10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Diffusion Models

+
Variational Inference

Matt Gormley
Lecture 8
Feb. 12, 2024

Reminders

* Homework 2: Generative Models of Images
— Out: Thu, Feb 8
— Due: Mon, Feb 19 at 11:59pm

U-NET

Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf

* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf

Contracting path
* block consists of:

3x3 convolution
3x3 convolution
RelLU

max-pooling with stride of 2
(downsample)

* repeat the block N times,

doubling number of channels

Expanding path
* block consists of:

2x2 convolution (upsampling)

concatenation with
contracting path features

3x3 convolution
3x3 convolution
RelLU

* repeat the block N times,
halving the number of
channels

input
image
tile

U-Net

64 64

12¢ 64 2
> ole || OUtPUL

N A s segmentation

20 2 & 7 map

=»conv 3x3, RelLU
copy and crop

¥ max pool 2x2
| 4 up-conv 2x2
3 = cONv 1x1

* Originally designed
for applications to
biomedical
segmentation

* Key observation s
that the output
layer has the same
dimensions as the
iInput image
(possibly with
different number
of channels)

a

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

UNSUPERVISED LEARNING

Unsupervised Learning

Assumptions:

1. our data comes from some distribution
q(x,)

2. we choose a distribution pg(x,) for which
sampling x, ~ pg(X,) is tractable

Goal: learn O s.t. pg(x,) = q(x,)

Unsupervised Learning

Assumptions:

1.

our data comes from some distribution
q(x,)

we choose a distribution pg(x,) for which
sampling x, ~ pg(X,) is tractable

Goal: learn O s.t. pg(x,) = q(x,)

fl('r')]

| T\
L

T: p(w.}h.) T: p W;Y f =p(wylh,)
h, X
{

Example: autoregressive LMs

true gq(x,) is the (human) process that
produced text on the web

choose pg(x,) to be an autoregressive
language model

— autoregressive structure means that
p(x; | x,, ..., X¢,) ~ Categorical(.) and
ancestral sampling is exact/efficient

learn by finding

O = argmaxg log(pe(X,))
using gradient based updates on

Ve Iog(pe(xo))

Unsupervised Learning

Assumptions:

1. our data comes from some distribution .
q(x,)

2. we choose a distribution pg(x,) for which .

sampling x, ~ pg(X,) is tractable
Goal: learn O s.t. pg(x,) = q(x,)

Dy(x)

p(real | image)

y J=log(1 - Dg(Gu(2)))
0 / ¢\‘

7

VA
7 = 10g(Dy(x’))

Discriminator

fake image

X'~ pdata(')

®’

real image

Dy(x")

p(real | image)

y , /

so optimize a minimax loss instead

Example: GANs

true q(x,) is distribution over photos taken
and posted to Flikr

choose pg(x,) to be an expressive model
(e.g. noise fed into inverted CNN) that can
generate images
— sampling is typically easy:
z ~N(0, 1) and x, = fg(2)
learn by finding 6 = argmaxg log(pe(x,))?
— No! Because we can’t even compute
log(pe(x,)) or its gradient

— Why not? Because the integral is
intractable even for a simple 1-hidden
layer neural network with nonlinear
activation

o) = / p(xo | 2)p(z)dz

Unsupervised Learning

Assumptions: Example: Diffusion Models

1. our data comes from some distribution * true g(x,) is distribution over photos taken
q(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an expressive model
sampling x, ~ pg(X,) is tractable (e.g. noise fed into inverted CNN) that can

Goal: learn 0 s.t. pg(X,) = q(x,) generate images

— sampling is will be easy
* learn by finding © = argmaxg log(pe(x,))?

— Sort of! We can’t compute the gradient

Ve log(pe(x,))
— So we instead optimize a variational

po(xXe—1|xt)
>@ ; @ o 50 lower bound (more on that later)

Dovgg, e i | -
qixe|Xe—1) 9 | ~

Figure from Ho et al. (2020)

Latent Variable Models
{ () = SZ(\)(K\Z\?@&

* For GANs, we assume
that there are
(unknown) latent
variables which give
rise to our
observati

e Thenoise vector z are
thoselatent variables

* Afterlearning a GAN,
we can interpolate

between Im ag esin Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In

I d t en t Z5 p ace the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

13
Figure from Radford et al. (2016)

DIFFUSION MODELS

Diffusion Mod

» Next we will consider (1) diffusion mq The standard presentation

variational autoencoders (VAEs)
— Although VAEs came first, we’re going tc

models since they will receive more of o

* The steps in defining these models is
— Define a probability distribution involvin
— Use a variational lower bound as an obj

— Learn the parameters of the probaw
the objective function

e So what s a variational lower bound?

of diffusion models
requires an understanding
of variational inference.
(we’ll do that next time)

Today, we’ll do an
alternate presentation
without variational
inference!

Diffusion Model

pO(XT—l | XT) Pe(Xt | Xt+1) pe(Xt—l | Xt) pe(Xo \ X1)

Diffusion Model

pO(XT—l | XT) Pe(Xt | Xt+1) pe(Xt—l | Xt) pe(Xo \ X1)

Diffusion Model

po(Xxr_1 | X7) Po(Xt | Xeq1) Po(Xe—1 | X¢) Po(Xo | X1)

~ ’/ ~ ~N - ~ o - S o ~ -

o (X1 | X7-1) 0o (Xet1 | X¢) 9o (Xt | Xe—1) qs (X1 | X0)

\
== q(x0)

O

T T |
e = - s s S e e 5 5 s

ElEERTNENNS v
3 | | | A S T

5 O Y P P e e e e e

N

Figure from Ho et al. (2020)

Diffusion Model

po(xr_1 | x7) Po(Xt | Xep1) Do(Xe—1 | X¢) Po (X0 | X1)

N

Forward Process: M &]ﬁ cze RS ‘u>¥ qcl(li7 Viois, how Com ?e be
L ih‘iﬁs\") 01\'\) a,l?
qe(X1:7) = q(X0) H%(Xt | X¢—1) A Bl o(x) i wob tust A weie disk and
i1 ?Xo 1§ ol va | W > | o
"76 Mt CA?M Hoad M-k,gs(.p v«heala[7
(Learned) Reverse Process: ML Q. Yot i (xL_l \XD s Gevgiom W oo
T it Lo = O 1. r[;@(xo) 7 C((X°>?
po(X1.7) = po(X7) Hpg (x¢—1 | x¢) Weud Plke) be Grotsine foo!?
t=1 A No. Iv\ X, & 41msim V"lOAL\ &Y Qvggc_io—-‘”7 ﬂW)

'HMR S?m T Crm CG?‘I'VN 2«17 SVADO'\‘L\ *xg_d' cl\"y"ﬂlﬁ.)'!';‘m A

10N

iffusi

D

Model
Analogy

1.
~

Denoising Diffusion Probabilistic Model (DDPM)

po(xr—1 | x7) Po(X¢ | Xep1) Po(Xe—1 | X¢) Po (X0 | X1)

Po (XT)

Forward Process:

q(x¢) = data distribution

g (Xt | Xp—1) ~ N(Varxi—1, (1 — ay)T)

T
q¢ X1T —C]XOH Xt’th

(Learned) Reverse Process:
T

pQ(XT) ~ N(Ovl)

po(X1.7) = po(XT) tl;[lpé’(xt—l | xt) Po(Xt—1 | X¢) ~ N (po(x¢,t), Xo(x¢, 1))

Denoising Diffusion Probabilistic Model (DDPM)

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

q(x¢) = data distribution
G (Xt | Xe—1) ~ N(Varxi—1, (1 — a)T)

pQ(XT) ~ N(Ovl)
Po(Xt—1 | X¢) ~ N (po(x¢,t), Xo(x¢, 1))

Gaussian (an aside)
Let X NN(,LLx7O-:%) and Y NN(M?/7O-Z)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(Mw_Uyaaz"i‘U;)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

4. But #3 does not hold if X is passed through a nonlinear function f

WNN(Mz:f(X)aaf?u)#P(W|X)NN(’)

Properties of forward and exact reverse processes

Denoising Diffusion Probabilistic Model (DDPM)

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

§=1

D s s 1) jlicha) v N0, £2T)

1.0 — linear
0.8 -
. q(xo) = data distribution
804_ q¢(Xt ‘ Xt—l) NN(\/ atXt—la(]- _at)I)
0.2 -
0.01 _ | | | ' . Po (XT) ~ N(Ov I)
0.0 0.2 diff)f.jsmn stepCzi(/ST) 0.8 1.0 Do (Xt—l | Xt) e N(MQ (Xt7 t)? ZQ(Xt, t))

Properties of forward and exact reverse processes

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

.Pe(Xt—l |Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn ¥y (x;,t) just use what we

Later we will show that given a train-
know about g(x;_1 | x¢,%xg) ~ N(,021):

ing sample xq, we want

D t) = o1
el | 5 o(Xi,t) = 0,

to be as close as possible to Idea #2: Choose g based on ¢(x:—1 | x¢,Xg), i.e. we
want ug(x¢,t) to be close to fi,(x¢, X0). Here are
q(x¢—1 | X¢,X0) three ways we could parameterize this:

Option A: Learnanetwork thatapproximates i, (x;, Xo)

Intuitively, this makes sense: if the :
directly from x; and ¢:

learned reverse processis supposed

to subtract away the noise, then

) y the ~ 1o (x¢,t) = UNety(xy, t)
whenever we’re working with a spe-
cific xq it should subtract it away where t is treated as an extra feature in UNet

exactly as exact reverse process would
have.

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn Yy (x¢,?) just use what we

Later we will show that given a train- ,
know about ¢(x;_1 | x¢,%g) ~ N(,oi1):

ing sample xq, we want

¥ +) = o1
po(Xi_1 | %) o(X,t) = 0

to be as close as possible to Idea #2: Choose iy based on g(x;_1 | x¢,Xq), i.e. we
want g (x¢, t) to be close to i, (x¢, X0). Here are
q(X¢t—1 | X¢,%o) three ways we could parameterize this:

Option B: Learnanetworkthatapproximatesthe

Intuitively, this makes sense: if the
real xg from only x; and ¢:

learned reverse processis supposed
to subtract away the noise, then (0)_(0) (t)
whenever we’re working with a spe- o (Xe:t) = 07X (X1,) + g
cific xq it should subtract it away where xéo) (x¢,t) = UNetg(x¢, 1)
exactly as exact reverse process would

have.

Properties of forward and exact reverse processes

Property #1:

q(x¢ | x0) ~ N (Vauxo, (1 — ax)I) \

= we can sample x; from x4 at any timestep ¢
efficiently in closed

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/a{(= Oét)XO N \/ozi(= &t)xt
- e - e

(0)

t
= oy "X —|—a§)xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = y/ayxg + (1 — a;)e we have

that: r&/VD
X = (1 —ar)e) /vy

Substituting this definition of xy into property
#2’s definition of 1, gives:

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

pe(Xt—l | Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Idea #1: Rather than learn ¥y (x;,t) just use what we

know about ¢(x;_1 | x¢,%xg) ~ N{(,o21):

EQ(Xt,t) = 0'752]:

Idea #2: Choose g based on g(x;_1 | x¢,Xg), i.e. we

want pg(x¢, t) to be close to fi,(x¢,Xp). Here are
three ways we could parameterize this:

Option C: Learnanetworkthat approximatesthe
e that gave rise to x; from xg in the forward
process from x; and ¢:

to(xg,t) = a§0>x§0> (x¢,1) + ozit)xt

where X(QO) (x¢,t) = (xtJr (1 — e)eg(xs,t)) /v
where €y(x;,t) = UNetg(xy, t)

. Depending on which of
Learning the Reverse Process theoptionsfor
parameterization we pick,
we get a different
training algorithm.
Later we will show that given a train-

ing sample xp, we want Algorithm 1 Training (Option A, all timesteps)
1: initialize 0
Po(Xe—1 | %¢) 2 fore e {1,...,E}do

learned reverse processis supposed fig gg)X + a()

to subtract away the noise, then 0:(0) < ||jtg — Me(Xt,t)HQ
whenever we’re working with a spe- 10 0 <+ 60—V ZT 01 (0)
cific x¢ it should subtract it away i

to be as close as possible to 3: forzp € Ddo
4: for t €{l,..., T} do
5: == 'u’imunml__”"i"/)
10 o) 6: e ~N(0,1)
Intuitively, this makes sense: if the 7: X < Jarxo + /1 — age
8:
O:

exactly as exact reverse process would
have.

. Depending on which of
Learning the Reverse Process theoptionsfor
parameterization we pick,
we get a different
training algorithm.
Later we will show that given a train-

ing sample x(, we want Algorithm 1 Training (Option A)
1: initialize 0
Po(Xt—1 | %) . fore € {1,...,E}do

to be as close as possible to 3 forzp € Ddo

4 t ~ Uniform(1,...,T)
q(x:—1 | X¢,%0) 5 e~ N(0,1)
6 XtF\/C_VtXQ—l—\/].—C_ktE
Intuitively, this makes sense: if the 71 fig < ago)xo + oggt)xt
learned reverse processis supposed 8 0e(0) < || fig — po(xe,t)||?
to subtract away the noise, then 9 0+ 60— Vol (0)

whenever we’re working with a spe- X tg 17
cific xq it should subtract it away Q V\)\AT UR ST ove rle .
exactly as exact reverse process would \ §) inq X \
e~ ’X(g ,\,\/\Q 5 (L\A\m\? [‘])

ot Coff\(\v\‘“\Vel

Learning the Reverse Process

Later we will show that given a train-

Depending on which of
the options for
parameterization we pick,
we get a different
training algorithm.

ing sample xg, we want Algorithm 1 Training (Option B)
1: initialize 6
Po(Xe—1 | %¢) 2 fore e {1,...,E}do

3: forxg € Ddo

to be as close as possible to ,
t ~ Uniform(1,...,7T)

Q(Xt—l ‘ Xt7X0) €~ N(O_a I) _
X < /ouXo + 1 — o€

0:(8) « |Ixo — x (x4,)2
0 — 0 — Voly(6)

Intuitively, this makes sense: if the
learned reverse processis supposed

XN R

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Depending on which of

Learning the Reverse Process theoptonsfor
we get a different ’
training algorithm.

Later we will show that given a train-

ing sample xy, we want Algorithm 1 Training (Option C)
1: initialize 6
Po(Xe—1 | X¢) . fore € {1,.... E} do

to be as close as possible to 3 for zo € Ddo

4: t ~ Uniform(1,...,7T)
Q(Xt—l ‘ Xt7XO) > €~ N(07 I)

6: Xy — /ouXg + 1 — o€
Intuitively, this makes sense: if the 7: 04(0) + |le — eg(x. 1)||?
learned reverse process is supposed 8: 0 < 0 —Voli(0)
to subtract away the noise, then
whenever we’re working with a spe-
cific EO it shoutld subtract it away ’ Option C is the best
Egi; y as exact reverse process wou empirically

Training (Computation Graph)

A\

Sampling from the learned reverse process

po(Xxr_1 | X7) Po(Xt | Xeq1) Po(Xe—1 | X¢) Po (X0 | X1)

pe(XTQ

- Q(Xo)
Go(x7 | x7-1) qe(Xeqn [Xe) do(X¢ | Xe—1) q¢(x1 | Xo)
Algorithm 1 Sampling L A
11 X7 ~ pg(XT) / J)=
2: fort € }dO
3: Xt—1 ~ P\ Xt—1 ’ Xt)

4: return xg

Sampling from the learned reverse process

po(Xxr_1 | X7) Po(Xt | Xeq1) Po(Xe—1 | X¢) Po (X0 | X1)

Po (XT)

(X7 | X7-1) G (Xet1 | Xt) Qo(Xe | X¢—1) e (X1 | Xo)

Algorithm 1 Sampling
X7~ N(Ov I)
2: fort € {1,...,T}do
3 X1 ~ N(po(xe,1), Bo(xe, 1) =p Xy 7 M@Q@L]QJr é@é&é 1) €

4: return xg whe € Y /U(@)I)

39

Sampling from the learned reverse process

po(Xxr_1 | X7) Po(Xt | Xeq1) Po(Xe—1 | X¢) Po (X0 | X1)

Po (XT)

(X7 | X7-1) G (Xet1 | Xt) Qo(Xe | X¢—1) e (X1 | Xo)

Algorithm 1 Sampling (Option A)
1. X7 v N(O, I)
2 forte {1,...,T}do
3 e ~ N(0,1I)
4: X1 < po(x¢, 1) + o€
5: return xg

Sampling from the learned reverse process

po(Xxr_1 | X7) Po(Xt | Xeq1) Po(Xe—1 | X¢) Po (X0 | X1)

Po (XT)

(X7 | X7-1) G (Xet1 | Xt) Qo(Xe | X¢—1) e (X1 | Xo)

Algorithm 1 Sampling (Option B)
1. X7 N(O, I)
: fort € {1,...,T} do
3: e ~ N(0,1)
4: b aio)xéo) (x¢,1) + ozgt)xt
5: Xt—1 %llt+0t2€

6: return xg

Samplin/ggfrom the learned reverse process

po(xr_1 | x7) Po(Xt | Xep1) Do(Xe—1 | X¢) Po (X0 | X1)

Po (XT)

-_ _ SN L7 - -_ ~_.’ S . \‘-q(xo)
Qo (X1 | X7-1) Qo (Xet1 | X¢) qp (Xt | X¢—1) qe(x1 | X0)
‘§ % Algorithm 1 Sampling (Option C)
1. xp ~ N(0,1) g 9(K X, cl)(—
2: fort € {Nl,...,T} do Fe(xs - xuﬁr O ,'T) i
3: e ~N(0,1)
w0 e Gt (- a0 VA ok Gafo eskimle
~ ~ t
5 My < Qp "Xp + Qp X ~ D)
6: Xy 1 4 [L, +O7€ %T ? ™ %
7: return xg %% N (\)(XB'\XL\:\,

42

Unsupervised Learning

Assumptions: Example: Diffusion Models

1. our data comes from some distribution * true g(x,) is distribution over photos taken
q(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an expressive model
sampling x, ~ pg(X,) is tractable (e.g. noise fed into inverted CNN) that can

Goal: learn 0 s.t. pg(X,) = q(x,) generate images

— sampling is will be easy
* learn by finding © = argmaxg log(pe(x,))?

— Sort of! We can’t compute the gradient

Ve log(pe(x,))
— So we instead optimize a variational

po(xXe—1|xt)
>@ ; @ o 50 lower bound (more on that later)

Dovgg, e i | -
qixe|Xe—1) 9 | ~

Figure from Ho et al. (2020)

’P oKt IXbB

DDPM Objective Function ¢ "o

FLGD
' \ %é‘?\
E [~ log po(x0)] < E, [— log PoX0)] =E [log p(xr) — _log " Polxe-1pe) | _,
q(x1.7|%0) i>1 q(X¢|X¢—1)
L i]
L= K, [PKL(q(xT | p(x7)) +ZDKL (q(x¢—1]xt,%0) || po(xi— 1’Xt)) logp(?(x()‘le]
f/ P t>1 Lo, Lo
@A%\(This KL divergence tgrm L, 1@“ Yld ok
vt O wants the two conditional i
distributions to be as close as t-|
possible.

44
Equations from Ho et al. (2020)

KL DIVERGENCE

KL Divergence

* Definition: for two distributions q(x) and p(x) over x € X, the KL
Divergence is:

B q<x>_zq<> g 14
KL(q|Ip) = Bya) [bg@]{ I a(2) log 2

* Properties:
— KL(qg || p) measures the proximity of two distributions g and p
— KL is not symmetric: KL(q || p) # KL(p ||)
— KL is minimized when q(x) = p(x) forall x € X

q()

KL(qllp) = Eq(a) llogp(x)] KL DiVergence

Understanding the Behavior of KL as an objective function

Example 1: Keeping all else constant, consider the
effect of a particular x’ on KL(q || p)

’ y y)) effect on LG G e
T an T [aoemeoner | i
1 0.9 0.9

approximations

o) No increase or values that
have high
2 0.9 0.1 1.97 big increase probability in g
3 0.1 0.9 -0.21 little decrease KL does not insist
. on good
4 0.1 0.1 (0] little decrease approximations
or values that
have low

Example 2: Which q distribution minimizes KL(q || p)? probability in g

p=1[07] q®=7[13 q® = [0.7] q® = [o0.1 Q: If we’re minimizing KL,
0.3 1/3 0.9 o1 why not return q®3?

. ' ' A: Because it’s not a
_0'1] _1/3_ 0.1 0.1 distribution!

47

q(z)

KL(q||p) = Eqa) llogp(g;)] KL DiVergence

Understanding the Behavior of KL as an objective function

Example 3: Which q distribution minimizes KL(q || p)?

p(x) = N(p=1[0,0]",%)

g(z1,22) = Ni(z1 | pia, 07) N2 (22 | po, 03)

(\IV [\
o 1

48

VARIATIONAL DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)

Diffusion Models

* Next we will consider (1) diffusion models and (2)
variational autoencoders (VAEs)

— Although VAEs came first, we’re going to dive into diffusion
models since they will receive more of our attention

* The steps in defining these models is roughly:
— Define a probability distribution involving Gaussian noise
— Use a variational lower bound as an objective function

— Learn the parameters of the probability distribution by optimizing
the objective function

e So what s a variational lower bound?

