
Variational Autoencoders (VAEs)

1

10-423/10-623 Generative AI

Matt Gormley
Lecture 9

Feb. 14, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 2: Generative Models of Images
– Out: Thu, Feb 8
– Due: Tue, Feb 20 at 11:59pm

2

KL DIVERGENCE

3

Recall…

KL Divergence
• Definition: for two distributions q(x) and p(x) over x ∈ 𝒳, the KL

Divergence is:

• Properties:
– KL(q || p) measures the proximity of two distributions q and p
– KL is not symmetric: KL(q || p) ≠ KL(p || q)
– KL is minimized when q(x) = p(x) for all x ∈ 𝒳

4

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

=

{

∑

x
q(x) log q(x)

p(x)
∫

x
q(x) log q(x)

p(x)dx

Recall…

KL Divergence

5

Understanding the Behavior of KL as an objective function

Example 1: Keeping all else constant, consider the
effect of a particular x’ on KL(q || p)

x’ q(x’) p(x’) q(x’) log(q(x’)/p(x’)) effect on
KL(q || p)

1 0.9 0.9 0 no increase

2 0.9 0.1 1.97 big increase

3 0.1 0.9 -0.21 little decrease

4 0.1 0.1 0 little decrease

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

Example 2: Which q distribution minimizes KL(q || p)?

p 0.7
0.2
0.1

= q(1) 1/3
1/3
1/3

= q(2) 0.7
0.2
0.1

= q(3) 0.1
0.1
0.1

= Q: If we’re minimizing KL,
why not return q(3)?
A: Because it’s not a
distribution!

q(2) minimizes KL

KL does insist on
good

approximations
for values that

have high
probability in q

KL does not insist
on good

approximations
for values that

have low
probability in q

Recall…

KL Divergence

6

Understanding the Behavior of KL as an objective function

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

Example 3: Which q distribution minimizes KL(q || p)?

2
-2

2-2

2
-2

2-22
-2

2-2

2
-2

2-2

2
-2

2-2

p(x) = N (µ = [0, 0]T ,Σ)
q(x1, x2) = N1(x1 | µ1,σ

2

1)N2(x2 | µ2,σ
2

2)

Recall…

VARIATIONAL DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)

7

Diffusion Models
• Next we will consider (1) diffusion models and (2)

variational autoencoders (VAEs)
– Although VAEs came first, we’re going to dive into diffusion

models since they will receive more of our attention
• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing

the objective function
• So what is a variational lower bound?

8

HIGH-LEVEL INTRO TO VARIATIONAL
INFERENCE

9

Variational Inference

10

Problem:
– For observed variables x and latent variables z,

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

11

Problem:
– For observed variables x and latent variables z,

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Z1

ψ1

Z2

ψ3

Z3

ψ5

Z4

ψ7

Z5

ψ9
time likeflies an arrow

Z6

Z8

Z7

Z9

ψ1ψ1 ψ3ψ1 ψ3ψ1 ψ5ψ3ψ1 ψ7ψ5ψ3ψ1 ψ9ψ7ψ5ψ3ψ1 ψ9ψ7ψ5ψ3ψ1 ψ9ψ7ψ5ψ3ψ1 ψ7ψ5ψ3ψ1

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

12

Problem:
– For observed variables x and latent variables z,

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Solution:
– Approximate p(z | x) with a simpler q(z)
– Typically q(z) has more independence assumptions

than p(z | x) – fine b/c q(z) is tuned for a specific x
– Key idea: pick a single q(z) from some family Q that

best approximates p(z | x)

Variational Inference

13

Problem:
– For observed variables x and latent variables z,

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

14

Terminology:
– q(z): the variational approximation
– Q: the variational family
– Usually qθ(z) is parameterized by some θ called

variational parameters
– Usually pα(z | x) is parameterized by some fixed α –

we’ll call them the parameters

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Example Algorithms:
– mean-field variational inference
– loopy belief propagation
– tree-reweighted belief propagation
– expectation propagation

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

15

Is this trivial?
– Note: We are not defining a new distribution simple

qθ (z | x), there is one simple qθ(z) for each pα(z | x)
– Consider the MCMC equivalent of this:

• you could draw samples z(i)～p(z | x)
• then train some simple qθ(z) on z(1), z(2) ,…, z(N)

• hope that the sample adequately represents the posterior
for the given x

– How is VI different from this?
• VI doesn’t require sampling
• VI is fast and deterministic
• Why? b/c we choose an objective function (KL divergence)

that defines which qθ best approximates pα, and exploit
the special structure of qθ to optimize it

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

16

V.I. offers a new design decision
– Choose the distribution pα(z | x) that you really

want, i.e. don’t just simpify it to make it
computationally convenient

– Then design a the structure of another distribution
qθ(z) such that V.I. is efficient

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html

THE MEAN FIELD APPROXIMATION

17

Mean Field Approximation
The mean field approximation assumes our variational
approximation qθ(z) treats each variable as independent

18

Z1

ψ1

ψ2

Z2

ψ3

ψ4

Z3

ψ5

ψ6
Z4

ψ7

ψ8

Z5

ψ9

Z6

ψ10

Z7

ψ12

ψ11

Z1

q1 Z2

q2

Z3

q3 Z4

q4

Z5

q5

Z6

q6

Z7

q7

Ising Model

Mean Field Approximation
The mean field approximation assumes our variational
approximation qθ(z) treats each variable as independent

19

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Mean Field Approximation

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Approximate with q

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(original distribution)

Mean Field Approximation

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Document-specific
topic distribution

Topic assignment

Topic

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(mean field variational approximation)

MEAN FIELD VARIATIONAL INFERENCE

29

Two Cases for Intractability

Suppose we want to work with p(z|x)
• Case 1:

given a joint distribution p(x, z)

• Case 2:
give factor graph and potentials

30

we assume
p(x) is

intractable

we assume
Z(x) is

intractable

Mean Field Approximation
The mean field approximation assumes our variational
approximation qθ(z) treats each variable as independent

31

Z1

ψ1

ψ2

Z2

ψ3

ψ4

Z3

ψ5

ψ6
Z4

ψ7

ψ8

Z5

ψ9

Z6

ψ10

Z7

ψ12

ψ11

Z1

q1 Z2

q2

Z3

q3 Z4

q4

Z5

q5

Z6

q6

Z7

q7

Mean Field V.I. Overview
1. Goal: estimate pα(z | x)

we assume this is intractable to compute exactly
2. Idea: approximate with another distribution qθ(z) ≈ pα(z | x)

for each x
3. Mean Field: assume qθ(z) = ∏t qt(zt; θ)

i.e., we decompose over variables
other choices for the decomposition of qθ(z) give rise to
“structured mean field”

4. Optimization Problem: pick the q that minimizes KL(q || p)

5. Optimization Algorithm: coordinate descent
i.e. pick the best qt(zt) based on the other { qs(zs) }s≠t being fixed

32

equivalent

Z1

q1

Z1

q1

ZT

qT

…

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #1: Oh no! We can’t even compute this KL.

33

we assumed this
is intractable to

compute!

Why we can’t compute KL…

we have the same problem
with an intractable data

likelihood p(x) or an intractable
partition function Z(x)

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #1: Oh no! We can’t even compute this KL.

34

we assumed this
is intractable to

compute!

Why we can’t compute KL…

we have the same problem
with an intractable data

likelihood p(x) or an intractable
partition function Z(x)

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #2: We don’t need to compute this KL
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

35

Here is why…

dropping the
intractable term
gives the ELBO

The ELBO for a DGM

Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #2: We don’t need to compute this KL
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

36

Here is why…

dropping the
intractable term
gives the ELBO

The ELBO for a UGM

ELBO as Objective Function

What does maximizing ELBO(qθ) accomplish?

37

1. The first expectation is
high if qθ puts probability
mass on the same values
of z that pα puts
probability mass

2. The second term is the
entropy of qθ and the
entropy will be high if qθ
spreads its probability
mass evenly

ELBO as lower bound

• For a DGM:
– ELBO(q) is a lower bound for log p(x)

• For a UGM:
– ELBO(q) is a lower bound for log Z(x)

Takeaway: in variational inference, we find the q that gives the
tightest bound on the normalization constant for p(z | x)

38

39

ELBO’s relation to log p(x)
Theorem: Proof #2:

Proof #1:

Key Takeaway:

VARIATIONAL AUTOENCODERS

40

Why VAEs?

• Autoencoders:
– learn a low dimensional representation of the input, but hard to

work with as a generative model
– one of the key limitations of autoencoders is that we have no way

of sampling from them!

• Variational autoencoders (VAEs)
– by contrast learn a continuous latent space that is easy to sample

from!
– can generate new data (e.g. images) by sampling from the learned

generative model

41

Variational Autoencoders
Graphical Model Perspective
• The DGM diagram shows that the VAE model is

quite simple as a graphical model
(ignoring the neural net details that give rise to
x)

• Sampling from the model is easy:
– Consider a DGM where x = gɸ(z/10 + z/||z||)

(i.e. we don’t use parameters ɸ)
– Then we can draw samples of z and directly convert

them to values x
• Key idea of VAE: define gɸ(z) as a neural net and

learn ɸ from data

42
Figure from Doersch (2016)

ɸz

x

N

pɸ(x, z)

z ~ Gaussian(0, I)

Variational Autoencoders
Neural Network Perspective
• We can view a variational autoencoder (VAE) as an autoencoder

consisting of two neural networks
• VAEs (as encoders) define two distributions:

– encoder: qθ(z | x)
– decoder: pɸ(x | z)

• Parameters θ and ɸ are neural network parameters (i.e. θ are not the
variational parameters)

43

ɸz

x

N

pɸ(x | z) qθ(z | x)

θ

z

x

N

Variational Autoencoders
Graphical Model Perspective
• We can also view the VAE from the perspective of variational inference
• In this case we have two distributions:

– model: pɸ(z | x)
– variational approximation: qλ=f(x; θ)(z | x)

• We have the same model parameters ɸ
• The variational parameters λ are a function of NN parameters θ

44

ɸz

x

N

pɸ(x, z) qλ(z | x)

λ

z

x

N

z ~ Gaussian(0, I) λ = f(x; θ)

VAEs:
Neural

Network
View

45

VAEs:
Neural

Network
View

46

VAEs:
Neural

Network
View

47

Reparameterization Trick

49

Encoder
()

Decoder
()

Sample from

Encoder
()

Decoder
()

Sample from

*

+

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X)�D [Q(z|X)kP(z|X)]] =
EX⇠D [Ez⇠Q [log P(X|z)]�D [Q(z|X)kP(z)]] .

(8)
If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)�D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to

10

Figure from Doersch (2016)

VAE RESULTS

50

VAEs for Image Generation
Kingma & Welling (2014)
• introduced VAEs
• applied to image generation
Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is a multivariate

Gaussian with mean and
variance computed by an
MLP, fully connected neural
network with a single hidden
layer with parameters ɸ

• qθ(z | x) is a multivariate
Gaussian with diagonal
covariance structure and with
mean and variance computed
by an MLP with parameters θ

51
Figure from Kingma & Welling (2014)

VAEs for Image Generation

52
Figure from Kingma & Welling (2014)

VAEs for Image Generation

53
Figure from Kingma & Welling (2014)

VAEs for Image Generation

54
Figure from Kingma & Welling (2014)

VAEs for Text Generation
Bowman et al. (2015)
• example of an application of

VAEs to discrete data
• built on the sequence-to-

sequence framework:
– input is read in by an LSTM
– output is generated by an

LSTM-LM

Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is an LSTM Language

Model with parameters ɸ
• qθ(z | x) is a multivariate

Gaussian with mean and
variance computed by an
LSTM with parameters θ

55
Figure from Bowman et al. (2015)

VAEs for Text Generation

56
Figure from Bowman et al. (2015)

VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample

conditioned on it

58
Figure from van den Oord et al. (2018)

VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample

conditioned on it

59
Figure from van den Oord et al. (2018)

https://avdnoord.github.io/homepage/vqvae

Example: Generating Audio

https://avdnoord.github.io/homepage/vqvae

VQ-VAE

60
Figure from Razavi et al. (2019)

• VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

VQ-VAE

61
Figure from Razavi et al. (2019)

• VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

VQ-VAE
• VQ-VAE-2

extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

62
Figure from Razavi et al.
(2019)

VQ-VAE
• VQ-VAE-2

extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

63
Figure from Razavi et al.
(2019)

VQ-VAE
• VQ-VAE-2

extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

• Samples from
this new
model can be
convincing
even at high-
fidelity

64
Figure from Razavi et al.
(2019)

PROMPTING

66

Prompting
• Language models are trained to maximize the likelihood of

sequences in the training data
• Most condition on the previous tokens to generate the next

tokens

• Key idea behind prompting: provide a prefix string to the such
that its likely completion is the answer you want

67

Definition: An autoregressive language model defines a probability
distribution over sequences x1:T of the form:

p(x1:T) =
T∏

t=1

p(xt | x1, . . . , xt−1)

GPT-3 Example Output
Conditional
Sampling:
To draw a sample,
feed in a prompt
(i.e. context) and
then sample from
the model
conditioned on that
prompt

68

Context

Generated
Poem

Examples from GPT-3

What else can a large LM (attempt to) do?

Using the idea of
prompts, we can
apply LMs to a
variety of
different
problems in
natural language
processing.

In the zero-shot
setting, we
simply feed the
context to the
model and
observe how it
completes the
sequence. (i.e.
there is no
additional
training)

69

Answer fact-based questions:

Complete sentences logically:

Complete analogies:

Reading comprehension:

Examples from GPT-3

Prompting for Instruction Fine-tuned Models
• Models like ChatGPT,

Llama-2 Chat, etc.
have been fine-tuned
as chat assistants

• These (often) were
trained with specific
prompt templates
that segment the
prompt into different
parts: (1) system (2)
assistant (3) user

70
Prompt formats from https://github.com/BerriAI/litellm/blob/main/litellm/llms/prompt_templates/factory.py

[INST] <<SYS>>
You are a helpful AI assistant…
<</SYS>> [/INST]

[INST]
Organisms require energy in order to do what?
[/INST]

mature and develop

Instruction:

Instruction:
Organisms require energy in order to do what?

Response:
mature and develop

A
lp

ac
a

Ll
am

a-
2

Ch
at

sys:

asst:

user:

sys:

asst:

user:

https://github.com/BerriAI/litellm/blob/main/litellm/llms/prompt_templates/factory.py

Zero-shot LLMs
• GPT-2 (1.5B parameters)

for unsupervised
prediction on various
tasks

• GPT-2 models
p(output | input, task)
– translation: (translate to

french, english text,
french text)

– reading comprehension:
(answer the question,
document, question,
answer)

• Why does this work?

71
Figures from Radford et al. (2019)

Zero-shot LLMs
• GPT-2 (1.5B parameters)

for unsupervised
prediction on various
tasks

• GPT-2 models
p(output | input, task)
– translation: (translate to

french, english text,
french text)

– reading comprehension:
(answer the question,
document, question,
answer)

• Why does this work?

72
Figures from Radford et al. (2019)

IN-CONTEXT LEARNING

73

Few-shot
Learning
• Few-shot learning

can be done via in-
context learning

• Typically, a task
description is
presented first

• Then a sequence of
input/output pairs
from a training
dataset are
presented in
sequence

74
Figure from https://arxiv.org/pdf/2310.09881.pdf

Few-shot
In-context
Learning
• Few-shot learning can

be done via in-
context learning

• Typically, a task
description is
presented first

• Then a sequence of
input/output pairs
from a training
dataset are
presented in
sequence

75
Figure from http://arxiv.org/abs/2005.14165

Few-shot In-context Learning
In-context learning
can be sensitive to…
1. the order the

training examples
are presented

2. the balance of
labels (e.g. positive
vs. negative)

3. the number of
unique labels
covered

76
Figure from http://arxiv.org/abs/2104.08786

Few-shot In-context Learning
In-context learning can
be sensitive to…
1. the order the

training examples
are presented

2. the balance of
labels (e.g. positive
vs. negative)

3. the number of
unique labels
covered

77
Figure from https://aclanthology.org/2022.emnlp-main.622.pdf

Few-shot In-context Learning
In-context learning
can be sensitive to…
1. the order the

training examples
are presented

2. the balance of
labels (e.g. positive
vs. negative)

3. the number of
unique labels
covered

78
Figure from https://aclanthology.org/2022.emnlp-main.622.pdf

Few-shot In-context Learning
You would expect these
to be important…
1. whether or not the

training examples
have the true label
(as opposed to a
random one)

2. having more in-
context training
examples

…but it’s not always the
case

79
Figure from http://arxiv.org/abs/2202.12837

CHAIN-OF-THOUGHT PROMPTING

80

Chain-of-Thought Prompting
• Asking the model to reason about its answer can improve its performance for

few-shot in-context learning
• Chain-of-thought prompting provides such reasoning in the in-context

examples

81
Figure from http://arxiv.org/abs/2201.11903

Chain-of-Thought Prompting
• Asking the model to reason about its answer can improve its performance for

few-shot in-context learning
• Chain-of-thought prompting provides such reasoning in the in-context

examples

82
Figure from https://arxiv.org/pdf/2205.11916.pdf

• But the model
does better even if
you just prompt it
to reason step-by-
step

Chain-of-Thought Prompting
• Asking the model to reason about its answer can improve its performance for

few-shot in-context learning
• Chain-of-thought prompting provides such reasoning in the in-context

examples

83
Figure from https://arxiv.org/pdf/2205.11916.pdf

• But the model
does better even if
you just prompt it
to reason step-by-
step

84

