
Generative Adversarial Networks (GANs)

1

10-423/10-623 Generative AI

Matt Gormley
Lecture 6

Feb. 5, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 1: Generative Models of Text
– Out: Thu, Jan 25
– Due: Wed, Feb 7 at 11:59pm

• Matt’s office hours on GCal

2

MODEL: GENERATIVE ADVERSARIAL
NETWORK (GAN)

3

Stable Diffusion still can’t explain GANs

5

Prompt: slide explaining
Generative Adversarial
Networks (GANs) for Intro to
Machine Learning course,
carefully designed, easy to
follow

Negative Prompt: boring,
unclear, nontechnical

Figure from https://stablediffusionweb.com/

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

6

A GAN consists of two deterministic neural network models:

Generator Model

1) the Generator
takes a vector of random noise as input,
and generates an image

7

Example Generator: DCGAN
– An inverted CNN with four fractionally-

strided convolution layers (not
deconvolution)

– These fractional strides grow the size of
the image from layer to layer

– The final layer has three channels for
red/green/blue

Figure from Radford et al. (2016)

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

8

A GAN consists of two deterministic neural network models:

Example Discriminator: PatchGAN
– Convolutional neural network
– Looks at each patch of the image and

tries to predict whether it is real or fake
– Helps avoid producing blurry images

Discriminator Model

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

9Figure from Demir et al. (2018)
Figure from Demir & Unal (2018)

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

10

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images

from the fake

Generative Adversarial Networks (GANs)

11

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

x = G𝜃(z)G𝜃

𝜃

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

Generative Adversarial Networks (GANs)

12
Real/fake images from Huang et al. (2017)

fake image

Discriminator p(real | image)

D𝜙(x)
x = G𝜃(z) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

Generative Adversarial Networks (GANs)

13
Real/fake images from Huang et al. (2017)

real image

Discriminator p(real | image)

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

Generative Adversarial Networks (GANs)

14
Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

D𝜙(x)
x = G𝜃(z)

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

LEARNING FOR GANS

15

Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input,
and generates an image

2) the Discriminator
takes in an image classifies whether it is
real (label 1) or fake (label 0)

16

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images

from the fake

Generative Adversarial Networks (GANs)

17

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

Generative Adversarial Networks (GANs)

18

max
φ

log
(

Dφ(x(i))
)

+ log
(

1−Dφ(Gθ(z(i)))
)

min
θ

log
(

1−Dφ(Gθ(z(i)))
)

The discriminator is trying to maximize
the likelihood of a binary classifier with
labels {real = 1, fake = 0}, on the fixed

output of the generator

The generator is trying to minimize the
likelihood of its generated (fake) image
being classified as fake, according to a

fixed discriminator

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images

from the fake

Learning a GAN

19

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

Learning a GAN

20

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Learning a GAN

21

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

Learning a GAN

22

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

Usually pnoise(·) = Gaussian(0, 𝜎2 I)
Answer:

Question: How do we backpropagate through G𝜃

 if there is a stochastic Gaussian distribution
involved?

Learning a GAN
• Training data

consists of a
collection of m
unlabeled images
x(1), …, x(m)

• Optimization is
similar to block
coordinate descent

• But instead of
exactly solving the
min/max problem,
we take a step of
mini-batch SGD

23
Figure from https://arxiv.org/pdf/1406.2661.pdf

Class-conditional GANs

24

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

label

Add a label as input
to the generator, so
that it can learn to
generate specific
types of images

SCALING UP THE MODEL SIZE

25

Scaling Up the Model Size

26
Figure from Bie et al. (2023)

Scaling Up the Model Size
The Pathways
Autoregressive Text-to-
Image (Parti) model:
• treat image generation

as a sequence-to-
sequence problem

• text prompt is input to
encoder

• sequence of image
tokens is output of
decoder

• ViT-VQGAN takes in the
image tokens and
generates a high-
quality image

28

Scaling Up the Model Size
Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue
sunglasses standing on the grass in front of the Sydney Opera House holding a sign
on the chest that says Welcome Friends!

29
Figure from https://sites.research.google/parti/

Parti with different model sizes

Watermarking & Attribution
• Watermarking

– A digital watermark allows one to
identify when an image has been
created by a model

– Most methods for image generation
(GANs, VAEs, stable diffusion) can be
augmented with watermarking

• Fake-image Detection
– Goal: identify fakes even without a

watermark
• Model Attribution

– Identify which generative model
created an image (e.g. Dalle-2 vs. SDXL)

– Very successful (natural watermarks)
• Image Attribution

– Goal: identify the source images that
led to the generation of a new image

– Extremely challenging

30
Figure from Fei et al. (2022)

SOCIETAL IMPACTS OF IMAGE GENERATION

31

Societal Impacts of Image Generation
Pros
• New tools for artists
• Faster creation of memes
Cons
• Copyright infringement / loss of work for artists
• Societal decrease in creativity
• Potential to create dehumanizing content
• Fake news / false realities / increased difficulty of fact checking
• Not rooted in reality
• Video generation is around the corner

32

DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)

34

Diffusion Models
• Next we will consider (1) diffusion models and (2)

variational autoencoders (VAEs)
– Although VAEs came first, we’re going to dive into diffusion

models since they will receive more of our attention
• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing

the objective function
• So what is a variational lower bound?

35

DIRECTED GRAPHICAL MODEL

36

Three Types of Graphical Models

37

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical
Model

Undirected Graphical
Model Factor Graph

Bayesian Network

38

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5

Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

39

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

Qualitative Specification

• Where does the qualitative specification come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a layered graph)
– …

© Eric Xing @ CMU, 2006-2011 40

a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

41© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C
P(

D|
 C

)

Quantitative Specification

42© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

43© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67

Example:

Observed Variables

• In a graphical model, shaded nodes are “observed”, i.e. their
values are given

44

X1

X3X2

X4 X5

MARKOV MODEL

45

Markov Model
• Markov assumption: for a

sequence of random variables,
the probability distribution
over xt random variables is
conditionally independent of x1
,…, xt-2 given xt-1

• Markov model: defines a joint
distribution over a sequence of
variables using a Markov
assumption

• We can represent the Markov
model as a directed graphical
model

46

p(x1, . . . , xT) = p(x1)

T∏

t=2

p(xt | xt−1)

p(xt | x1, . . . , xt−1) = p(xt | xt−1)

x1 x2 x3 . . . xT−1 xT

RNN as a DGM

47

UNDIRECTED GRAPHICAL MODELS

48

Three Types of Graphical Models

49

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical
Model

Undirected Graphical
Model Factor Graph

Undirected Graphical Models
Undirected Graph
Terminology
• Definition: a clique is a set

of fully connected nodes
(e.g. {X1, X2} or {X1, X2, X3})

• Definition: a maximal
clique is a clique to which
adding any node makes it
no longer a clique
(e.g. {X1, X2, X3} but not {X1,
X2})

• Definition: a set of nodes
XC separates sets XA and XB
if removing XC leaves no
path from a node in XA to
one in XB.
(e.g. {X4, X7} separates {X1,
X2, X3} and {X5, X6})

50

X1 X4

X3

X6

X7

X5X2

XCXA

XB

Notation: Let XS
denote all the
variables with
indices in the

set S ⊂ ℤ+

…are complicated and we
don’t really need them here…

FACTOR GRAPHS
Representation of both directed and undirected graphical models

51

Three Types of Graphical Models

52

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical
Model

Undirected Graphical
Model Factor Graph

Factor Graphs

53

Mathematical
Modeling

y2

y1

ψ12

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

Factor Graphs

54

Mathematical
Modeling

Each random
variable can be

assigned a value
Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

The collection
of values for all

the random
variables is

called an
assignment.

ψ12

Factor Graphs

55

Mathematical
Modeling

ψ1

Factors have
local opinions

about the
assignments of

their
neighboring

variables

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

Factor Graphs

56

Mathematical
Modeling

ψ1

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

Factors have
local opinions

about the
assignments of

their
neighboring

variables

Factor Graphs

57

Mathematical
Modeling

ψ1

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

Factors have
local opinions

about the
assignments of

their
neighboring

variables

Factor Graphs

58

Mathematical
Modeling

ψ1

ch
oc

ol
at

e

pe
an

ut
bu

tt
er

Ic
e

cr
ea

m

tu
na …

chocolate 2 9 7 0.1

peanut butter 4 2 3 0.2

ice cream 7 3 2 0.1

tuna 0.1 0.2 0.1 2

…

ψ1

ψ1

chocolate 4

peanut butter 8

ice cream 7

tuna 3

…

chocolate 0.1

peanut butter 5

ice cream 1

tuna 6

…

P(tuna, ice cream) = ? Those opinions are
expressed through

potential tables

Factor Graphs

59

Mathematical
Modeling

ψ1

ch
oc

ol
at

e

pe
an

ut
bu

tt
er

Ic
e

cr
ea

m

tu
na …

chocolate 2 9 7 0.1

peanut butter 4 2 3 0.2

ice cream 7 3 2 0.1

tuna 0.1 0.2 0.1 2

…

ψ1

ψ1

chocolate 4

peanut butter 8

ice cream 7

tuna 3

…

chocolate 0.1

peanut butter 5

ice cream 1

tuna 6

…

P(tuna, ice cream) = (6 * 7 * 0.1)
Uh-oh! The probabilities of
the various assignments sum

up to Z > 1.
So divide them all by Z.

The combined potential tables of all factors
defines the probability of an assignment

How General Are Factor Graphs?
• Factor graphs can be used to describe
– Markov Random Fields (undirected graphical models)

– Conditional Random Fields
– Bayesian Networks (directed graphical models)

• Inference treats all of these interchangeably.
– Convert your model to a factor graph first.
– Key strategies for exact inference:
• Variable elimination, for inference on any graph

(but runtime may blow up)
• Belief propagation, for inference on acyclic graphs
• Junction tree algorithm, for making any graph acyclic

(by merging variables and factors: blows up the runtime)

Factor Graph Notation

61

• Variables:

• Factors:

Joint Distribution
X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors

62

• Factors:

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…s

vp
pp

• Def: a unary factor
touches one variables

• Def: a binary factor
touches two variables

• Def: a ternary factor
touches three
variables

• Def: the arity of a
factor is the number
of neighbors
(variables) it has

X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors

63

• Factors must contain
non-negative values --
this ensures we have a
valid probability
distribution

• We also sometimes
refer to factors as
potential functions or
potentials (like UGMs)

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…

s vppp …
s 0 2 .3
vp 3 4 2
pp .1 2 1
…s

vp
pp

Joint Distribution

Ex: Factor Graph over Binary Variables

64

Locally Normalized vs. Globally Normalized

65

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

Directed Graphical
Model

Undirected Graphical
Model Factor Graph

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

