
Vision Transformers
+

Generative Adversarial Networks (GANs)

1

10-423/10-623 Generative AI

Matt Gormley
Lecture 5

Jan. 31, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 1: Generative Models of Text
– Out: Thu, Jan 25
– Due: Wed, Feb 7 at 11:59pm

• Matt’s office hours on GCal

2

Q&A

3

Q: Does pre-training always involve layer-by-layer unsupervised
training?

A: No! That’s just where it started in 2006 for standard feed
forward neural networks.
• To pretrain a CNN or Vision Transformer, we typically train

the entire model on a supervised classification problem (i.e.
image classification)

• To pretrain an LLM, we typically train the entire model on the
likelihood of unlabeled sentences.

Course Staff

4

ROTARY POSITION EMBEDDINGS (ROPE)
*take two

5

Rotary Position Embeddings (RoPE)

6

fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide
have so many typos?

A: I’m really not sure. I
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things I put in them.

wrong

wrong

wrong

wrong

wrong

Rotary Position Embeddings (RoPE)

7

Q: Why does this slide
have so many typos?

A: I’m not really sure. I
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things I put in them.

Rotary Position Embeddings (RoPE)
• Rotary position

embeddings are a
kind of relative
position embeddings

• Key idea:
– break each d-

dimensional input
vector into d/2
vectors of length 2

– rotate each of the
d/2 vectors by an
amount scaled by m

– m is the absolute
position of the
query or the key

8
Figure from http://arxiv.org/abs/2104.09864

Rotary Position Embeddings (RoPE)

9

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where d = dk/2, Wk,Wq ∈ R
dmodel×dk .

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}

Rotary Position Embeddings (RoPE)

10

Rotary Position Embeddings (RoPE)

11

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =

y1
y2
y3
y4
...

yd−1

yd

⊗

cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2

+

−y2
y1
−y4
y3
...

−yd
yd−1

⊗

sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

Matrix Version of RoPE

12

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊗ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊗ sin(C)

Matrix Version of RoPE

13

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

C =

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊗ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊗ sin(C)

Q: Is this slide correct?

A: I’m really not sure.

But I did write it myself!

COMPUTER VISION

14

Common Tasks in Computer Vision
1. Image Classification
2. Image Classification +

Localization
3. Human Pose Estimation
4. Semantic Segmentation
5. Object Detection
6. Instance Segmentation
7. Image Captioning
8. Image Generation

15
Figure from https://arxiv.org/pdf/1704.06857.pdf

Image Classification

• Given an
image, predict
a single label

• A multi-class
classification
problem

16
Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdfFigure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Image Classification + Localization
• Given an image,

predict a single
label and a
bounding box
for the object

• Bounding box is
represented as
(x, y, h, w),
position (x,y)
and
height/width
(h,w)

17
Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257

Human Pose Estimation
• Given an image of a human,

predict the position of
several keypoints (left
hand, right hand, left
elbow, …, right foot)

• This is a multiple regression
problem, where each
keypoint has a
corresponding position
(xi,yi)

18Figure from
https://openaccess.thecvf.com/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf

Semantic Segmentation
• Given an image,

predict a label for
every pixel in the
image

• Not merely a
classification
problem, because
there are strong
correlations between
pixel-specific labels

19Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf

Object Detection
• Given an image, for each object predict a bounding box

and a label (x,y,w,h,l)
• Example: R-CNN

– (x=110, y=13, w=50, h=72, l=person)
– (x=90, y=55, w=81, h=87, l=horse)
– (x=421, y=533, w=24, h=30, l=chair)
– (x=2, y=25, w=51, h=121, l=gate)

20Figure from
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

Instance Segmentation
• Predict per-pixel labels as

in semantic segmentation,
but differentiate between
different instances of the
same label

• Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

21
Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

Image Captioning
• Take an image as

input, and generate
a sentence
describing it as
output (i.e. the
caption)

• Typical methods
include a deep
CNN/transformer
and a RNN-like
language model

• (The task of Dense
Captioning is to
generate one
caption per
bounding box)

22
Figure from https://dl.acm.org/doi/pdf/10.1145/3295748

Image Captioning
• Take an image as

input, and generate
a sentence
describing it as
output (i.e. the
caption)

• Typical methods
include a deep
CNN/transformer
and a RNN-like
language model

• (The task of Dense
Captioning is to
generate one
caption per
bounding box)

23
Table from https://dl.acm.org/doi/pdf/10.1145/3295748

Medical Image Analysis

Notice that most of
these tasks are
structured prediction
problems, not
merely classification

24
Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

TRANSFORMER (ENCODER ONLY VERSION)
(aka. BERT-style models)

25

Autoregressive Language Model

26

Definition: An autoregressive language model defines a probability
distribution over sequences x1:T of the form:

p(x1:T) =
T∏

t=1

p(xt | x1, . . . , xt−1)

Decoder-only Transformer

27

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Also called a
Transformer
language model

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Single-Headed (Causal) Attention

Wq

Q = XWq

28

x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

Acausal = softmax(S + M)

X′ = AV = softmax(QKT /
√

dk + M)V

X = [x1, . . . , x4]
T

In practice, the attention
weights are computed
for all time steps T, then
we mask out (by setting
to –inf) all the inputs to
the softmax that are for
the timesteps to the right
of the query

. M =

0 −∞ −∞ −∞

0 0 −∞ −∞

0 0 0 −∞

0 0 0 0

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Single-Headed Attention

Wq

29

x1 x2 x3 x4

Wk

Wv

A = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V
So what is this model?
• Notice that each token

can attend to all other
tokens on the left and
right

• It is not an autoregressive
language model

Q = XWq

V = XWv

S = QKT /
√

dk

K = XWk

X = [x1, . . . , x4]
T

Encoder-only Transformer

30

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

…

Each layer of an encoder-only
Transformer consists of several
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

Encoder-only Transformer

31

h1

p(w2|h3)

h3 h4

[CLS] The cat sat

…

Each layer of an encoder-only
Transformer consists of several
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used
for masked language model (MLM)
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining p(w1|h2) p(w3|h4)

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

32

h1 h3 h4

[CLS] [MASK] cat sat

…

Each layer of an encoder-only
Transformer consists of several
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used
for masked language model (MLM)
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining p(w1|h2)

ℓ1(·,·)

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

+J = log p(w1 | w2 , w3)

The

Encoder-only Transformer

33

h1

p(w2|h3)

h3 h4

[CLS] The [MASK] sat

…

Each layer of an encoder-only
Transformer consists of several
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used
for masked language model (MLM)
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

ℓ1(·,·)

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

+

cat

J = log p(w2 | w1 , w3)

Encoder-only Transformer

34

h1 h3 h4

[CLS] [MASK] cat [MASK]

…

Each layer of an encoder-only
Transformer consists of several
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used
for masked language model (MLM)
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining p(w1|h2) p(w3|h4)

ℓ1(·,·) ℓ2(·,·)

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

+J = log p(w1, w3 | w2)

The sat

Encoder-only Transformer

35

h1 h3 h4

[CLS] The cat sat

…

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

p(y|h1)

Supervised Fine-tuning:
• How to fine-tune this

model for a classification
task?

• Predict the class label
given the embedding for
the special [CLS] token

• Fine-tune the model to be
good at classification in
this way

ℓ1(·,·)

Although this is not a
generative language model,
it can be used very
effectively as a discriminator

+ J = log p(y* | w1, w3, w2)

y* = 1

Encoder-only Transformer

36

h1 h3 h4

[CLS] A dog barks

…

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this
encoder-only
Transformer
architecture and style
of pretraining

MLM Pretraining:
• Rather than trying

to predict the next
word from the
previous ones…

• …mask out a word
(or a few words)
and predict the
missing words from
the remaining ones

p(y|h1)

Supervised Fine-tuning:
• How to fine-tune this

model for a classification
task?

• Predict the class label
given the embedding for
the special [CLS] token

• Fine-tune the model to be
good at classification in
this way

ℓ1(·,·)

Although this is not a
generative language model,
it can be used very
effectively as a discriminator

+ J = log p(y* | w1, w3, w2)

y* = 0

VISION TRANSFORMER

37

Vision Transformer (ViT)
Model:
• model is almost identical to BERT
• instead of words as input the

inputs are PxP pixel image
patches, P ∈ {14, 16, 32} (no
overlap)

• each patch is embedded linearly
into a vector of size 1024

• 1D positional embeddings

Training:
• for pre-training, optimize for

image classification on large
supervised dataset (e.g.
ImageNet 21K, JFT-300M)—same
setup as a CNN

• for fine-tuning, learn a new
classification head on a small
dataset (e.g. CIFAR-100)

38

Vision Transformer (ViT)

39

Answer:

Question: how can a ViT
learn 2D positional
information from 1D
position embeddings?

Timeline: Language Modeling
20

00
n-
gr
am

s

20
10

RN
N-
LM

s

20
17

Tr
an

sf
or
m
er
LM

s

20
18

EL
M
O

BE
RT GP
T

20
19

GP
T-
2

Ro
BE

RT
a

40

20
20

GP
T-

3

20
21

In
st

ru
ct

GP
T

La
M

BD
A

20
22

Pa
lm

Ch
at

GP
T

BL
O

O
M

20
23

Ll
am

a

GP
T-

4

Fa
lco

n

M
ist

ra
l

1. Transformers
appeared in 2017

2. They immediately
took over NLP

3. Vision Transformers
appeared in 2021

Question: Why did it take
so long for transformers
to become popular in
computer vision?

Timeline: Image Generation
19
98

Le
Ne

t

20
09

Im
ag

eN
et

20
10

Pa
sc

al
VO

C

20
12

Al
ex

Ne
t

20
13

VA
Es

20
14

VG
G

R-
CN

N

GA
Ns

20
15

Di
ffu

sio
n

m
od

el
s

Re
sN

et

41

20
17

Tr
an

sf
or

m
er

20
20

DD
PM

20
21

Vi
sio

n
Tr

an
sf

or
m

er

Da
ll-

E

CL
IP

20
22

Da
ll-

E
2

Im
ag

en

St
ab

le

di
ffu

sio
n

20
23

SD
XL

SD
XL

 T
ur

bo

1. Transformers
appeared in 2017

2. They immediately
took over NLP

3. Vision Transformers
appeared in 2021

Question: Why did it take
so long for transformers
to become popular in
computer vision?

19
98

Le
Ne

t

20
09

Im
ag

eN
et

20
10

Pa
sc

al
VO

C

20
12

Al
ex

Ne
t

20
13

VA
Es

20
14

VG
G

R-
CN

N

GA
Ns

20
15

Di
ffu

sio
n

m
od

el
s

Re
sN

et

42

20
17

Tr
an

sf
or

m
er

20
20

DD
PM

20
21

Vi
sio

n
Tr

an
sf

or
m

er

Da
ll-

E

CL
IP

20
22

Da
ll-

E
2

Im
ag

en

St
ab

le

di
ffu

sio
n

20
23

SD
XL

SD
XL

 T
ur

bo

Timeline: Image Generation

1. Transformers
appeared in 2017

2. They immediately
took over NLP

3. Vision Transformers
appeared in 2021

Question: Why did it take
so long for transformers
to become popular in
computer vision?

19
98

Le
Ne

t

20
09

Im
ag

eN
et

20
10

Pa
sc

al
VO

C

20
12

Al
ex

Ne
t

20
13

VA
Es

20
14

VG
G

R-
CN

N

GA
Ns

20
15

Di
ffu

sio
n

m
od

el
s

Re
sN

et

43

20
17

Tr
an

sf
or

m
er

20
20

DD
PM

20
21

Vi
sio

n
Tr

an
sf

or
m

er

Da
ll-

E

CL
IP

20
22

Da
ll-

E
2

Im
ag

en

St
ab

le

di
ffu

sio
n

20
23

SD
XL

SD
XL

 T
ur

bo

Timeline: Image Generation

1. Transformers
appeared in 2017

2. They immediately
took over NLP

3. Vision Transformers
appeared in 2021

Question: Why did it take
so long for transformers
to become popular in
computer vision?

Comparison of two
model families:
1. BiT – large CNNs

based on ResNet
2. ViT – vision

transformers of
various sizes

Vision Transformer (ViT)
• The original Vision

Transformer models
were quite small
compared to the Large
Language Models
(LLMs) of the time

• By 2023, ViT had been
scaled to 22 billion
parameters with good
success

44

TASK: IMAGE GENERATION

45

Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

46

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)

Class Conditional Generation

47

• Task: Given a class
label indicating the
image type, sample a
new image from the
model with that type

• Image classification is
the problem of taking
in an image and
predicting its label
p(y|x)

• Class conditional
generation is doing
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)

Super Resolution

48
Figure from Li et al. (2021)

• Given a low
resolution image,
generate a high
resolution
reconstruction of
the image

• Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs

Image Editing

49
Figure from Saharia et al. (2022)

A variety of tasks involve
automatic editing of an
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores

color to a greyscale image
• Uncropping creates a

photo-realistic
reconstruction of a
missing side of an image

Style Transfer

50

• The goal of style transfer is to blend
two images

• Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure from Gatys et al. (2016)

Text-to-Image Generation

51

• Given a text description, sample an
image that depicts the prompt

• The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)

Text-to-Image Generation

52

• Given a text description, sample an
image that depicts the prompt

• The following images are samples from
SDXL with refinement

Prompt: Epic long distance cityscape
photo of New York City flooded by the
ocean and overgrown buildings and
jungle ruins in rainforest, at sunset,
cinematic shot, highly detailed, 8k,
golden light

Figure from Podell et al. (2023)

Text-to-Image Generation

53

• Given a text description, sample an
image that depicts the prompt

• The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic
young woman, wild hair sly smile in front
of gigantic UFO, dslr, sharp focus,
dynamic composition

Figure from Podell et al. (2023)

Text-to-Image Generation

55

• Given a text description, sample an
image that depicts the prompt

• The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic old
man, wild hair sly smile in front of
gigantic UFO, dslr, sharp focus, dynamic
composition, rule of thirds

Figure from https://stablediffusionweb.com/

In-Class Poll

Question:
What are the potential
societal impacts of
image generation?

56

Answer:

Summary

• Computer Vision
• Task: Image Generation
• Model: Generative Adversarial Network (GAN)
• Learning for GANs
• Scaling Up the Model Size
• Societal Impacts of Image Generation

57

MODEL: GENERATIVE ADVERSARIAL
NETWORK (GAN)

58

Stable Diffusion still can’t explain GANs

60

Prompt: slide explaining
Generative Adversarial
Networks (GANs) for Intro to
Machine Learning course,
carefully designed, easy to
follow

Negative Prompt: boring,
unclear, nontechnical

Figure from https://stablediffusionweb.com/

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

61

A GAN consists of two deterministic neural network models:

Generator Model

1) the Generator
takes a vector of random noise as input,
and generates an image

62

Example Generator: DCGAN
– An inverted CNN with four fractionally-

strided convolution layers (not
deconvolution)

– These fractional strides grow the size of
the image from layer to layer

– The final layer has three channels for
red/green/blue

Figure from Radford et al. (2016)

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

63

A GAN consists of two deterministic neural network models:

Example Discriminator: PatchGAN
– Convolutional neural network
– Looks at each patch of the image and

tries to predict whether it is real or fake
– Helps avoid producing blurry images

Discriminator Model

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

64Figure from Demir et al. (2018)
Figure from Demir & Unal (2018)

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

65

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images

from the fake

Generative Adversarial Networks (GANs)

66

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

x = G𝜃(z)G𝜃

𝜃

Generative Adversarial Networks (GANs)

67
Real/fake images from Huang et al. (2017)

fake image

Discriminator p(real | image)

D𝜙(x)
x = G𝜃(z) D𝜙

𝜙

Generative Adversarial Networks (GANs)

68
Real/fake images from Huang et al. (2017)

real image

Discriminator p(real | image)

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Generative Adversarial Networks (GANs)

69
Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

D𝜙(x)
x = G𝜃(z)

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

LEARNING FOR GANS

70

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

71

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images

from the fake

Generative Adversarial Networks (GANs)

72

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

Generative Adversarial Networks (GANs)

73

max
φ

log
(

Dφ(x(i))
)

+ log
(

1−Dφ(Gθ(z(i)))
)

min
θ

log
(

1−Dφ(Gθ(z(i)))
)

The discriminator is trying to maximize
the likelihood of a binary classifier with
labels {real = 1, fake = 0}, on the fixed

output of the generator

The generator is trying to minimize the
likelihood of its generated (fake) image
being classified as fake, according to a

fixed discriminator

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images

from the fake

Learning a GAN

74

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

Learning a GAN

75

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Learning a GAN

76

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

Learning a GAN

77

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

Usually pnoise(·) = Gaussian(0, 𝜎2 I)
Answer:

Question: How do we backpropagate through G𝜃

 if there is a stochastic Gaussian distribution
involved?

Learning a GAN
• Training data

consists of a
collection of m
unlabeled images
x(1), …, x(m)

• Optimization is
similar to block
coordinate descent

• But instead of
exactly solving the
min/max problem,
we take a step of
mini-batch SGD

78
Figure from https://arxiv.org/pdf/1406.2661.pdf

Class-conditional GANs

79

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

label

Add a label as input
to the generator, so
that it can learn to
generate specific
types of images

SCALING UP THE MODEL SIZE

80

Scaling Up the Model Size

81
Figure from Bie et al. (2023)

Scaling Up the Model Size
The Pathways
Autoregressive Text-to-
Image (Parti) model:
• treat image generation

as a sequence-to-
sequence problem

• text prompt is input to
encoder

• sequence of image
tokens is output of
decoder

• ViT-VQGAN takes in the
image tokens and
generates a high-
quality image

83

Scaling Up the Model Size
Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue
sunglasses standing on the grass in front of the Sydney Opera House holding a sign
on the chest that says Welcome Friends!

84
Figure from https://sites.research.google/parti/

Parti with different model sizes

Watermarking & Attribution
• Watermarking

– A digital watermark allows one to
identify when an image has been
created by a model

– Most methods for image generation
(GANs, VAEs, stable diffusion) can be
augmented with watermarking

• Fake-image Detection
– Goal: identify fakes even without a

watermark
• Model Attribution

– Identify which generative model
created an image (e.g. Dalle-2 vs. SDXL)

– Very successful (natural watermarks)
• Image Attribution

– Goal: identify the source images that
led to the generation of a new image

– Extremely challenging

85
Figure from Fei et al. (2022)

SOCIETAL IMPACTS OF IMAGE GENERATION

86

Societal Impacts of Image Generation
Pros
• New tools for artists
• Faster creation of memes
Cons
• Copyright infringement / loss of work for artists
• Societal decrease in creativity
• Potential to create dehumanizing content
• Fake news / false realities / increased difficulty of fact checking
• Not rooted in reality
• Video generation is around the corner

87

88https://www.bbcearth.com/flying-draco-lizard

https://www.bbcearth.com/flying-draco-lizard

