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Reminders

* Homework 1: Generative Models of Text
— Out: Thu, Jan 25
— Due: Wed, Feb 7 at 11:59pm

e Matt’s office hours on GCal




Q

Q&A

Does pre-training always involve layer-by-layer unsupervised
training?

No! That’s just where it started in 2006 for standard feed
forward neural networks.

* To pretrain a CNN or Vision Transformer, we typically train
the entire model on a supervised classification problem (i.e.
image classification)

* To pretrain an LLM, we typically train the entire model on the
likelihood of unlabeled sentences.
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ROTARY POSITION EMBEDDINGS (ROPE)



Q

Rotary Position Embeddings (RoPE)

Why does this slide
have so many typos?

I’m really not sure. |
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things | put in them.

RoPE attention:

fq(Xtvm) = R@ mWT t
fk(Xjam) = R@m

St.j = Jr(X;;

wrong

a; = softmax(s;), Vt

wrong

W wrong

Vi, twherem =t — jle wrong

where Wy, W, € RdmeaciXdk and the rotary matrix Re ,, € R% ¥4 is given by:

cosmb; —sinmb, 0 0

sinmf; cosmb; 0 0
0 0 cosmby —sinmbs

Re.m = 0 0 sinmfy  cosmbs
0 0 0 0
0 0 0 0
The 0; parameters are fixed ahead of time and defined as belov
O = {0; = 1000072 {%,i e [1,2,...

0 0

0 0

0 0

0 0
cosmby, ;o —sinmbyg, 2

sinmbg, ;o cosmbyg, /o

wrong
yd/2]}




Q

Rotary Position Embeddings (RoPE)

Why does this slide
have so many typos?

I’m not really sure. |
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things | put in them.



Rotary Position Embeddings (RoPE)

* Rotary position
embeddings are a
kind of relative
position embeddings

* Keyidea:

— break each d-
dimensional input

vector into d/2
vectors of length 2

— rotate each of the
d/2 vectors by an
amount scaled by m

— m s the absolute
position of the
query or the key

Figure from http://arxiv.org/abs/2104.09864
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Rotary Position Embeddings (RoPE)

Standard attention:
q; = W, x;,Vj
kj — ngj,Vj
St = k?‘lt/\/ k|, V7,1t
a; = softmax(s;), Vt

RoPE attention:
qj m— WZXj,\V/j kj m— Wng,\V/j
q; = Re jq; k; = Re jk;

st = Kj Qe/\/di, V1
a; = softmax(s;), Vt

where d = di /2, Wy, W, € R%moder X dx
For some fixed absolute position m, the rotary matrix Re ,, € R%*%* s given by:

( cosmf; —sinmb; 0 0 .. 0 0 \
sinmf;  cosmb; 0 0 0 0
0 0 cosmby —sinmbs 0 0
Rom = 0 0 sinmby  cosmbs 0 0
0 0 0 0 ... cosmblg, o —sinmbyg, /o
K 0 0 0 0 .. sinmbg, ;o cosmby, ;o )

The 6, parameters are fixed ahead of time and defined as below.

O = {6; = 10000 2C-D/d 4 ¢ [1,2,...,d/2]}



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings (RoPE)

Standard attention: RoPE attention:
qj = Wix;,Vj aj = Wy x;,V) k; = W;x;,Vj
k; = Wl'x;,Vj 9; = Re,;q; k; = Re,jk;
St,j = k?qt/\/m, Vi, t St,j = E?Qt/@a vyt
a; = softmax(s;), Vt a; = softmax(s;), Vi

Because of the block sparse patternin Ry ,,, we can efficiently com-
pute the matrix-vector product of Ry ,, with some arbitrary vectory
in a more efficient manner:

( () \ ( cos mb \ (—yg\ ( sin mo; \

Yo cos mb. Y1 sin m6;

Y3 cos mbs — Y4 sin m#fs

Ronmy = Ya 0% cos mb. s Y3 ® sin m0s
Yd—1 cos mb g2 —Yd sinmf g2

\ Yd ) \cosm@d/Q ) \yd—l ) \Sinmed/2 )



Matrix Version of RoPE




Matrix Version of RoPE

A: I'mreally not sure.

But | did write it myself!




COMPUTER VISION



Common Tasks in Computer Vision

Image Classification
Image Classification +

Localization \ o

Human Pose Estimation | . J LT
Semantic Segmentation - T oa A—
Object Detection g
Instance Segmentation o g L = 'uJ
Image Captioning eV S ———

© N oV AW

Image Generation

Figure from https://arxiv.org/pdf/1704.06857.pdf
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e Given an
image, predict
a single label -

bumper car
golfcart

A multi-class
classification
problem

\J
vertible agaric dalmatian monkey
grille mushroom grape spider monkey
pickup [ jelly fungus elderberry titi
beach wagon gill fungus rdshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

dead-man's-fingers

Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf



Image Classification + Localization

Car

Chair

* Given animage,
predict a single
abel and a
bounding box

for the object

* Bounding box is
represented as

(X’ y’ h) W)’
bosition (x,Y)

and
height/width
(h,w)

(c) Missed objects

Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257
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Human Pose Estimation

* Given animage of a human,
predict the position of
several keypoints (left
hand, right hand, left
elbow, ..., right foot)

* This is a multiple regression
problem, where each
keypoint has a
corresponding position

(Xi)yi)

Initial stage
220 x 220

DNN-based refiner
DNN-based regressor

(6D, y 1))

send refined values
to next stage

Figure from
https://openaccess.thecvf.com/content _cvpr 2014/papers/Toshev_DeepPose Human Pose 2014 CVPR_paper.pdf
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Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf
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Object Detection

* Given animage, for each object predict a bounding box
and a label (x,y,w,h,I)
* Example: R-CNN
— (x=110, y=13, w=50, h=72, I=person)
— (x=90, y=55, w=81, h=87, I=horse)
— (x=421, y=533, w=24, h=30, I=chair)
— (x=2, y=25, w=51, h=121, |=gate)

R-CNN: Regions with CNN features

N ", i
. i -
. ..
r‘ "( - S—
MIT TP \& i .

T T, L -~
y & i Nl

| 8 1Y %

Wz NS 9

b LS <)

/ |

warped region 5 aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Figure from
https://openaccess.thecvf.com/content_cvpr 2014/papers/Girshick_Rich Feature Hierarchies 2014 _CVPR_paper.pdf




* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf
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Image Captioning

=  Ground Truth Caption: A little boy runs away from the ° Ta ke an im a ge as
approaching waves of the ocean. .
input, and generate
Generated Caption: A young boy is running on the beach.
a sentence
describing it as
. output (i.e. the
Ground Truth Caption: A brunette girl wearing sunglasses Cd ptl O n)

and a yellow shirt.

* Typical methods
Ge.lllerated Caption: A woman in a black shirt and sunglasses in CI u d ea d ee p
CNN/transformer
and a RNN-like

¥
| g% B = language model
[Log 2151 | [ 5] Captions
| | | s * (The task of Dense

Crbrmtes P Captioning is to
generate one

cri caption per

bounding box)

Random Vector
Input Image (o> (Diversity)

Generator (G)

Fig. 3. A block diagram of other deep-learning-based captioning.

Figure from https://dl.acm.org/doi/pdf/10.1145/3295748



Image Captioning

Table 1. An Overview of the Deep-Learning-Based Approaches for Image Captioning

Reference Image Encoder | Language Model Category
Kiros et al. 2014 [69] AlexNet LBL MS, SL, WS, EDA
Kiros et al. 2014 [70] AlexNet, VGGNet | 1. LSTM MS, SL, WS, EDA

2. SC-NLM
Mao et al. 2014 [95] AlexNet RNN MS, SL, WS
Karpathy et al. 2014 [66] | AlexNet DTR MS, SL, WS, EDA
Mao et al. 2015 [94] AlexNet, VGGNet | RNN MS, SL, WS
Chen et al. 2015 [23] VGGNet RNN VS, SL, WS, EDA
Fang et al. 2015 [33] AlexNet, VGGNet | MELM VS, SL, WS, CA
Jia et al. 2015 [59] VGGNet LSTM VS, SL, WS, EDA
Karpathy et al. 2015 [65] | VGGNet RNN MS, SL, WS, EDA
Vinyals et al. 2015 [142] | GoogLeNet LSTM VS, SL, WS, EDA
Xu et al. 2015 [152] AlexNet LSTM VS, SL, WS, EDA, AB
Jin et al. 2015 [61] VGGNet LSTM VS, SL, WS, EDA, AB
Wu et al. 2016 [151] VGGNet LSTM VS, SL, WS, EDA, AB
Sugano et at. 2016 [129] [VGGNet LSTM VS, SL, WS, EDA, AB
Mathews et al. 2016 [97] |GoogLeNet LSTM VS, SL, WS, EDA, SC
Wang et al. 2016 [144] AlexNet, VGGNet | LSTM VS, SL, WS, EDA
Johnson et al. 2016 [62] | VGGNet LSTM VS, SL, DC, EDA
Mao et al. 2016 [92] VGGNet LSTM VS, SL, WS, EDA
Wang et al. 2016 [146] | VGGNet LSTM VS, SL, WS, CA
Tran et al. 2016 [135] ResNet MELM VS, SL, WS, CA
Ma et al. 2016 [90] AlexNet LSTM VS, SL, WS, CA
You et al. 2016 [156] GoogLeNet RNN VS, SL, WS, EDA, SCB
Yang et al. 2016 [153] VGGNet LSTM VS, SL, DC, EDA
Anne et al. 2016 [6] VGGNet LSTM VS, SL, WS, CA, NOB
Yao et al. 2017 [155] GoogLeNet LSTM VS, SL, WS, EDA, SCB
Lu et al. 2017 [83] ResNet LSTM VS, SL, WS, EDA, AB
Chen et al. 2017 [21] VGGNet, ResNet |LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [41] ResNet LSTM VS, SL, WS, CA, SCB
Pedersoli et al. 2017 [112] | VGGNet RNN VS, SL, WS, EDA, AB
Ren et al. 2017 [119] VGGNet LSTM VS, ODL, WS, EDA
Park et al. 2017 [111] ResNet LST™M VS, SL, WS, EDA, AB
Wang et al. 2017 [148] ResNet LSTM VS, SL, WS, EDA
Tavakoli et al. 2017 [134] | VGGNet LSTM VS, SL, WS, EDA, AB
Liu et al. 2017 [84] VGGNet LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [39] ResNet LSTM VS, SL, WS, EDA, SC
Dai et al. 2017 [26] VGGNet LSTM VS, ODL, WS, EDA
Shetty et al. 2017 [126] [ GoogLeNet LSTM VS, ODL, WS, EDA
Liu et al. 2017 [85) Inception-V3 LSTM VS, ODL, WS, EDA
Gu et al. 2017 [51] VGGNet 1. Language CNN VS, SL, WS, EDA

2. LSTM
Yao et al. 2017 [154] VGGNet LSTM VS, SL, WS, CA, NOB

(Continued)

Table from https://dl.acm.org/doi/pdf/10.1145/3295748

Take an image as
input, and generate
a sentence
describing it as
output (i.e. the
caption)

Typical methods
include a deep
CNN/transformer
and a RNN-like
language model

(The task of Dense
Captioning is to
generate one
caption per
bounding box)
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Medical Image Analysis

Notice that most of
these tasks are
structured prediction
problems, not
merely classification

Figure 2 Deep learning application in medical image analysis. (A) Fundus detection; (B,C) hippocampus segmentation; (D) left ventricular

segmentation; (E) pulmonary nodule classification; (F,G,H,I) gastric cancer pathology segmentation. The staining method is H&E, and the

magnification is x40.

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
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TRANSFORMER (ENCODER ONLY VERSION)



Autoregressive Language Model

Definition: An autoregressive language model defines a probability
distribution over sequences x;.7 of the form:

T

p(XlzT) — Hp(% ! L1ye-- ,xt—1)

t=1



Also called a

Transformer
language model

Decoder-only Transformer

)\

[ The [ bat ] [ made ] [ noise ]

T

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

|||iillllﬁ||l|/|||,||
i AT )’F %’F
Transformar layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. causal attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.



Single-Headed (Causal) Attention

[T [T X' = AV = softmax(QK” /\/di, + M)V

[T [T 1LV (A [ 1] Acausal = softmax(S + M)

In practice, the attention

Wq weights are computed
T
S=QK / V' Ak forall time steps T, then
we mask out (by setting
Q = XW, to —inf) all the inputs to
Wi the softmax that are for
B the timesteps to the right
K = XW, of the query
W, Vi \'/ V3 Vy

T [0 [0 [OLO V =XW,

X X> X3 X,

T O e O X = [Xq,...,Xy

e

0

0

0 0 0 -—o0
0 0 0 0

—00 —00 —00
0 -0 —00




Single-Headed Attention

So what is this model?

* Notice that each token X' =AV = softmax(QKT/\/ dk)V

can attend to all other
tokens on the left and
right

* [tis not an autoregressive
language model

[T [T A = softmax(S)

E S = QKT /\/dj,
w. Q = XW,
K = XW,
' ‘|,1||| ‘|,2||| ‘|’3||| ‘|,4||| V =XW,
)|(1||||)|(2||||)|(3||||)|(4|||| X = [x1,...,x4]"




Encoder-only Transformer

T p(wihy) ']‘ p(w|h.) T p(ws|hs) T p(w,lh,)
> > >

Joul Wl W]
Sy N

[ Transformer layer ]
[ Transformer layer ]

[ Transformer layer ]

i

Each layer of an encoder-only
Transformer consists of several
sublayers:

1. non-causal attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.



Encoder-only Transformer

BERT popularized this

Each layer of an encoder-onl
encoder-only achlayer oran enc y

Transformer consists of several

Transformer bl .
architecture and style '15” nagszusal Sttention
. . 1 hz . h . -
of lEUEITE TP(WI ) Tp(w Ihs) Tp(w3| 2 2. feed-forward neural network
o > > > 3. layer normalization
MLM Pretraining: i i T i T i T 4. residual connections
* Rather than trying 1 : : :
to predict the next 4‘% %{% % % E:clch hidden vector loc.)ks at the.the
ordiTomthe [ Transformer layer ] hidden v.ectors of all timesteps in
: ! @ ! @ z @ : the previous layer.
previous ones...
e ...mask out aword [ The distribution over words is used
Transformer layer ]
(or a few words) for masked language model (MLM)
and predict the ED@@%@E]\D pre-training (cf. BERT)
missin rds from
ISSing wo g e [ Transformer layer ]

the remaining ones




BERT popularized this
encoder-only
Transformer
architecture and style

of pretraining

MLM Pretraining:

* Rather than trying
to predict the next
word from the
previous ones...

e ...maskoutaword
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

- p(
1?1("')

T
/[p(Wth

h, h, h, h,

N, N N

[ Transformer layer ]

[ Transformer layer ]

[ Transformer layer ]

eSS
X1/I\X2/]\X3/I\X4’]‘

[[CLS]] [[MASK]][ cat ] [ sat ]

Each layer of an encoder-only
Transformer consists of several
sublayers:

1. non-causal attention

2. feed-forward neural network

3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used

for masked language model (MLM)
pre-training (cf. BERT)



BERT popularized this
encoder-only
Transformer
architecture and style

of pretraining

MLM Pretraining:

* Rather than trying
to predict the next
word from the
previous ones...

e ...maskoutaword
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

) =log p(ws | wi, ws)

[ Transformer layer

[ Transformer layer
[ Transformer layer

eSS
X1/I\X2/]\X3/I\X4’]‘

[[CLS]] [ The ][[MASK]] [ sat ]

Each layer of an encoder-only
Transformer consists of several
sublayers:

1. non-causal attention

2. feed-forward neural network

3. layer normalization
4. residual connections

Each hidden vector looks at the the
hidden vectors of all timesteps in
the previous layer.

The distribution over words is used

for masked language model (MLM)
pre-training (cf. BERT)



Encoder-only Transformer

BERT popularized this

Each layer of an encoder-only
encoder-only

Transformer consists of several

Transformer T T sublayers:
archltect.ur.e Sl S 1. non-causal attention
ARSI ‘ Pl ‘ Ol 2. feed-forward neural network
3. layer normalization
MLM Pretraining: i i T i i T 4. residual connections
* Rather than trying 1 : : :
to predict the next 4‘% %}% % % Each hidden vector looks at the the
ordiTomthe [ Transformer layer ] hidden vectors of all timesteps in
: the previous layer.
previous ones... Ilﬁ /i% | li | | ;,I |
* ...mask out aword [ e ] The distribution over words is used
(or a few words) ! for masked language model (MLM)
and predict the ED@@%@E]\D pre-training (cf. BERT)
MISSINg UGG BN [ Transformer layer ]

the remaining ones

(TT @ 1

x11\ xz/]\ x31\ x4/]\

[ [cLs] ] ([MASK]] [ cat | ([MASK]]




BERT popularized this
encoder-only
Transformer
architecture and style

of pretraining

MLM Pretraining:

* Rather than trying
to predict the next
word from the
previous ones...

e ...maskoutaword
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

I N I J =log p(y* | w,, W3, W)

T
I

[ Transformer layer

[ Transformer layer
[ Transformer layer

Supervised Fine-tuning:
* How to fine-tune this

model for a classification
task?

* Predict the class label
given the embedding for
the special [CLS] token

* Fine-tune the model to be
good at classification in
this way

Although this is not a
generative language model,
it can be used very
effectively as a discriminator



BERT popularized this
encoder-only
Transformer
architecture and style

of pretraining

MLM Pretraining:

* Rather than trying
to predict the next
word from the
previous ones...

e ...maskoutaword
(or a few words)
and predict the
missing words from
the remaining ones

Encoder-only Transformer

I N I J =log p(y* | w,, W3, W)

T
i

[ Transformer layer

[ Transformer layer
[ Transformer layer

eSS
x1¢\x2/]\x31\x41\

[[CLS]][ A ][ dog][barks]

Supervised Fine-tuning:
* How to fine-tune this

model for a classification
task?

* Predict the class label
given the embedding for
the special [CLS] token

* Fine-tune the model to be
good at classification in
this way

Although this is not a
generative language model,
it can be used very
effectively as a discriminator



VISION TRANSFORMER



Vision Transformer (ViT)

Model:

model is almost identical to BERT

instead of words as input the
inputs are PxP pixel ima
patches, P € {14, 16, 32} %no
oveﬂap)

each patch is embedded linearly
into a vector of size 1024

1D positional embeddings

Training;:

for pre-training, optimize for
image classification on large
supervised dataset (e.g.

ImageNet 21K, JFT- 300M)—same
setup as a CNN

for fine-tuning, learn a new
classification head on a small
dataset (e.g. CIFAR-100)

Class

Patch + Position
Embedding

* Extra learnable
[class] embedding

S H B

%%E%%ﬂ.%f}w%%y

L

Bird MLP
Ball
Car Head

Transformer Encoder

-BOOYID D QD

[

Llnear PI'O_]eCtIOIl of Flattened Patches

s

‘
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Vision Transformer (ViT)

Question: how cana ViT

learn 2D positional Class
. . Blarll MLP
information from 1D o ‘_‘ Head |
position embeddings? -
[ Transformer Encoder ]
Answer:

itz - G )6, @ﬁ

* Extra learnable

[class] embedding [ Llnear PI’OJCCthIl of Flattened Patches

ST i

%@f «

|
IZI:'.‘,’,zi‘ —> % a
A s 4

s

|
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Timeline: Language Modeling




Timeline: Image Generation

% Q!
©)
S 9
D)oo
¥ $
S

1.  Transformers
appeared in 2017

2. Theyimmediately

took over NLP ,\C/) A AV
3. Vision Transformers O O O
appeared in 2021 v v v
Question: Why did it take
so long for transformers ‘ ‘ ’ ’ ‘
to become popularin g S F 5 &
Q < Q Qro

computer vision?




Timeline: Image Generation

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*: ', Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*'T
*equal technical contribution, Tequal advising
Google Research, Brain Team

{adosovitskiy, neilhoulsby}@google.com
1. Transformers

appeared In 2017 When trained on mid-sized datasets such as ImageNet without strong regularization, these mod-

. . els yield modest accuracies of a few percentage points below ResNets of comparable size. This
2. They lmmedlately | seemingly discouraging outcome may be expected: Transformers lack some of the inductive biases

took over N LP inherent to CNNss, such as translation equivariance and locality, and therefore do not generalize well
. . when trained on insufficient amounts of data.
3. Vision Transformers

. : However, the picture changes if the models are trained on larger datasets (14M-300M images). We
appeared N 2021 find that large scale training trumps inductive bias. Our Vision Transformer (ViT) attains excellent
. s e 1 results when pre-trained at sufficient scale and transferred to tasks with fewer datapoints. When
QueStlon' Why dld It take pre-trained on the public ImageNet-21k dataset or the in-house JFT-300M dataset, ViT approaches
SO Iong for transformers or beats state of the art on multiple image recognition benchmarks. In particular, the best model
. reaches the accuracy of 88.55% on ImageNet, 90.72% on ImageNet-ReaL, 94.55% on CIFAR-100,

to become pOPUIar In and 77.63% on the VTAB suite of 19 tasks.

computer vision?




Timeline: Image Generation

90 Comparison of two
S model families:
g 85 1. BiT —large CNNs
G based on ResNet
= 80 2. ViT —vision
(o
S transformers of
3 75 BiT ViT-L/32 various sizes
?j” ViT-B/32 ViT-L/16 — —
£ ] ViT-B/16 ViT-H/14
1. Transformers 701, ; ;
ImageNet ImageNet-21k JFT-300M

appeared in 2017

Pre-training dataset

2. Theyimmediately |

took over NLP . ‘ .
3. Vision Transformers Figure 3 Transfer to ImageNet. Whl.le

: large ViT models perform worse than BiT

appeared in 2021 .

tion: Why did it tak ResNets (shaded area) when pre-trained on
QuIeS 'OP' y ]l I E2lNE small datasets, they shine when pre-trained on
SO bong or translormers larger datasets. Similarly, larger ViT variants
to become popularin overtake smaller ones as the dataset grows.

computer vision?




Vision Transformer (ViT)

* The original Vision
Transformer models
were quite small
compared to the Large
Language Models
(LLMs) of the time

* By 2023, ViT had been
scaled to 22 billion
parameters with good
success

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Table 1: ViT-22B model architecture details.

Name Width Depth MLP Heads Params|[M]
ViT-G 1664 48 8192 16 1843
ViT-e 1792 56 15360 16 3926
ViT-22B 6144 48 24576 48 21743
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TASK: IMAGE GENERATION



Image Generation

“A sunset behind
a mountain range”

* (lass-conditional generation
* Super resolution

* Image Editing '

* Style transfer \ l

* Text-to-image (TTI) generation [ Super J { RE { Style }
resolution transfer

Seéa anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023) 46



Class Conditional Generation

e Task: Given a class
label indicating the
image type, sample a
new image from the sea anemone
model with that type

* Image classification is brain coral
the problem of taking
in an image and
predicting its label slug

p(y|x)
 (Class conditional

generation is doin
this in reverse p(xﬁl)

goldfinch

Figure from Razavi et al. (2019)
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Figure from Li et al. (2021)

Super Resolution

»

SRDiff

e Given alow

resolution image,
generate a high
resolution
reconstruction of
the image

Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs
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Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

49

Figure from Saharia et al. (2022)



Style Transfer

* The goal of style transfer is to blend
two images

* Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tiibingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

Figure from Gatys et al. (2016)



Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)




Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: Epic long distance cityscape
photo of New York City flooded by the
ocean and overgrown buildings and
jungle ruins in rainforest, at sunset,
cinematic shot, highly detailed, 8k,
golden light

Figure from Podell et al. (2023)




Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic
young woman, wild hair sly smile in front
of gigantic UFO, dslr, sharp focus,
dynamic composition

Figure from Podell et al. (2023)




Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic old
man, wild hair sly smile in front of
gigantic UFO, dslr, sharp focus, dynamic
composition, rule of thirds

https://stablediffusionweb.com

55
Figure from https://stablediffusionweb.com/



In-Class Poll

Question: Answer:

What are the potential
societal impacts of
Image generation?



Summary

Computer Vision

Task: Image Generation

Model: Generative Adversarial Network (GAN)
Learning for GANs

Scaling Up the Model Size

Societal Impacts of Image Generation



MODEL: GENERATIVE ADVERSARIAL
NETWORK (GAN)



Stable Diffusion still can’t explain GANs

Gans Geenttial Adiverssiaiattion Avark frirtiiverseniain
Gerrenattie Assbal CAGr|l Gucerb)

tntainlesnsaliatisl-

Prompt: slide explaining

Generative Adversarial | Pyt -
Networks (GANs) for Intro to
Machine Learning course,
carefully designed, easy to |
follow oSSy -

CARGSRIPMOINTE sy gpomp by
FEOIRAMS =

Gper ettrets shivs

Gonercro OWneNMeEREE

Negative Prompt: boring,
unclear, nontechnical

%826 svleasepird fahataiq)
& ’-5‘3\'"0175»30, 1o

Ararh/

)

Wt

(Mnetaarh

Figure from https://stablediffusionweb.com/ e DA ELSARR I SO MER COM



Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)



Generator Model

Example Generator: DCGAN

— Aninverted CNN with four fractionally-

1) the Generator strided conyolutlon layers (not
deconvolution)
takes a vector of random noise as Input, — These fractional strides grow the size of

and generates an image the image from layer to layer

— The final layer has three channels for
red/green/blue

256
A

Stride 2

Stride 2 16

CONV 2

62
Figure from Radford et al. (2016)



Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)



Discriminator Model

Example Discriminator: PatchGAN
— Convolutional neural network

— Looks at each patch of the image and
tries to predict whether it is real or fake

— Helps avoid producing blurry images

2) the Discriminator

takes in an image classifies whether it is
real (Iabel 1) or fake (label 0)

Figure from Demir & Unal (2018)
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Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake



Generative Adversarial Networks (GANs)

Gg X = Gy(z
Z~ pnoise(') 9( )
Generator
/ fake image
7}

Real/fake images from Huang et al. (2017)

66



Generative Adversarial Networks (GANs)

X = Gy(2) D

¢
\ - ( qu(x)
.. 7L Discriminator p(real | image)

fake image /
¢

Real/fake images from Huang et al. (2017)



Generative Adversarial Networks (GANs)

.

X'~ pdata(') D

R ,

real image

)

D¢(X,)
Discriminator p(real | image)

Real/fake images from Huang et al. (2017)
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Generative Adversarial Networks (GANs)

x = Gy(2) Dy
\ ( Dy(x)
S, 7L Discriminator p(real | image)
fake image
¢
X’ ~ Pdata(") Dg
| ( D¢(X’)
| % /L Discriminator p(real | image)
real image

Real/fake images from Huang et al. (2017)



LEARNING FOR GANS



Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake



Generative Adversarial Networks (GANs)

Gg X = Gy(2) D

S

Z ~ Proise(*) D¢(X)

Discriminator p(real | image)

Generator

v

)
<

J =log(1-Dg(Ge(2)))

/ fake image 0 /
0 ¢

loss = J+)’

X'~ pdata(') Dd’

( D(x) /
| % /LDiscriminator p(real | image) \

y’ )’ =log(Dy(x’))

real image > /

72
Real/fake images from Huang et al. (2017)



Generative Adversarial Networks (GANs)

The discriminator is trying to maximize
the likelihood of a binary classifier with

, , labels {real = 1, fake = 0}, on the fixed
max log (D¢ (X(Z))) + log (1 — D¢(G0 (Z(Z)))) output of the generator

¢

min log (1 — D¢ (GQ (Z(i)))) The generator is trying to minimize the

9 —_ likelihood of its generated (fake) image

being classified as fake, according to a
fixed discriminator

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake



Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

e We chose Gand D to be ,
differentiable neural networks * Keep D, fixed and backprop through G,

* Keep Gy fixed and backprop through D

Real/fake images from Huang et al. (2017)



Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

e We chose Gand D to be ,
differentiable neural networks * Keep D, fixed and backprop through G,

* Keep G, fixed and backprop through D,

)
S

Dy(x)

Discriminator p(real | image)

N

)

J =log(1-Dg(Ge(2)))

y
fake image 0 / \

¢

loss = J+)’

X’ ~ pdata(')

y’ )’ =log(Dy(x’))

1 75

Dy,
( D,(x") /
| % LDiscriminator p(real | image) \
/

real image

Real/fake images from Huang et al. (2017)



* Obijective function is a simple
differentiable function

e We chose Gand D to be
differentiable neural networks

Gg X = Gy(2)
Z~ pnoise(')

Generator

fake image

Real/fake images from Huang et al. (2017)

Learning a GAN

Training alternates between:
* Keep Gy fixed and backprop through D,
* Keep D, fixed and backprop through G,

D

Dy(x)

\( Discriminator p(real | image)
L J =log(1 - Dy(Ge(2)))
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Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

* We chose Gand D to be .
differentiable neural networks * Keep D, fixed and backprop through G,

* Keep Gy fixed and backprop through D

x = Gy(2) Dy

Z ~ Proise(* ) W ( D¢(X)
H Generator Discriminator p(real | image)
L T J =log(1 - Dy(Ge(2)))

fake image Question: How do we backpropagate through G,
9 if there is a stochastic Gaussian distribution
involved?
‘ Usually p,oice(*) = Gaussian(o, a2 1)
: Answer:

Real/fake images from Huang et al. (2017)



* Training data
consists of a
collection of m

unlabeled images
x(1) x(m)

) eees

* Optimizationis
similar to block
coordinate descent

* Butinstead of
exactly solving the
min/max problem,
we take a step of
mini-batch SGD

Figure from https://arxiv.org/pdf/1406.2661.pdf

Learning a GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k. is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ... 2{™)} from noise prior p,(z).
e Sample minibatch of m examples {x'",... 2"} from data generating distribution
pdutu(w)-

e Update the discriminator by ascending its stochastic gradient:

1y’

V(),,% Z {l()gl_) (w("')) + log (1 - D (G (z("))>)} .

i
end for ,

e Sample minibatch of m noise samples {z'" ... 2™} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

e

W,,% Stog(1-D (G (7))
1=1

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Class-conditional GANs

* Obijective function is a simple

differentiable function

e We chose Gand D to be
differentiable neural networks

Generator

7

Add a label as input
to the generator, so
that it can learn to
generate specific

types of images

x = Gy(2)

fake image

X’ ~ pdata(')

*

Training alternates between:
Keep G, fixed and backprop through D,
Keep D, fixed and backprop through G,

)
S

Discriminator

p(real | image)

)

/

J =log(1-Dg(Ge(2)))

loss = J+)’

y.

J’ =log(Dg(x"))

Discriminator

R

——
Real/fake images from Huang et al. (2017)

real image

p(real | image) \
/
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SCALING UP THE MODEL SIZE



Scaling Up the Model Size

® PARTI-20B
® DALLE
® GAN method o oDiff1
® Imagen ® Muse3B
@ Transformer method ° .
Cogview2 g \1ys6900M
® Glide ® DALLE2
@ Diffusion method P TE— S —
e ® PARTI-3B
@ ControlNet
® LDM
® sD
® GigaGAN
® PARTI-750M
® DALLE-MINI
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are
calculated without the involvement of their text encoders.

Figure from Bie et al. (2023)



Scaling Up the Model Size

The Pathways
Autoregressive Text-to-
Image (Parti) model:

* treatimage generation
as a sequence-to-
sequence problem

* text promptisinputto
encoder

* sequence of image

tokens is output of
decoder

* VIiT-VQGAN takes in the
image tokens and
generates a high-
quality image

_,—> Transformer Decoder
Transformer Encoder

O M :

tq to tn <s0S> 1 9

Two dogs running in a field

Inference

ViT-VQGANT

Image Detokenizer
(Transformer)

i)

~

Image Tokenizer
(Transformer)




Scaling Up the Model Size

Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue
sunglasses standing on the grass in front of the Sydney Opera House holding a sign
on the chest that says Welcome Friends!

Parti with different model sizes

750M

e
%

Figure from https://sites.research.google/parti/



Watermarking & Attribution

Watermarking

— Adigital watermark allows one to
identify when an image has been
created by a model

— Most methods for image generation
(GANSs, VAEs, stable ditfusion) can be
augmented with watermarking

Fake-image Detection

— Goal: identify fakes even without a
watermark

Model Attribution

— ldentify which generative model
created an image (e.g. Dalle-2 vs. SDXL)

— Very successful (natural watermarks)
Image Attribution

— Goal: identify the source images that
led to the generation of a new image

— Extremely challenging

Figure from Fei et al. (2022)

e
oMo
0 0
Watermark ] D [ S ——
P
—_— Encoder —— l’rt.dl(.tkd
—_— e Watermarked data Image processing Duodu Watermark

layer (optional)

Training Data v
@ @ Watermarking Network

L—— MSE —I

1 ]
1 I
—’DDDD‘---- . ----- : e II.
1 I
Random noise ; I

Generator

Zz= E(z) G

Generated Image  Imagé processing Decoder (trozm)
layer (optional)

Predicted

)
i
1 Watermark
1
|
1
1

lt‘

1 BCE

(00—
3 1 Owner

Watermark

Real Image Discriminator

X D GAN Watermarking Network
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SOCIETAL IMPACTS OF IMAGE GENERATION



Societal Impacts of Image Generation

Pros
e New tools for artists

Faster creation of memes

Cons

Copyright infringement [ loss of work for artists
Societal decrease in creativity

Potential to create dehumanizing content

Fake news [ false realities [ increased difficulty of fact checking
Not rooted in reality

Video generation is around the corner





https://www.bbcearth.com/flying-draco-lizard

