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Reminders

• Homework 1: Generative Models of Text
– Out: Thu, Jan 25
– Due: Wed, Feb 7 at 11:59pm

• Matt’s office hours on GCal
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Q&A
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Q: Does pre-training always involve layer-by-layer unsupervised 
training?

A: No! That’s just where it started in 2006 for standard feed 
forward neural networks. 
• To pretrain a CNN or Vision Transformer, we typically train 

the entire model on a supervised classification problem (i.e. 
image classification)

• To pretrain an LLM, we typically train the entire model on the 
likelihood of unlabeled sentences. 



Course Staff
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ROTARY POSITION EMBEDDINGS (ROPE)
*take two
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Rotary Position Embeddings (RoPE)
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fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =























cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2























The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide 
have so many typos?

A: I’m really not sure. I 
very meticulously type 
up the latex for my 
slides myself and think 
carefully about all the 
things I put in them.

wrong

wrong

wrong

wrong

wrong



Rotary Position Embeddings (RoPE)
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Q: Why does this slide 
have so many typos?

A: I’m not really sure. I 
very meticulously type 
up the latex for my 
slides myself and think 
carefully about all the 
things I put in them.



Rotary Position Embeddings (RoPE)
• Rotary position 

embeddings are a 
kind of relative
position embeddings

• Key idea:
– break each d-

dimensional input 
vector into d/2 
vectors of length 2

– rotate each of the 
d/2 vectors by an 
amount scaled by m

– m is the absolute 
position of the 
query or the key

8
Figure from http://arxiv.org/abs/2104.09864



Rotary Position Embeddings (RoPE)
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qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where d = dk/2, Wk,Wq ∈ R
dmodel×dk .

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =























cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2























The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings (RoPE)
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qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =























y1
y2
y3
y4
...

yd−1

yd























⊗























cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2























+























−y2
y1
−y4
y3
...

−yd
yd−1























⊗























sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

























Matrix Version of RoPE
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Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =







1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2







Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊗ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊗ sin(C)



Matrix Version of RoPE
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Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

C =







1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2







Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

⊗ cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

⊗ sin(C)

Q: Is this slide correct?

A: I’m really not sure. 

But I did write it myself!



COMPUTER VISION
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Common Tasks in Computer Vision
1. Image Classification
2. Image Classification + 

Localization
3. Human Pose Estimation
4. Semantic Segmentation
5. Object Detection
6. Instance Segmentation
7. Image Captioning
8. Image Generation

15
Figure from https://arxiv.org/pdf/1704.06857.pdf



Image Classification

• Given an 
image, predict 
a single label

• A multi-class 
classification 
problem

16
Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdfFigure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Image Classification + Localization
• Given an image, 

predict a single 
label and a 
bounding box 
for the object

• Bounding box is 
represented as 
(x, y, h, w), 
position (x,y) 
and 
height/width 
(h,w)

17
Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257



Human Pose Estimation
• Given an image of a human, 

predict the position of 
several keypoints (left 
hand, right hand, left 
elbow, …, right foot)

• This is a multiple regression 
problem, where each 
keypoint has a 
corresponding position 
(xi,yi)

18Figure from 
https://openaccess.thecvf.com/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf



Semantic Segmentation
• Given an image, 

predict a label for 
every pixel in the 
image

• Not merely a 
classification 
problem, because 
there are strong 
correlations between 
pixel-specific labels

19Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Object Detection
• Given an image, for each object predict a bounding box 

and a label (x,y,w,h,l)
• Example: R-CNN

– (x=110, y=13, w=50, h=72, l=person)
– (x=90, y=55, w=81, h=87, l=horse)
– (x=421, y=533, w=24, h=30, l=chair)
– (x=2, y=25, w=51, h=121, l=gate)

20Figure from 
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf



Instance Segmentation
• Predict per-pixel labels as 

in semantic segmentation, 
but differentiate between 
different instances of the 
same label

• Example: if there are two 
people in the image, one 
person should be labeled 
person-1 and one should 
be labeled person-2

21
Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf 



Image Captioning
• Take an image as 

input, and generate 
a sentence 
describing it as 
output (i.e. the 
caption)

• Typical methods 
include a deep 
CNN/transformer 
and a RNN-like 
language model

• (The task of Dense 
Captioning is to 
generate one 
caption per 
bounding box) 

22
Figure from https://dl.acm.org/doi/pdf/10.1145/3295748



Image Captioning
• Take an image as 

input, and generate 
a sentence 
describing it as 
output (i.e. the 
caption)

• Typical methods 
include a deep 
CNN/transformer 
and a RNN-like 
language model

• (The task of Dense 
Captioning is to 
generate one 
caption per 
bounding box) 

23
Table from https://dl.acm.org/doi/pdf/10.1145/3295748 



Medical Image Analysis

Notice that most of 
these tasks are 
structured prediction 
problems, not 
merely classification

24
Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



TRANSFORMER (ENCODER ONLY VERSION)
(aka. BERT-style models)

25



Autoregressive Language Model

26

Definition: An autoregressive language model defines a probability
distribution over sequences x1:T of the form:

p(x1:T ) =
T∏

t=1

p(xt | x1, . . . , xt−1)



Decoder-only Transformer
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Also called a 
Transformer 
language model



q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Single-Headed (Causal) Attention

Wq

Q = XWq

28

x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

Acausal = softmax(S + M)

X′ = AV = softmax(QKT /
√

dk + M)V

X = [x1, . . . , x4]
T

In practice, the attention 
weights are computed 
for all time steps T, then 
we mask out (by setting 
to –inf) all the inputs to 
the softmax that are for 
the timesteps to the right 
of the query

. M =









0 −∞ −∞ −∞

0 0 −∞ −∞

0 0 0 −∞

0 0 0 0











q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Single-Headed Attention

Wq

29

x1 x2 x3 x4

Wk

Wv

A = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V
So what is this model?
• Notice that each token 

can attend to all other 
tokens on the left and 
right

• It is not an autoregressive 
language model

Q = XWq

V = XWv

S = QKT /
√

dk

K = XWk

X = [x1, . . . , x4]
T



Encoder-only Transformer
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p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

…

Each layer of an encoder-only 
Transformer consists of several 
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the 
hidden vectors of all timesteps in 
the previous layer.

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4



Encoder-only Transformer
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h1

p(w2|h3) 

h3 h4

[CLS] The cat sat

…

Each layer of an encoder-only 
Transformer consists of several 
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the 
hidden vectors of all timesteps in 
the previous layer.

The distribution over words is used 
for masked language model (MLM) 
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining p(w1|h2) p(w3|h4) 

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones



Encoder-only Transformer
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h1 h3 h4

[CLS] [MASK] cat sat

…

Each layer of an encoder-only 
Transformer consists of several 
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the 
hidden vectors of all timesteps in 
the previous layer.

The distribution over words is used 
for masked language model (MLM) 
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining p(w1|h2) 

ℓ1(·,·)

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones

+J = log p(w1 | w2 , w3)

The



Encoder-only Transformer

33

h1

p(w2|h3) 

h3 h4

[CLS] The [MASK] sat

…

Each layer of an encoder-only 
Transformer consists of several 
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the 
hidden vectors of all timesteps in 
the previous layer.

The distribution over words is used 
for masked language model (MLM) 
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

ℓ1(·,·)

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones

+

cat

J = log p(w2 | w1 , w3)



Encoder-only Transformer
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h1 h3 h4

[CLS] [MASK] cat [MASK]

…

Each layer of an encoder-only 
Transformer consists of several 
sublayers:
1. non-causal attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks at the the 
hidden vectors of all timesteps in 
the previous layer.

The distribution over words is used 
for masked language model (MLM) 
pre-training (cf. BERT)

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining p(w1|h2) p(w3|h4) 

ℓ1(·,·) ℓ2(·,·)

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones

+J = log p(w1, w3 | w2)

The sat



Encoder-only Transformer
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h1 h3 h4

[CLS] The cat sat

…

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones

p(y|h1) 

Supervised Fine-tuning:
• How to fine-tune this 

model for a classification 
task?

• Predict the class label 
given the embedding for 
the special [CLS] token

• Fine-tune the model to be 
good at classification in 
this way

ℓ1(·,·)

Although this is not a 
generative language model, 
it can be used very 
effectively as a discriminator

+ J = log p(y* | w1, w3, w2)

y* = 1



Encoder-only Transformer
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h1 h3 h4

[CLS] A dog barks

…

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

h2

BERT popularized this 
encoder-only 
Transformer 
architecture and style 
of pretraining

MLM Pretraining:
• Rather than trying 

to predict the next 
word from the 
previous ones…

• …mask out a word 
(or a few words) 
and predict the 
missing words from 
the remaining ones

p(y|h1) 

Supervised Fine-tuning:
• How to fine-tune this 

model for a classification 
task?

• Predict the class label 
given the embedding for 
the special [CLS] token

• Fine-tune the model to be 
good at classification in 
this way

ℓ1(·,·)

Although this is not a 
generative language model, 
it can be used very 
effectively as a discriminator

+ J = log p(y* | w1, w3, w2)

y* = 0



VISION TRANSFORMER
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Vision Transformer (ViT)
Model:
• model is almost identical to BERT
• instead of words as input the 

inputs are PxP pixel image 
patches, P ∈ {14, 16, 32} (no 
overlap)

• each patch is embedded linearly 
into a vector of size 1024 

• 1D positional embeddings

Training:
• for pre-training, optimize for 

image classification on large 
supervised dataset (e.g. 
ImageNet 21K, JFT-300M)—same 
setup as a CNN

• for fine-tuning, learn a new 
classification head on a small 
dataset (e.g. CIFAR-100)

38



Vision Transformer (ViT)

39

Answer:

Question: how can a ViT 
learn 2D positional 
information from 1D 
position embeddings?
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1. Transformers 
appeared in 2017 

2. They immediately 
took over NLP

3. Vision Transformers 
appeared in 2021

Question: Why did it take 
so long for transformers 
to become popular in 
computer vision?



Timeline: Image Generation
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1. Transformers 
appeared in 2017 

2. They immediately 
took over NLP

3. Vision Transformers 
appeared in 2021

Question: Why did it take 
so long for transformers 
to become popular in 
computer vision?
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Timeline: Image Generation

1. Transformers 
appeared in 2017 

2. They immediately 
took over NLP

3. Vision Transformers 
appeared in 2021

Question: Why did it take 
so long for transformers 
to become popular in 
computer vision?
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Timeline: Image Generation

1. Transformers 
appeared in 2017 

2. They immediately 
took over NLP

3. Vision Transformers 
appeared in 2021

Question: Why did it take 
so long for transformers 
to become popular in 
computer vision?

Comparison of two 
model families:
1. BiT – large CNNs 

based on ResNet
2. ViT – vision 

transformers of 
various sizes



Vision Transformer (ViT)
• The original Vision 

Transformer models 
were quite small 
compared to the Large 
Language Models 
(LLMs) of the time

• By 2023, ViT had been 
scaled to 22 billion 
parameters with good 
success

44



TASK: IMAGE GENERATION

45



Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

46

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)



Class Conditional Generation

47

• Task: Given a class 
label indicating the 
image type, sample a 
new image from the 
model with that type

• Image classification is 
the problem of taking 
in an image and 
predicting its label 
p(y|x)

• Class conditional 
generation is doing 
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)



Super Resolution

48
Figure from Li et al. (2021)

• Given a low 
resolution image, 
generate a high 
resolution 
reconstruction of 
the image

• Compelling on low 
resolution inputs 
(see example to the 
left) but also 
effective on high 
resolution inputs



Image Editing

49
Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Style Transfer

50

• The goal of style transfer is to blend 
two images

• Yet, the blend should retain the 
semantic content of the source 
image presented in the style of 
another image

Figure from Gatys et al. (2016)



Text-to-Image Generation

51

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: A propaganda poster depicting a 
cat dressed as french emperor napoleon 
holding a piece of cheese.

Figure from Podell et al. (2023)



Text-to-Image Generation

52

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: Epic long distance cityscape 
photo of New York City flooded by the 
ocean and overgrown buildings and 
jungle ruins in rainforest, at sunset, 
cinematic shot, highly detailed, 8k, 
golden light

Figure from Podell et al. (2023)



Text-to-Image Generation

53

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: close up headshot, futuristic 
young woman, wild hair sly smile in front 
of gigantic UFO, dslr, sharp focus, 
dynamic composition

Figure from Podell et al. (2023)



Text-to-Image Generation

55

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: close up headshot, futuristic old 
man, wild hair sly smile in front of 
gigantic UFO, dslr, sharp focus, dynamic 
composition, rule of thirds

Figure from https://stablediffusionweb.com/



In-Class Poll

Question:
What are the potential 
societal impacts of 
image generation?

56

Answer:



Summary

• Computer Vision
• Task: Image Generation
• Model: Generative Adversarial Network (GAN)
• Learning for GANs
• Scaling Up the Model Size
• Societal Impacts of Image Generation

57



MODEL: GENERATIVE ADVERSARIAL 
NETWORK (GAN)

58



Stable Diffusion still can’t explain GANs

60

Prompt: slide explaining 
Generative Adversarial 
Networks (GANs) for Intro to 
Machine Learning course, 
carefully designed, easy to 
follow

Negative Prompt: boring, 
unclear, nontechnical

Figure from https://stablediffusionweb.com/



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

61

A GAN consists of two deterministic neural network models:



Generator Model

1) the Generator
takes a vector of random noise as input, 
and generates an image

62

Example Generator: DCGAN
– An inverted CNN with four fractionally-

strided convolution layers (not 
deconvolution)

– These fractional strides grow the size of 
the image from layer to layer

– The final layer has three channels for 
red/green/blue

Figure from Radford et al. (2016) 



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

63

A GAN consists of two deterministic neural network models:



Example Discriminator: PatchGAN
– Convolutional neural network
– Looks at each patch of the image and 

tries to predict whether it is real or fake
– Helps avoid producing blurry images

Discriminator Model

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

64Figure from Demir et al. (2018)
Figure from Demir & Unal (2018)



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

65

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Generative Adversarial Networks (GANs)

66

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

x = G𝜃(z)G𝜃

𝜃



Generative Adversarial Networks (GANs)

67
Real/fake images from Huang et al. (2017)

fake image

Discriminator p(real | image)

D𝜙(x)
x = G𝜃(z) D𝜙

𝜙



Generative Adversarial Networks (GANs)

68
Real/fake images from Huang et al. (2017)

real image

Discriminator p(real | image)

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙



Generative Adversarial Networks (GANs)

69
Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

D𝜙(x)
x = G𝜃(z)

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙



LEARNING FOR GANS
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Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

71

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Generative Adversarial Networks (GANs)

72

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙



Generative Adversarial Networks (GANs)

73

max
φ

log
(

Dφ(x(i))
)

+ log
(

1−Dφ(Gθ(z(i)))
)

min
θ

log
(

1−Dφ(Gθ(z(i)))
)

The discriminator is trying to maximize 
the likelihood of a binary classifier with 
labels {real = 1, fake = 0}, on the fixed 

output of the generator

The generator is trying to minimize the 
likelihood of its generated (fake) image 
being classified as fake, according to a 

fixed discriminator

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)



Learning a GAN
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z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

Usually pnoise(·) = Gaussian(0, 𝜎2 I)
Answer:

Question: How do we backpropagate through G𝜃

 if there is a stochastic Gaussian distribution 
involved?



Learning a GAN
• Training data 

consists of a 
collection of m 
unlabeled images 
x(1), …, x(m)

• Optimization is 
similar to block 
coordinate descent

• But instead of 
exactly solving the 
min/max problem, 
we take a step of 
mini-batch SGD

78
Figure from https://arxiv.org/pdf/1406.2661.pdf



Class-conditional GANs
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

label

Add a label as input 
to the generator, so 
that it can learn to 
generate specific 
types of images 



SCALING UP THE MODEL SIZE
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Scaling Up the Model Size

81
Figure from Bie et al. (2023)



Scaling Up the Model Size
The Pathways 
Autoregressive Text-to-
Image (Parti) model:
• treat image generation 

as a sequence-to-
sequence problem

• text prompt is input to 
encoder

• sequence of image 
tokens is output of 
decoder

• ViT-VQGAN takes in the 
image tokens and 
generates a high-
quality image

83



Scaling Up the Model Size
Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue 
sunglasses standing on the grass in front of the Sydney Opera House holding a sign 
on the chest that says Welcome Friends!

84
Figure from https://sites.research.google/parti/

Parti with different model sizes



Watermarking & Attribution
• Watermarking

– A digital watermark allows one to 
identify when an image has been 
created by a model

– Most methods for image generation 
(GANs, VAEs, stable diffusion) can be 
augmented with watermarking

• Fake-image Detection
– Goal: identify fakes even without a 

watermark
• Model Attribution

– Identify which generative model 
created an image (e.g. Dalle-2 vs. SDXL)

– Very successful (natural watermarks)
• Image Attribution

– Goal: identify the source images that 
led to the generation of a new image

– Extremely challenging

85
Figure from Fei et al. (2022)



SOCIETAL IMPACTS OF IMAGE GENERATION
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Societal Impacts of Image Generation
Pros
• New tools for artists
• Faster creation of memes
Cons
• Copyright infringement / loss of work for artists
• Societal decrease in creativity
• Potential to create dehumanizing content
• Fake news / false realities / increased difficulty of fact checking
• Not rooted in reality
• Video generation is around the corner

87



88https://www.bbcearth.com/flying-draco-lizard 

https://www.bbcearth.com/flying-draco-lizard

