ML 10-423/10-623 Generative Al

Machine Learning Department

| School of Computer Science

MACHINE LEARNING ; T
EEEEEEEEEE Carnegie Mellon University

%

Generative Adversarial Networks (GANs)

Matt Gormley
Lecture 6
Feb. 5, 2024

Reminders

* Homework 1: Generative Models of Text
— Out: Thu, Jan 25
— Due: Wed, Feb 7 at 11:59pm

e Matt’s office hours on GCal

MODEL: GENERATIVE ADVERSARIAL
NETWORK (GAN)

Stable Diffusion still can’t explain GANs

Gans Geenttial Adiverssiaiattion Avark frirtiiverseniain
Gerrenattie Assbal CAGr|l Gucerb)

tntainlesnsaliatisl-

Prompt: slide explaining

Generative Adversarial | Pyt -
Networks (GANs) for Intro to
Machine Learning course,
carefully designed, easy to |
follow oSSy -

CARGSRIPMOINTE sy gpomp by
FEOIRAMS =

Gper ettrets shivs

Gonercro OWneNMeEREE

Negative Prompt: boring,
unclear, nontechnical

%826 svleasepird fahataiq)
& ’-5‘3\'"0175»30, 1o

Ararh/

)

Wt

(Mnetaarh

Figure from https://stablediffusionweb.com/ e DA ELSARR I SO MER COM

Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input, takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

Generator Model

Example Generator: DCGAN

— Aninverted CNN with four fractionally-

1) the Generator strided conyolutlon layers (not
deconvolution)
takes a vector of random noise as Input, — These fractional strides grow the size of

and generates an image the image from layer to layer

— The final layer has three channels for
red/green/blue

256
A

Stride 2

=N : }@

1}}5;;;_:, Stride 2

Stride2 16 T

CONV 2

Figure from Radford et al. (2016)

Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input, takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

Discriminator Model

Example Discriminator: PatchGAN

— Convolutional neural network

— Looks at each patch of the image and 2) the Discriminator
tries to predict whether it is real or fake takes in an image classifies whether it is
— Helps avoid producing blurry images real (Iabel 1) or fake (label 0)

Figure from Demir & Unal (2018)

Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input, takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake

Generative Adversarial Networks (GANs)

Gg X = Gy(2)

Z~ poise(')

_-.;::'11_1 z
sl "4 -

Generator

/ fake image
0

11
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html

Generative Adversarial Networks (GANs)

Dy

D(x)

>{ Discriminator p(real | image)

fake image /
¢

12
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html

Generative Adversarial Networks (GANs)

¢ \
X’ ~ Pdata(") D¢
' Dd)(X,)
| % /{ Discriminator p(real | image)

real image

13
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html

Generative Adversarial Networks (GANs)

Dy
(Dy(x)
>L Discriminator p(real | image)
fake image
¢
X’ ~ Pdata(") Dg
| (qu(X’)
| % /L Discriminator p(real | image)
real image

14
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html

LEARNING FOR GANS

Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input, takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake

Generative Adversarial Networks (GANs)

Gg X = Gy(2)
z ' pnoie(')
;::;j Generator
/ fake image
7]
X'~ pdata(')
R
real image

Real/fake images from Huang et al. (2017)

Dy
(Dg(x)
7L Discriminator p(real | image)
y J = log(1 - Dy(Ge(2)))

0 /
¢
D, loss = J+J)’
(Dy(X’)
> Discriminator p(real | image) \
L y)’ =log(Dy(x’))

1 /

17
Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html

Generative Adversarial Networks (GANs)

The discriminator is trying to maximize
the likelihood of a binary classifier with

, , labels {real = 1, fake = 0}, on the fixed
max log (D¢ (X(Z))) + log (1 — D¢(G0 (Z(Z)))) output of the generator

¢

min log (1 — D¢ (GQ (Z(i)))) The generator is trying to minimize the

9 —_ likelihood of its generated (fake) image

being classified as fake, according to a
fixed discriminator

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake

Objective function is a simple
differentiable function

We chose G and D to be
differentiable neural networks

Learning a GAN

Training alternates between:
* Keep Gy fixed and backprop through D
* Keep D, fixed and backprop through G,

1l

Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

e We chose Gand D to be ,
differentiable neural networks * Keep D, fixed and backprop through G,

* Keep G, fixed and backprop through D,

)
S

Dy(x)

Discriminator p(real | image)

N

)

J =log(1-Dg(Ge(2)))

y
fake image 0 / \

¢

loss = J+)’

X’ ~ pdata(')

y’)’ =log(Dy(x’))

1 20

Dy,
(D,(x") /
| % LDiscriminator p(real | image) \
/

real image

Real/fake images from Huang et al. (2017)

* Obijective function is a simple
differentiable function

e We chose Gand D to be
differentiable neural networks

Gg X = Gy(2)

Generator

/ fake image
0

Real/fake images from Huang et al. (2017)

Learning a GAN

Training alternates between:
* Keep Gy fixed and backprop through D,
* Keep D, fixed and backprop through G,

D

Dy(x)

\(Discriminator p(real | image)
L J =log(1 - Dy(Ge(2)))

21

Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

e We chose G and D to be * Keep G, fixed and backprop through Dy

differentiable neural networks * Keep D, fixed and backprop through G,
Gg X = Gy(2) D
2~ Pooisel) (Dy(x)
1 Generator > Discriminator p(real | image)
L _ J =log(1-Dy(Ge(2)))
/ fake image Question: How do we backpropagate through G,

0 if there is a stochastic Gaussian distribution

involved?
‘ Usually p,oice(*) = Gaussian(o, a2 1)

Answer:

Real/fake images from Huang et al. (2017)

* Training data
consists of a
collection of m

unlabeled images
x(1) x(m)

) eees

* Optimizationis
similar to block
coordinate descent

* Butinstead of
exactly solving the
min/max problem,
we take a step of
mini-batch SGD

Figure from https://arxiv.org/pdf/1406.2661.pdf

Learning a GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k. is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ... 2{™)} from noise prior p,(z).
e Sample minibatch of m examples {x'",... 2"} from data generating distribution
pdutu(w)-

e Update the discriminator by ascending its stochastic gradient:

1y’

V(),,% Z {l()gl_) (w("')) + log (1 - D (G (z("))>)} .

i
end for ,

e Sample minibatch of m noise samples {z'" ... 2™} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

e

W,,% Stog(1-D (G (7))
1=1

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

23

Class-conditional GANs

* Obijective function is a simple

differentiable function

e We chose Gand D to be
differentiable neural networks

Generator

7

Add a label as input
to the generator, so
that it can learn to
generate specific
types of images

x = Gy(2)

fake image

X’ ~ pdata(')

*

Training alternates between:
Keep G, fixed and backprop through D,
Keep D, fixed and backprop through G,

(D
> Discriminator
L y

p(real | image)

/

J =log(1-Dg(Ge(2)))

loss = J+)’

y.

J’ =log(Dg(x"))

R

D
Discriminator
y)

—
Real/fake images from Huang et al. (2017)

real image

p(real | image) \
/

24

SCALING UP THE MODEL SIZE

Scaling Up the Model Size

® PARTI-20B
® DALLE
® GAN method o oDiff1
® Imagen ® Muse3B
@ Transformer method ° .
Cogview2 g \1ys6900M
® Glide ® DALLE2
@ Diffusion method P TE— S —
e ® PARTI-3B
@ ControlNet
® LDM
® sD
® GigaGAN
® PARTI-750M
® DALLE-MINI
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are
calculated without the involvement of their text encoders.

Figure from Bie et al. (2023)

Scaling Up the Model Size

The Pathways
Autoregressive Text-to-
Image (Parti) model:

* treatimage generation
as a sequence-to-
sequence problem

* text promptisinputto
encoder

* sequence of image

tokens is output of
decoder

* VIiT-VQGAN takes in the
image tokens and
generates a high-
quality image

_,—> Transformer Decoder
Transformer Encoder

O M :

tq to tn <s0S> 1 9

Two dogs running in a field

Inference

ViT-VQGANT

Image Detokenizer
(Transformer)

i)

~

Image Tokenizer
(Transformer)

Scaling Up the Model Size

Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue
sunglasses standing on the grass in front of the Sydney Opera House holding a sign
on the chest that says Welcome Friends!

Parti with different model sizes

750M

e
%

Figure from https://sites.research.google/parti/

Watermarking & Attribution

Watermarking

— Adigital watermark allows one to
identify when an image has been
created by a model

— Most methods for image generation
(GANSs, VAEs, stable ditfusion) can be
augmented with watermarking

Fake-image Detection

— Goal: identify fakes even without a
watermark

Model Attribution

— ldentify which generative model
created an image (e.g. Dalle-2 vs. SDXL)

— Very successful (natural watermarks)
Image Attribution

— Goal: identify the source images that
led to the generation of a new image

— Extremely challenging

Figure from Fei et al. (2022)

e
oMo
0 0
Watermark] D [S ——
P
—_— Encoder —— l’rt.dl(.tkd
—_— e Watermarked data Image processing Duodu Watermark

layer (optional)

Training Data v
@ @ Watermarking Network

L—— MSE —I

1]
1 I
—’DDDD‘---- . ----- : e II.
1 I
Random noise ; I

Generator

Zz= E(z) G

Generated Image Imagé processing Decoder (trozm)
layer (optional)

Predicted

)
i
1 Watermark
1
|
1
1

lt‘

1 BCE

(00—
3 1 Owner

Watermark

Real Image Discriminator

X D GAN Watermarking Network

30

SOCIETAL IMPACTS OF IMAGE GENERATION

Societal Impacts of Image Generation

Pros
e New tools for artists

Faster creation of memes

Cons

Copyright infringement [loss of work for artists
Societal decrease in creativity

Potential to create dehumanizing content

Fake news [false realities [increased difficulty of fact checking
Not rooted in reality

Video generation is around the corner

DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)

Diffusion Models

* Next we will consider (1) diffusion models and (2)
variational autoencoders (VAEs)

— Although VAEs came first, we’re going to dive into diffusion
models since they will receive more of our attention

* The steps in defining these models is roughly:
— Define a probability distribution involving Gaussian noise
— Use a variational lower bound as an objective function

— Learn the parameters of the probability distribution by optimizing
the objective function

e So what s a variational lower bound?

DIRECTED GRAPHICAL MODEL

Three Types of Graphical Models

Directed Graphical Undirected Graphical

Factor Graph

Bayesian Network

@ @ p(X17X27X37X47X5) —
2 P(X5] X3)p(Xa| X2, X3)
x) () p(X3)p(X2|X1)p(X1)

Bayesian Network

Definition:

(X
@ @ P(X17°"7XT)

* A Bayesian Network is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P

HP(Xt | parents(X;))

t=1

Qualitative Specification

* Where does the qualitative specification come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships

— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a layered graph)

Example: Conditional probability tables (CPTs)
for discrete random variables

a0

0.75

bO

0.33

a’

0.25

b1

0.67

Quantitative Specification

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’%b0 a’b? a'bl a'b?
cO 0.45 1 0.9 0.7
c 0.55 0 0.1 0.3
cO c
0.3 |05
07 0.5

© Eric Xing @ CMU, 2006-2011

41

Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
AN(Up Z,) B-N(it, 35) P(a)P(b)P(c|a,b)P(d|c)

C~N(A+B, Z.)

P(D] C)

‘ D~N(ug+C, 2,)
D

© Eric Xing @ CMU, 2006-2011

42

Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

P(a,b,c.d) =

a® |0.75 ° |0.33 P(a)P(b)P(c|a,b)P(d|c)

a' 10.25 b |0.67

C~N(A+B, Z.)

‘ D~N(uq+C, Z4)

© Eric Xing @ CMU, 2006-2011

Observed Variables

* In a graphical model, shaded nodes are “observed”, i.e. their
values are given

44

MARKOV MODEL

Markov Model

* Markov assumption: for a
sequence of random variables, o
the probability distribution . P(Tt | T1,. .., Tt—1) = p(T¢ | Tr—1)
over x, random variables is
conditionally independent of x,
yeer s Xeo BIVEN Xy

* Markov model: defines a joint I
distribution over a sequence of T1.... 1) = plr H T, | T
variables using a Markov p(@1;. .., 27) = p(21) p(@e | 2e-1)
assumption t=2

* We canrepresent the Markov
model as a directed graphical
model

O—O——)

RNN asa DGM

UNDIRECTED GRAPHICAL MODELS

Three Types of Graphical Models

Directed Graphical Undirected Graphical

Factor Graph

Undirected Graphical Models

Representation of both directed and undirected graphical models

FACTOR GRAPHS

51

Three Types of Graphical Models

Directed Graphical Undirected Graphical

Factor Graph

Factor Graphs

Factor Graph
(bipartite graph)

* variables (circles)
 factors (squares)

' Factor Graphs

54

Factor Graphs

55

Factor Graphs

56

Factor Graphs

57

peanut butter

peanut butter

Factor Graphs

P(tuna, ice cream) = ?

chocolate

ice cream

58

Factor Graphs

P(tuna, 1ice cream) = %(6 *7%0.1)

Uh-oh! The probabilities of
the various assignments sum

peanut butter up to Z > 1.
So divide them all by Z.
tuna
chocolate 2 | 9 | 7 |o0.1
ice cream 7 | 3 2 | 01

peanut butter

59

How General Are Factor Graphs?

* Factor graphs can be used to describe
— Markov Random Fields (undirected graphical models)
— Conditional Random Fields
— Bayesian Networks (directed graphical models)

Factor Graph Notation

e Variables:
X = {)(1,...,)Y;,...

* Factors:

waawﬁaw”ya SR

where o, 3,7,... C{1,...n}

Joint Distribution

p(@) = -] Yala)

Factors are Tensors

* Def: the arity of a P ——
factor is the number | Jale8: VRID Bl
of neighbors ivsr - Vf‘f i
(variables) it has P 3[4
J..pp 1]2 |1
* Factors: s

waawﬁaw”yv'” o /d

where o, 8,7v,... C{1,...15

=
\m\<

* Def: a unary factor
touches one variables

* Def: a binary factor

touches two variables V|3

n| 4

* Def:aternary factor 5,
touches three dlo.1

variables time flies like an ari

Factors are Tensors

 Factors must contain
non-negative values --
this ensures we have a
valid probability
distribution

* We also sometimes
refer to factors as
potential functions or
potentials (like UGMs)

Joint Distribution

p(@) = - [vala)

time flies like an ari

Ex: Factor Graph over Binary Variables

v
ke 5:) U)iq) { : %&(a,\ﬁ A L ¢ _PABC('«,L,A
A (Y V|2 o 1 | 3 e o 2_
i © & ¢ S ' O |
i 5 5
?(A [I \ S
=a,B=b,C-c) = (a,h,) = V@) il
f 2 OO Y Obd 7 £ 2 2400
t-S(q c)
a b e /WA Vis w&ec s() P_()
O o O 2 i 6 43 43 %’/Z
o O | 2 3 2 1§ l6 /2
& | o |2 > 6 6/z
I z 2 S +7:9 70/z

=

64

Locally Normalized vs. Globally Normalized

Directed Graphical

Model Model

Undirected Graphical

Factor Graph

W W W

HP(Xt | parents(X;))

t=1

