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Reminders

* Homework 1: Generative Models of Text
— Out: Thu, Jan 25
— Due: Wed, Feb 7 at 11:59pm

* Homework 2: Generative Models of Images
— Out: Thu, Feb 8
— Due: Mon, Feb 19 at 11:59pm




U-NET



Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels
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Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf



* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf



Contracting path
* block consists of:

3x3 convolution
3x3 convolution
RelLU

max-pooling with stride of 2
(downsample)

* repeat the block N times,

doubling number of channels

Expanding path
* block consists of:

2x2 convolution (upsampling)

concatenation with
contracting path features

3x3 convolution
3x3 convolution
RelLU

* repeat the block N times,
halving the number of
channels

input
image
tile

U-Net
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* Originally designed
for applications to
biomedical
segmentation

* Key observation s
that the output
layer has the same
dimensions as the
iInput image
(possibly with
different number
of channels)

a

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).



UNSUPERVISED LEARNING



Unsupervised Learning

Assumptions:

1. our data comes from some distribution
q(xo)

2. we choose a distribution pg(x,) for which
sampling

X, ~ Po(X,) is tractable
Goal: learn 6 s.t. pg(X,) = q(X,)



Unsupervised Learning

Assumptions:

1. our data comes from some distribution
q(Xo)

2. we choose a distribution pg(x,) for which
sampling
X, ~ Po(X,) is tractable

Goal: learn 6 s.t. pg(X,) = q(X,)

Example: autoregressive LMs

true q(x,) is the (human) process that
produced text on the web

choose pg(x,) to be an autoregressive
language model

— autoregressive structure means that p(x
| x,, ..., X¢,) ~ Categorical(.) and ancestral
sampling is exact/efficiﬁnt

learn by finding ~—
0 = argmaxg log(pe(x
using gradient based updates on

Ve Iog(pe(xo))

=
5



Unsupervised Learning

Assumptions: Example: GANs

1. our data comes from some distribution * true q(x,) is distribution over photos taken
q(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose py(X,) to be an expressive model
sampling (e.g. noise fed into inverted CNN) that can
X, ~ Po(X,) is tractable generate images

Goal: learn 6 s.t. pg(X,) = q(X,) — sampling is typically easy:

, 2~ N(0, 1) and x, = fg(2)

learn by finding 6 = argmaxg log(pe(X,))?

D(x) — No! Because we can’t even compute
(real | image) . .
— log(pe(x,)) or its gradient

— Why not? Because the integral is

Discriminator

fake image

y J =log(1 - Dg(Go(2)))
(o] / \

D) intractable even for a simple 1-hidden
‘ Dy(x") . .
% ) / layer neural network with nonlinear
/ . .
realimage = T activation

o) = [ pao | 2p(e)d:

so optimize a minimax loss instead



Unsupervised Learning

Assumptions: Example: Diffusion Models

1. our data comes from some distribution * true q(x,) is distribution over photos taken
q(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose py(X,) to be an expressive model
sampling (e.g. noise fed into inverted CNN) that can
X, ~ Po(X,) is tractable generate images

Goal: learn 6 s.t. pg(X,) = q(X,) — sampling is will be easy

* learn by finding © = argmaxg log(pe(x,))?

— Sort of! We can’t compute the gradient

Ve log(pe(Xo))
— So we instead optimize a variational

g @ i @ e @ lower bound (more on that later)
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Figure from Ho et al. (2020)



(D—s(X) Latent Variable Models

Se(x | 2) p(2)
For GANs, we assume

that there are
(unknown) latent
variables which give
rise to our
observations

e The noise vector z are
those latent variables

* After learning a GAN,
we can interpolate
between images in
latent z space

Figure from Radford et al. (2016)
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Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.
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DIFFUSION MODELS



Diffusion Mod

» Next we will consider (1) diffusion mq The standard presentation

variational autoencoders (VAEs)
— Although VAEs came first, we’re going tc

models since they will receive more of o

* The steps in defining these models is
— Define a probability distribution involvin
— Use a variational lower bound as an obj

— Learn the parameters of the probaw
the objective function

e So what s a variational lower bound?

of diffusion models
requires an understanding
of variational inference.
(we’ll do that next time)

Today, we’ll do an
alternate presentation
without variational
inference!




Question:

Which are the latent variables in

a diffusion model?

Diffusion Model

Define a very simple forward process for adding noise to data:

T

ap(z11) = a(zo) | | ao(@s | 2e-1)

e\
t=1

where q(z) is the data distribution and g4 (x; | x;—1) is some sim-
ple/tractable distribution (e.g. Gaussian).

o 0 Q. .0
s N’ S \',’ *\',

A
Gp (@7 | 27-1) 4o (Tes1 | @) o (Tt | T1-1) q¢(x1 | z0)
The exact reverse process requires inference: xk \ MD
T F——L g0 o
Q¢(x1T —Q¢ T ]:I xt 1’37t M
— *I\ t\)‘/\u\

And, even though q4(x; | :—1) is simple, computing g, (x:—1 | z¢) is
intractable! Why? Because ¢(x() might be not-so-simple.



Diffusion Models

Whiteboard:

1.

N oV AW

probabilistic definition of diffusion model
(forward process and reverse process)

Gaussian conditionals for forward/reverse diffusion
analogy for learning diffusion model

. marginals of the forward process

learning by matching marginals with the reverse process

. training algorithms

sampling algorithms



