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Reminders

• Homework 1: Generative Models of Text
– Out: Thu, Jan 25
– Due: Wed, Feb 7 at 11:59pm

• Homework 2: Generative Models of Images
– Out: Thu, Feb 8
– Due: Mon, Feb 19 at 11:59pm
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U-NET
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Semantic Segmentation
• Given an image, 

predict a label for 
every pixel in the 
image

• Not merely a 
classification 
problem, because 
there are strong 
correlations between 
pixel-specific labels

4Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Instance Segmentation
• Predict per-pixel labels as 

in semantic segmentation, 
but differentiate between 
different instances of the 
same label

• Example: if there are two 
people in the image, one 
person should be labeled 
person-1 and one should 
be labeled person-2

5
Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf 



U-Net
Contracting path
• block consists of:

– 3x3 convolution
– 3x3 convolution
– ReLU
– max-pooling with stride of 2 

(downsample)
• repeat the block N times, 

doubling number of channels

Expanding path
• block consists of:

– 2x2 convolution (upsampling)
– concatenation with 

contracting path features
– 3x3 convolution
– 3x3 convolution
– ReLU

• repeat the block N times, 
halving the number of 
channels
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U-Net
• Originally designed 

for applications to 
biomedical 
segmentation

• Key observation is 
that the output 
layer has the same
dimensions as the 
input image 
(possibly with 
different number 
of channels)
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

q(x0)
2. we choose a distribution pθ(x0) for which 

sampling
x0 ~ pθ(x0) is tractable

Goal: learn θ s.t. pθ(x0) ≈ q(x0)
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

q(x0)
2. we choose a distribution pθ(x0) for which 

sampling
x0 ~ pθ(x0) is tractable

Goal: learn θ s.t. pθ(x0) ≈ q(x0)

Example: autoregressive LMs
• true q(x0) is the (human) process that 

produced text on the web
• choose pθ(x0) to be an autoregressive 

language model
– autoregressive structure means that p(xt

| x1, …, xt-1) ~ Categorical(.) and ancestral 
sampling is exact/efficient

• learn by finding 
θ ≈ argmaxθ log(pθ(x0))

using gradient based updates on 
∇θ log(pθ(x0))
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

q(x0)
2. we choose a distribution pθ(x0) for which 

sampling
x0 ~ pθ(x0) is tractable

Goal: learn θ s.t. pθ(x0) ≈ q(x0)

Example: GANs
• true q(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is typically easy:

z ~ N(0, I)  and x0 = fθ(z) 
• learn by finding θ ≈ argmaxθ log(pθ(x0))?

– No! Because we can’t even compute 
log(pθ(x0)) or its gradient

– Why not? Because the integral is 
intractable even for a simple 1-hidden 
layer neural network with nonlinear 
activation

11p(x0) =

∫
z

p(x0 | z)p(z)dz
so optimize a minimax loss instead



Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

q(x0)
2. we choose a distribution pθ(x0) for which 

sampling
x0 ~ pθ(x0) is tractable

Goal: learn θ s.t. pθ(x0) ≈ q(x0)

Example: Diffusion Models
• true q(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is will be easy

• learn by finding θ ≈ argmaxθ log(pθ(x0))?
– Sort of! We can’t compute the gradient  
∇θ log(pθ(x0))

– So we instead optimize a variational 
lower bound (more on that later)

12
Figure from Ho et al. (2020) 



Latent Variable Models
• For GANs, we assume 

that there are 
(unknown) latent 
variables which give 
rise to our 
observations

• The noise vector z are 
those latent variables

• After learning a GAN, 
we can interpolate
between images in 
latent z space

13
Figure from Radford et al. (2016)
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Diffusion Models
• Next we will consider (1) diffusion models and (2) 

variational autoencoders (VAEs)
– Although VAEs came first, we’re going to dive into diffusion 

models since they will receive more of our attention
• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing 

the objective function
• So what is a variational lower bound?
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The standard presentation 
of diffusion models 

requires an understanding 
of variational inference. 
(we’ll do that next time)

Today, we’ll do an 
alternate presentation 

without variational 
inference!



Diffusion Model
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The exact reverse process requires inference:

qφ(x1:T ) = qφ(xT )

T∏

t=1

qφ(xt−1 | xt)

And, even though qφ(xt | xt−1) is simple, computing qφ(xt−1 | xt) is
intractable! Why? Because q(x0)might be not‐so‐simple.

Answer:

Question:
Which are the latent variables in 
a diffusion model?

xT x0xt-1xt …xt+1…

qφ(xt | xt−1)qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

Define a very simple forward process for adding noise to data:

qφ(x1:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

where q(x0) is the data distribution and qφ(xt | xt−1) is some sim‐
ple/tractable distribution (e.g. Gaussian).



Diffusion Models
Whiteboard:
1. probabilistic definition of diffusion model 

(forward process and reverse process)
2. Gaussian conditionals for forward/reverse diffusion
3. analogy for learning diffusion model
4. marginals of the forward process
5. learning by matching marginals with the reverse process
6. training algorithms
7. sampling algorithms

17


