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Reminders

• Homework 1: Generative Models of Text
– Out: Thu, Jan 25
– Due: Wed, Feb 7 at 11:59pm

• Matt’s office hours on GCal
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MODEL: GENERATIVE ADVERSARIAL 
NETWORK (GAN)
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Stable Diffusion still can’t explain GANs
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Prompt: slide explaining 
Generative Adversarial 
Networks (GANs) for Intro to 
Machine Learning course, 
carefully designed, easy to 
follow

Negative Prompt: boring, 
unclear, nontechnical

Figure from https://stablediffusionweb.com/



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

6

A GAN consists of two deterministic neural network models:



Generator Model

1) the Generator
takes a vector of random noise as input, 
and generates an image
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Example Generator: DCGAN
– An inverted CNN with four fractionally-

strided convolution layers (not 
deconvolution)

– These fractional strides grow the size of 
the image from layer to layer

– The final layer has three channels for 
red/green/blue

Figure from Radford et al. (2016) 



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

8

A GAN consists of two deterministic neural network models:



Example Discriminator: PatchGAN
– Convolutional neural network
– Looks at each patch of the image and 

tries to predict whether it is real or fake
– Helps avoid producing blurry images

Discriminator Model

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

9Figure from Demir et al. (2018)
Figure from Demir & Unal (2018)



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)
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A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Generative Adversarial Networks (GANs)
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z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

x = G𝜃(z)G𝜃

𝜃

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)

12
Real/fake images from Huang et al. (2017)

fake image

Discriminator p(real | image)

D𝜙(x)
x = G𝜃(z) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)
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Real/fake images from Huang et al. (2017)

real image

Discriminator p(real | image)

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)
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Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

D𝜙(x)
x = G𝜃(z)

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



LEARNING FOR GANS

15



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)
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A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Generative Adversarial Networks (GANs)
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z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)
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max
φ

log
(

Dφ(x(i))
)

+ log
(

1−Dφ(Gθ(z(i)))
)

min
θ

log
(

1−Dφ(Gθ(z(i)))
)

The discriminator is trying to maximize 
the likelihood of a binary classifier with 
labels {real = 1, fake = 0}, on the fixed 

output of the generator

The generator is trying to minimize the 
likelihood of its generated (fake) image 
being classified as fake, according to a 

fixed discriminator

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Learning a GAN
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z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

Usually pnoise(·) = Gaussian(0, 𝜎2 I)
Answer:

Question: How do we backpropagate through G𝜃

 if there is a stochastic Gaussian distribution 
involved?



Learning a GAN
• Training data 

consists of a 
collection of m 
unlabeled images 
x(1), …, x(m)

• Optimization is 
similar to block 
coordinate descent

• But instead of 
exactly solving the 
min/max problem, 
we take a step of 
mini-batch SGD

23
Figure from https://arxiv.org/pdf/1406.2661.pdf



Class-conditional GANs
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

label

Add a label as input 
to the generator, so 
that it can learn to 
generate specific 
types of images 



SCALING UP THE MODEL SIZE
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Scaling Up the Model Size

26
Figure from Bie et al. (2023)



Scaling Up the Model Size
The Pathways 
Autoregressive Text-to-
Image (Parti) model:
• treat image generation 

as a sequence-to-
sequence problem

• text prompt is input to 
encoder

• sequence of image 
tokens is output of 
decoder

• ViT-VQGAN takes in the 
image tokens and 
generates a high-
quality image

28



Scaling Up the Model Size
Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue 
sunglasses standing on the grass in front of the Sydney Opera House holding a sign 
on the chest that says Welcome Friends!

29
Figure from https://sites.research.google/parti/

Parti with different model sizes



Watermarking & Attribution
• Watermarking

– A digital watermark allows one to 
identify when an image has been 
created by a model

– Most methods for image generation 
(GANs, VAEs, stable diffusion) can be 
augmented with watermarking

• Fake-image Detection
– Goal: identify fakes even without a 

watermark
• Model Attribution

– Identify which generative model 
created an image (e.g. Dalle-2 vs. SDXL)

– Very successful (natural watermarks)
• Image Attribution

– Goal: identify the source images that 
led to the generation of a new image

– Extremely challenging

30
Figure from Fei et al. (2022)



SOCIETAL IMPACTS OF IMAGE GENERATION
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Societal Impacts of Image Generation
Pros
• New tools for artists
• Faster creation of memes
Cons
• Copyright infringement / loss of work for artists
• Societal decrease in creativity
• Potential to create dehumanizing content
• Fake news / false realities / increased difficulty of fact checking
• Not rooted in reality
• Video generation is around the corner

32



DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)

34



Diffusion Models
• Next we will consider (1) diffusion models and (2) 

variational autoencoders (VAEs)
– Although VAEs came first, we’re going to dive into diffusion 

models since they will receive more of our attention
• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing 

the objective function
• So what is a variational lower bound?

35



DIRECTED GRAPHICAL MODEL
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Three Types of Graphical Models

37

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical 
Model

Undirected Graphical 
Model Factor Graph



Bayesian Network

38

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

39

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))



Qualitative Specification

• Where does the qualitative specification come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a layered graph) 
– …

© Eric Xing @ CMU, 2006-2011 40



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

41© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C
P(

D|
 C

)

Quantitative Specification

42© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

43© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are “observed”, i.e. their 
values are given

44

X1

X3X2

X4 X5



MARKOV MODEL
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Markov Model
• Markov assumption: for a 

sequence of random variables, 
the probability distribution 
over xt random variables is 
conditionally independent of x1
,…, xt-2 given xt-1

• Markov model: defines a joint 
distribution over a sequence of 
variables using a Markov 
assumption

• We can represent the Markov 
model as a directed graphical 
model

46

p(x1, . . . , xT ) = p(x1)

T∏

t=2

p(xt | xt−1)

p(xt | x1, . . . , xt−1) = p(xt | xt−1)

x1 x2 x3 . . . xT−1 xT



RNN as a DGM

47



UNDIRECTED GRAPHICAL MODELS

48



Three Types of Graphical Models

49

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical 
Model

Undirected Graphical 
Model Factor Graph



Undirected Graphical Models
Undirected Graph 
Terminology
• Definition: a clique is a set 

of fully connected nodes
(e.g. {X1, X2} or {X1, X2, X3})

• Definition: a maximal 
clique is a clique to which 
adding any node makes it 
no longer a clique
(e.g. {X1, X2, X3} but not {X1, 
X2})

• Definition: a set of nodes 
XC separates sets XA and XB
if removing XC leaves no 
path from a node in XA to 
one in XB.
(e.g. {X4, X7} separates {X1, 
X2, X3} and {X5, X6})

50

X1 X4

X3

X6

X7

X5X2

XCXA

XB

Notation: Let XS 
denote all the 
variables with 
indices in the 

set S ⊂ ℤ+

…are complicated and we 
don’t really need them here…



FACTOR GRAPHS
Representation of both directed and undirected graphical models
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Three Types of Graphical Models
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X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical 
Model

Undirected Graphical 
Model Factor Graph



Factor Graphs

53

Mathematical 
Modeling

y2

y1

ψ12

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)



Factor Graphs
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Mathematical 
Modeling

Each random 
variable can be 

assigned a value
Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

The collection 
of values for all 

the random 
variables is 

called an 
assignment.

ψ12



Factor Graphs
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Mathematical 
Modeling

ψ1

Factors have 
local opinions 

about the 
assignments of 

their 
neighboring 

variables 

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)



Factor Graphs
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Mathematical 
Modeling

ψ1

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

Factors have 
local opinions 

about the 
assignments of 

their 
neighboring 

variables 



Factor Graphs
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Mathematical 
Modeling

ψ1

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

Factors have 
local opinions 

about the 
assignments of 

their 
neighboring 

variables 



Factor Graphs
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Mathematical 
Modeling

ψ1

ch
oc

ol
at

e

pe
an

ut
bu

tt
er

Ic
e 

cr
ea

m

tu
na …

chocolate 2 9 7 0.1

peanut butter 4 2 3 0.2

ice cream 7 3 2 0.1

tuna 0.1 0.2 0.1 2

…

ψ1

ψ1

chocolate 4

peanut butter 8

ice cream 7

tuna 3

…

chocolate 0.1

peanut butter 5

ice cream 1

tuna 6

…

P(tuna, ice cream)     =     ? Those opinions are 
expressed through 

potential tables



Factor Graphs
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Mathematical 
Modeling

ψ1

ch
oc

ol
at

e

pe
an

ut
bu

tt
er

Ic
e 

cr
ea

m

tu
na …

chocolate 2 9 7 0.1

peanut butter 4 2 3 0.2

ice cream 7 3 2 0.1

tuna 0.1 0.2 0.1 2

…

ψ1

ψ1

chocolate 4

peanut butter 8

ice cream 7

tuna 3

…

chocolate 0.1

peanut butter 5

ice cream 1

tuna 6

…

P(tuna, ice cream)     =       (6 * 7 * 0.1)
Uh-oh! The probabilities of 
the various assignments sum 

up to Z > 1.
So divide them all by Z.

The combined potential tables of all factors 
defines the probability of an assignment



How General Are Factor Graphs?
• Factor graphs can be used to describe
– Markov Random Fields (undirected graphical models)

– Conditional Random Fields
– Bayesian Networks (directed graphical models)

• Inference treats all of these interchangeably.
– Convert your model to a factor graph first.
– Key strategies for exact inference:
• Variable elimination, for inference on any graph

(but runtime may blow up)
• Belief propagation, for inference on acyclic graphs
• Junction tree algorithm, for making any graph acyclic

(by merging variables and factors: blows up the runtime)



Factor Graph Notation

61

• Variables:

• Factors:

Joint Distribution
X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}



X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors

62

• Factors:

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…s

vp
pp

• Def: a unary factor 
touches one variables

• Def: a binary factor 
touches two variables

• Def: a ternary factor 
touches three 
variables

• Def: the arity of a 
factor is the number 
of neighbors 
(variables) it has



X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors

63

• Factors must contain 
non-negative values --
this ensures we have a 
valid probability 
distribution

• We also sometimes 
refer to factors as 
potential functions or 
potentials (like UGMs)

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…s

vp
pp

Joint Distribution



Ex: Factor Graph over Binary Variables
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Locally Normalized vs. Globally Normalized
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X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical 
Model

Undirected Graphical 
Model Factor Graph

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))


