised

Unsupervised pre-
training
* Work bottom-up

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2.
Then fix its parameters.

Train hidden layer n.
Then fix its parameters.

ution:
pre-training

Hidden Layer
Hidden Layer

Hidden Layer

16

Unsupervised pre-
training
* Work bottom-up

Supervised fine-tuning
Backprop and update all -

The solution:
Unsupervised pre-training

Hidden Layer

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2. centoyer
Then fix its parameters.

Train hidden layern. weenwyer
Then fix its parameters.

parameters

17

Deep Network Training

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
% 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

19

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
- I
1.0 - | | | L
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

20

Transformer Language Model

)\

[The [bat] [made] [noise]

P AT

T p(wilh,) p(wa|h,) p(ws|h;) p(w,|h,)
>

Generative pre-training for a deep

language model:

* each training example is an
(unlabeled) sentence

* the objective function is the
likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient

Table from

Training Data for LLMs

GPT-3 Training Data:
Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

22

http://arxiv.org/abs/2005.14165

Training Data for LLMs

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC g
ArXiv

The Pile:

* An open source dataset for
training language models

* Comprised of 22 smaller
datasets

* Favors high quality text

* 825 Gb = 1.2 trillion tokens

PubMed Central

BC2
StackExchange
PMA
FreeLaw USPTO NIH [OpenWebText2 Wikipedia DM Math I

23

MODERN TRANSFORMER MODELS

Modern Tranformer Models

PaLM (Oct 2022)

540B parameters
closed source
Model:
* SwiGLU instead of ReLU, GELU, or Swish
* multi-query attention (MQA) instead of multi-headed attention
* rotary position embeddings
* shared input-output embeddings instead of separate parameter matrices
Training: Adafactor on 780 billion tokens

Llama-1 (Feb 2023)

collection of models of varying parameter sizes: 7B, 13B, 32B, 65B
semi-open source
Llama-13B outperforms GPT-3 on average
Model compared to GPT-3:

* RMSNorm on inputs instead of LayerNorm on outputs

* SwiGLU activation function instead of ReLU

* rotary position embeddings (RoPE) instead of absolute
Training: AdamW on 1.0 — 1.4 trillion tokens

Falcon (June - Nov 2023)

models of size 7B, 40B, 180B
first fully open source model, Apache 2.0
Model compared to Llama-1:
. (G(%A) instead of multi-headed attention (MHA) or grouped query attention
multi-query attention (MQA)
* rotary position embeddings (worked better than Alibi)
* GelUinstead of SwiGLU
Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for
stability and weight decay

Llama-2 (Aug 2023)

collection of models of varying parameter sizes: 7B, 13B, 70B.

introduced Llama 2-Chat, fine-tuned as a dialogue agent

Model compared to Llama-1:
+ grouped query attention (GQA) instead of multi-headed attention (MHA)
* context length of 4096 instead of 2048

Training: AdamW on 2.0 trillion tokens

Mistral 7B (Oct 2023)

outperforms Llama-2 13B on average

introduced Mistral 7B — Instruct, fine-tuned as a dialogue agent
truly open source: Apache 2.0 license

Model compared to Llama-2

+ sliding window attention (with W=4096) and grouped-query attention
(GQA) instead of just GQA

+ context length of 8192 instead of 4096 (can generate sequences up to
length 32K)

* rolling buffer cache (grow the KV cache and the overwrite position i into
position i mod W)

variant Mixtral offers a mixture of experts (roughly 8 Mistral models)

In this section we’ll look at three
techniques:

1. rotary position embeddings (RoPE)
2. grouped query attention (GQA)
3. sliding window attention

Rotary Position Embeddings (RoPE)

* Rotary position
embeddings are a
kind of relative
position embeddings

* Keyidea:

— break each d-
dimensional input

vector into d/2
vectors of length 2

— rotate each of the
d/2 vectors by an
amount scaled by m

— m s the absolute
position of the
query or the key

Figure from http://arxiv.org/abs/2104.09864

! m
X5 \
X2
b, 2) (x'y, x'5)
Xl]_ X]_ 1, X2
m
d=2
Enhanced D:[:I:]"'ED:D 1 I I l I l" l l I_l_l
Transformer D:I:I:l"' EI:I:I:] 2 | I I IJ "'l l l__l |
e R e 3 — -
rotary [T -+ [CTI0I 4 3 - L
Position I:I:I:D-"DID | I I I I"‘I | I I I
Embedding D:D:l...‘:l:l:l:l 6 I |...| Ll

Rotary Position Embeddings (RoPE)

Standard attention:
q; = W, x;,Vj
kj — ngj,Vj
St = k?‘lt/\/ k|, V7,1t
a; = softmax(s;), Vt

RoPE attention:
qj m— WZXj,\V/j kj m— Wng,\V/j
q; = Re jq; k; = Re jk;

st = Kj Qe/\/di, V1
a; = softmax(s;), Vt

where d = di /2, Wy, W, € R%moder X dx
For some fixed absolute position m, the rotary matrix Re ,, € R%*%* s given by:

(cosmf; —sinmb; 0 0 .. 0 0 \
sinmf; cosmb; 0 0 0 0
0 0 cosmby —sinmbs 0 0
Rom = 0 0 sinmby cosmbs 0 0
0 0 0 0 ... cosmblg, o —sinmbyg, /o
K 0 0 0 0 .. sinmbg, ;o cosmby, ;o)

The 6, parameters are fixed ahead of time and defined as below.

O = {6; = 10000 2C-D/d 4 ¢ [1,2,...,d/2]}

Rotary Position Embeddings (RoPE)

LZ/% th,p?lz[;;ﬂ

ks —'uTXJ’Iz [,03.0,31,30 1

g0 / Go-43
- - Lk ﬁ.\:‘[& . v k')v:ﬂ - [// __L Nysolole PE

—

Pe
] J P’/‘ MJﬁ

57,()(“'%5 = Kex {2 “t

2 Gl) g‘%ﬁ :& W ﬂ(t ¢33
,a&\- 7 . k}i\""]

28

Rotary Position Embeddings (RoPE)

Standard attention: RoPE attention:
qj = Wix;,Vj aj = Wy x;,V) k; = W;x;,Vj
k; = Wl'x;,Vj 9; = Re,;q; k; = Re,jk;
St,j = k?qt/\/m, Vi, t St,j = E?Qt/@a vyt
a; = softmax(s;), Vt a; = softmax(s;), Vi

Because of the block sparse patternin Ry ,,, we can efficiently com-
pute the matrix-vector product of Ry ,, with some arbitrary vectory
in a more efficient manner:

(() \ (cos mb \ (—yg\ (sin mo; \

Yo cos mb. Y1 sin m6;

Y3 cos mbs — Y4 sin m#fs

Ronmy = Ya 0% cos mb. s Y3 ® sin m0s
Yd—1 cos mb g2 —Yd sinmf g2

\ Yd) \cosm@d/Q) \yd—l) \Sinmed/2)

Matrix Version of RoPE

Matrix Version of Multi-Headed (Causal) Attentio

X = concat(X'(M), ... X/(h)

Q) (K(z‘))T

X'() = softmax (+ M) v(©)

Vdy

1)
W(2) multi-headed attention (Z) — VV(’L)
k W§€3) \[\J Q =X q

w(D K@ = Xwg)

w(2)

Vi) = xXW)

—//x1 X, X5 X4

OT O O I X = [X1,...,X4]

T

Grouped Query Attention (GQA)

Multi-head Grouped-query Multi-query

pr— — p— — p— — g— g— pr— pe— — —_— —

Values

]
]
]
]
]
]
]
]
]
]
]
]
]

Keys

0000000 00000000 DOGONEE

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

32
Figure from http://arxiv.org/abs/2305.13245

Grouped Query Attention (GQA)

* Key idea: reuse the
same key-value
heads for multiple
different query heads

* Parameters: The
parameter matrices
are all the same size,
but we now have
fewer key/value
parameter matrices
(heads) than query
parameter matrices
(heads)

Figure from http://arxiv.org/abs/2305.13245

Grouped-query

hq = the number of query heads
hi, = the number of key/value heads U U U L
Assume h, is divisible by hy,

g = hq/hyy is the size of each group
(i.e. the number of query vectors per key/value vector).

X =[x1,...,x7p]"

VO = XW i € {1,...,dk}
K® =XW vie{l,.. . dw}
Q) = XW{) Vie {1,... dp},Vi€{1,..., g}

Sliding Window Attention

Sliding Window Attention

X' = softmax (Q

also called “local attention”
and introduced for the
Longformer model (2020)

The problem: regular
attention is computationally
expensive and requires a lot
of memory

The solution: apply a causal
mask that only looks at the
include a window of
(Yaw+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

T

M)V

regular causal attention

sliding window attention (w=6)

sliding window attention (w=4)

34

Sliding Window Attention

Sliding Window Attention

e also called “local attention”
and introduced for the
Longformer model (2020)

* The problem: regular
attention is computationally
expensive and requires a lot
of memory

* The solution: apply a causal
mask that only looks at the
include a window of
(Yaw+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

T

X' = softmax (Q

M)V

sliding window attention (w=4)

3 ways you could implement
1. ndive implementation: just do

the matrix multiplication, but
this is still slow

. for-loop implementation:

asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

. sliding chunks implementation:

break into Q and K into
chunks of size w x w, with
overlap of ¥4w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

35

BACKGROUND: COMPUTER VISION

Example: Image Classification

37

IM&GENET

Bird

Home Explore
About Download

Not logged in. Login | Signup

C=
2126 92.85% B

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures Popularity ~ Wordnet

- chordate

;- marine animal, marine creature, sea animal, sea creature (1)
i scavenger (1)

- biped (0)

I;~ predator, predatory animal (1)

i larva (49)

- acrodont (0)

- feeder (0)

- stunt (0)

(3087)

| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
#- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)

cock (1)

- hen (0)

- nester (0)

- night bird (1)

- bird of passage (0)

- protoavis (0)

- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)

- |bero-mesornis (0)

- archaeornis (0)

- ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
- passerine, passeriform bird (279)

- nonpasserine bird (0)

- bird of prey, raptor, raptorial bird (80)
- gallinaceous bird, gallinacean (114)

Percentile IDs

Treemap Visualization Images of the Synset Downloads

38

IM&GENET | v
- - = e About Download

Not logged in. Login | Signup

German iris, Iris kochii 469 49.6%
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures ggfcu;ﬁ;litlg

i~ halophyte (0)
. succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

- woody plant, ligneous plant (1868)

- geophyte (0)

- desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

* bulbous plant (179)

*. iridaceous plant (27)
+. iris, flag, fleur-de-lis, sword lily (19)

. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

i~ beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

-- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)

)

Wordnet
IDs

39

IMAGENET I o

Not logged in. Login | Signup

C=
Court, courtyard 165 92.61% B

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ngcu;ﬁftiﬁg }ggfdnet

U Numbers in brackets: (the number of synsets in the subtree). Treemap Visualization Images of the Synset Downloads

¥ ImageNet 2011 Fall Release (32326)
i plant, flora, plant life (4486)
| geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
x instrumentality, instrumentation (5494)
+. structure, construction (1405)
airdock, hangar, repair shed (0)
- altar (1)
- arcade, colonnade (1)
e arch (31)
. area (344)
- aisle (0)
- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
+- corner, nook (2)

" court, courtyard (6)
- atrium (0)

- bailey (0)

- cloister (0)

- food court (0)

- forecourt (0)

L. narvie (NN

40

Feature Engineering for CV

Edge detection (Canny)

Original Image Edge Image

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

= 3 >
Scale ﬁ? ﬁ

(next

octave) ﬁ
= =
— 2=

Scale
(first
octave)

Gaussian Gaussian (DOG)

.

: Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to

> igu f planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted

Ce— »prow. Recognition results below show model outlinesand to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
T T

Anwm_camnlad hu a fantar nf) and tha nracace ranaatad

Figures from http://opencv.org Figure from Lowe (1999) and Lowe (2004)

41

Example: Image Classification

CNNs for Image Recognition

‘Research

Revolution of Depth 2.2
' 152 layers '

\I\.
\
[22 layers l I 19 Iayers
\ 6.7 I

35? I_“___I I 8 layers ‘| Ela'-,rers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

=ICCVID

Forrennne, Condrrur m o mrmgey oo

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arkiv 2015.

Slide from Kaiming He

43

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are simply fancy computation graphs (aka.
hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on
the backpropagation algorithm to compute the necessary
gradients.

CONVOLUTION

Ex

Lot

Lot

What’s a convolution?

Basic idea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the

inner product operation

Key point:

— Different convolutions extract different types of low-level
“features” from an image
— All that we need to vary to generate these different features is the
weights of F

), |

Xiz

X3

%

X2

X

&2

X3

X3z

—

g_.k_l

Slide adapted from William Cohen

:L ;/\?\)(' clu.ww.‘ y i OU“T)‘" CLavml.l

ot

Yz

721.

Yi = KaXu * KX +091% 4 0z %2 4,
)"z = KaXg * Koxg +0Q1 Xz 4 0z X2z oL,
Yoo = K)o, * KipXz + 091X + X3z X2 4,
Y2z = Kuxgy * KXoy + 01Xy 4 0z Xg3 +a1,

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3
o|lo|oO >
O | 1 1 p)
0] 1 0] 3

47

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

48

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

49

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

50

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3

51

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3| 2

52

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

31212

53

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

312123

54

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

55

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

56

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

57

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

58

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

|dentity

Convolution 1 1 1 1 1
0] 0] 0] 1

0] 1 0] 1

59

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Blurring
Convolution

60

Original
Image

Convolution Examples

61

Convolution Examples

Smoothing
Convolution \
1/911/9]1/9
1/911/9]1/9 '
1/911/9]1/9

Gaussian

Blur

.01

.04

.06

.04

.01

.04

19

.25

19

.04

.06

.25

-37

.25

.06

.04

19

.25

19

.04

.01

.04

.06

.04

.01

Convolution Examples

63

Sharpening
Kernel

Convolution Examples

64

Convolution Examples

Edge
Detector

11 -1 -1

1| 8 | 1

11 -1 -1

Ex

Lot

Lot

What’s a convolution?

Basic idea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the

inner product operation

Key point:

— Different convolutions extract different types of low-level
“features” from an image
— All that we need to vary to generate these different features is the
weights of F

), |

Xiz

X3

%

X2

X

&2

X3

X3z

—

g_.k_l

Slide adapted from William Cohen

:L ;/\?\)(' clu.ww.‘ y i OU“T)‘" CLavml.l

ot

Yz

721.

Yi = KaXu * KX +091% 4 0z %2 4,
)"z = KaXg * Koxg +0Q1 Xz 4 0z X2z oL,
Yoo = K)o, * KipXz + 091X + X3z X2 4,
Y2z = Kuxgy * KXoy + 01Xy 4 0z Xg3 +a1,

DOWNSAMPLING

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

68

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

69

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

70

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

71

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

72

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

1
Convolution

73

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

74

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

75

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

76

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

77

Downsampling by Averaging

* Downsampling by averaging is a special case of convolution
where the weights are fixed to a uniform distribution

* The example below uses a stride of 2

Input Image

Convolution

Convolved Image

78

Max-Pooling

Max-pooling with a stride > 1is another form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

Max-
pooling

Yij = max(zij,

Li 41,
Lit1,55

33z‘+1,j+1)

79

CONVOLUTIONAL NEURAL NETS

A Recipe for

Background

1. Given training data:
N

2. Choose each of these:
— Decision function

Y = fe(i'i‘z')

— Loss function

f(@, yz) = R

Machine Learning

3. Define goal:

N
0" = arg mein Z U(fo(x:),y;)

1=1

4. Train with SGD:

(take small steps
opposite the gradient)

9(t+1) — H(t) — ntVK(fe(iEz)a yz)

Bc

sion functioi

= fo(x;)

‘L ction

-V fo(xi),y;)

83

Convolutional Layer

Input Image

Treat

parameters and learn them!

CNN key idea:
convolution matrix as

@ Convolved Image

Learned
Convolution

e11

e12 e13

e21

ezz e23

0,

632 633

84

Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps
6@14x14

I
| Full conflection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

85

TRAINING CNNS

A Recipe for

Background

1. Given training data:
N

2. Choose each of these:
— Decision function

Y = fe(i'i‘z')

— Loss function

f(@, yz) = R

Machine Learning

3. Define goal:

N
0" = arg mein Z U(fo(x:),y;)

1=1

4. Train with SGD:

(take small steps
opposite the gradient)

9(t+1) — H(t) — ntVK(fe(iEz)a yz)

Bc

sion functioi

= fo(x;

‘1 ction

-V fo(xi), y;)

88

SGD for CNNs

[56»1) o, CAON- /
Ex: Acchile che : Goer)"'(’, y*
3= Lly.y*)

y = sswx(z‘”) Vossks B - Lo, B/ Wl

2 fuer (2, W)

Zm = reQu (Zm) ~——:2'SG\ :

(3)’- onv(z(af > CDI*\"I’ é
z(«)= i o]]i A Wil WJ&
z = mw-pool () :
Q) Al stele CE Lo M X
2L com (3, %) Foruwd sy =he D)) 3:0) - £y.9)

Ba g wesd 2 Véjz (@)em
Udte: B +— 8 -hvsile)

LAYERS OF A CNN

RelLU Layer
fReLU L‘*\/];‘,ul(:s‘(eﬁik' Otput - 7€7€K

Exw'\f‘l

et !
EES e AT B 150

0(=) = wax(0,4)
o (05)

I Ay T

&5 4

ol

lg)(?O

o“«mv:(

01

Softmax Layer

N

JE

_IA"UJ"' ?QRK DJ\? y&K

Erwﬁ':l - Bﬁcluaﬂ-rcl
- = exrp ()&_) £ é dy éx_
] %lexf(xb IR

e _dyi {y;(ly) Foee)

&X‘) Y"/«) o wm

Fully-Connected Layer

- C_,‘.W,* \mgo‘*‘ T3 R?DTE“”":X = N

T
q

CT

- S-(fd-cl'l ou'\' w‘o 9 ﬁ S}ﬁWI& .-
e bt i S |

\/, il X""O(where Né[f\)AXB
\)?\"A /\‘/'33

XA

/" (CxHxW)]

__\

X

X2

Convolutional Layer

ia?o(' Clv-nw.‘ y i OU‘TJ" CLawwl

Ot

? B‘ = — > h | Vi
l&g—%-l- \ Y2e

0(» °‘ca

= \> || y%

—_ ‘
o Toces | Urs

Convit 2 ot #2
? 0(1 Xz —_ w |)iz
01 Na-; ’ 2|y

Yi = KaXu * KX +091%, 4 0z %2 4,
N2 = Kuxe * Kpxg + 091X + K3z Xpy ot
Yoo = K)oy, * KipXy +0QiXs) + X3z Xs2 4,
Yoz = KuXgp * Kipkaz + 091 Xy + 0pe Xg3 +4,

0 w Q) " © <
7“ = 0(“ Xu + K‘LXQ + |x2| '+ “22\‘17- +°(0
(0]
2 F e -
V)]
1 = &~ -Q

) m Q) " (v
Y2z = KuXgy * KpXey +0Q1 X5y + Oz Xs3 +0’om

) @ @ @) (@
7” = Ky X + K‘LXQ "’Dalxu + O(zz\(zz'fd’o(a

(2

)’\2’ 6o »

@

. F €~ e
Q) @ (2 2) (D
Y2z = KuXgy * KpXey +0Q1 Xy 4+ 03z Xg3 +o(g2)

Convolutional Layer
lice

Cow#! Otk -
= N s %
éL { e — ;—K — Hﬁrt" = LQ—I + zF-K>/s + L{
VN s e e W Wy k) e
= [o ‘OLU' = =H xe’s ‘CF J(! o 1 u"'
Covt C P i TE J Lt

< b cf Kk k

=3 Gy_) @ O e m= sV
7&) D(O i ZZZ—' er M n = 3(3-\ *C

¥7
\D"“S

o ii“" ZZ %lm n
S EEaenutar o
dy . . v A& ® i
g T E gu e okl

95

_\

Max-Pooling Layer

;J\?J" CLA.MN.‘) j. OC.ATJ" CLawM.l/ Q‘(ﬂ’éﬂ ‘oS 1

?

Yool Size

7![= N‘\X (Xll) XQ

J
QL\F b
.)iz = Max (X\t) X

':);f; S = Mex (in) Xz
)’zz = Max (Xz,_ ;K

Xa

X2z 1

X3)

Xep ¢

\(z::.\

X2z)

st)

Xz3 3

Max-Pooling Layer

L Max '?00 (‘"7 qu_r

Taoot : . Og-\-go“‘ : @
0 | Yh)
Ay e o c®=cT
Ho = ..
T o °o _ .. Sl G9S ConV. Layer
S T . o g
?—:rw«.ri . S‘M YTU
— &Ckuﬁfl <
() (k) ;
. = Max =S L“)'\' AS- =
79 7 qetp fwn whee ?,=s(<3-\>§'~ bl

CAVER

o &+ Max) ©s ot JI%‘)TZW, bml'
@‘ Sob &fere~huble .
+ Tlure a4 set oF desivives and

we e job Cloow om br SGD.

7’—'" V“\“X(a)lo)

=4y Jd3 d dy €1 Kash
é«'d)'_c_é- whure EZ—ZO othenvize

97

Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps
6@14x14

I
| Full conflection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

98

Architecture #2: AlexNet

E e

CNNs for Image Recognition

‘Research

Revolution of Depth 2.2
' 152 layers '

\I\.
\
[22 layers l I 19 Iayers
\ 6.7 I

35? I_“___I I 8 layers ‘| Ela'-,rers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

=ICCVID

Forrennne, Condrrur m o mrmgey oo

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arkiv 2015.

Slide from Kaiming He

100

Convolutional Neural Network (CNN)

Typical Architectures

B

Softmax

t
Fully connected layer

t
Fully connected layer

t
Fully connected layer

Fully connected layer

'
Fully connected layer

a. AlexNet

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Fully connected laver

}

Fully connected laver

Fully connected laver

s i

c. Faster R-CNN

101

Convolutional Neural Network (CNN)

Typical Architectures

B

Clmlu:

e. FCN

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

—

Conv 1x1 + softmax

. T

f. U-Net

102

Convolutional Neural Network (CNN)

Typical Architectures

Microsoft

Research

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
ZICCV

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

International Conference on Computer Vision

103

In-Class Poll

Question: Answer:

Why do many layers
used in computer
vision not have
location specific
parameters?

Convolutional Layer

Input Image

For a convolutional layer, how do we pick the kernel size
(aka. the size of the convolution)?

2X2 3x3 4X4
Convolution Convolution Convolution
0. |6, 0,0, |0; 0, (0,00,
0,,|6,, 0,,|06,, 6,5 0,,|6,,(6,5(6,,
0|05, |6;; 05:]95,|0556;,
041/942|045|044

* Asmall kernel can only see a very small part of the image,
but is fast to compute

* Alarge kernel can see more of the image, but at the
expense of speed

105

CNN VISUALIZATIONS

Visualization of CNN

our number here it Layer visibility

https://adamharley.com/nn_vis/cnn/2d.html

Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

* Convolution must also be 3-dimensional

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ *

convolve (slide) over all

spatial locations
32 28

3 1
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

108

Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0O 0 0 0 0 0 O 101 1 [['1 S5 3 3
0 2 0 W/ll/ 11 [3 .10 7
0O 0 211210 O 1 0 -1 1)1 J|-1 1 3 -2
0 1 |20 |0 o[:,:,1]
o 2 Pl B El
0 2 1 0 O = 9
00000 o i
x[:,:,1]

0 0 0 0 O

0 1 1 2

o 2 22z 1 -1 Ofojt

0 02 [0 |2 0 Bjas b0 (1x1x Bias b1 (1x1x1)

0 210 21?1 O[:,:, [:,:,0]
001000 O L 0

0 0 0 0 O

X[:,:,2] toggle movement

0 0 0 O 0 0

0O 0 00 2 00

0 2 |11 |1 0

0o 20200 O

0o o 241 |2 0

0O 1 2 0 0 2 O

0 0 0 0 0 0 O

109
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser

Network Visualization

input (24x24x1) Activations:

max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activation Gradients:

o

L]

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - -
s e IHEREEE
max gradient: 0.00005, min: -0.00006
parameters: 8x5x5x1+8 = 208 Activation Gradients:
Weights:
(B (E) (2) (=) (ke) (=) () (=)
Weight Gradients:
(o) (i) (M) (=) () () (=)()
softmax (1x1x10) Activations:
max activation: 0.99768, min: 0 H EEEEEEEE

max gradient: 0, min: 0

Example predictions on Test set

4/ L [[<
/] . [.
/§ 4§ | El:

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Summary

CNNs

— Are used for all aspects of computer vision, and have won
numerous pattern recognition competitions

— Able learn interpretable features at different levels of abstraction

— Typically, consist of convolution layers, pooling layers,
nonlinearities, and fully connected layers

