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Reminders

* Homework 2: Generative Models of Images
— Out: Thu, Feb 8
— Due: Tue, Feb 20 at 11:59pm




KL DIVERGENCE



KL Divergence

* Definition: for two distributions q(x) and p(x) over x € X, the KL
Divergence is:

B q<x>_zq<> g 14
KL(q|Ip) = Bya) [mg@]{ I a(2) log 2

* Properties:
— KL(qg || p) measures the proximity of two distributions g and p
— KL is not symmetric: KL(q || p) # KL(p || )
— KL is minimized when q(x) = p(x) forall x € X



q(z)

KL(q||p) = Eqa) llogp(x)] KL DiVergence

Understanding the Behavior of KL as an objective function

Example 1: Keeping all else constant, consider the
effect of a particular x’ on KL(q || p)

y effect on KL does insist
T Lo | omseer | s R
1 0.9 0.9

approximations

o) Nno increase or values that
have high
2 0.9 0.1 1.97 big increase probability in g
3 0.1 0.9 -0.21 little decrease KL does not insist
. on good
4 0.1 0.1 (0] little decrease approximations
or values that
have low

Example 2: Which q distribution minimizes KL(q || p)? probability in g

p=1[07] q®=7[13 q® = [0.7] q® = [o0.1 Q: If we’re minimizing KL,
0.3 1/3 0.9 o1 why not return q®3?

. ' ' A: Because it’s not a
_0'1 B _1/3_ 01 0.1 distribution!




q(z)

KL(q|[p) = Eqa) llogp(g;)] KL DiVergence

Understanding the Behavior of KL as an objective function

Example 3: Which q distribution minimizes KL(q || p)?

=N(u=1[0,07%
p(x) (1 =10,0] ) q(z1, z2) = N1 (21 | Ml,a%)Ng(:Ez | M2703>
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VARIATIONAL DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)



Diffusion Models

* Next we will consider (1) diffusion models and (2)
variational autoencoders (VAEs)

— Although VAEs came first, we’re going to dive into diffusion
models since they will receive more of our attention

* The steps in defining these models is roughly:
— Define a probability distribution involving Gaussian noise
— Use a variational lower bound as an objective function

— Learn the parameters of the probability distribution by optimizing
the objective function

e So what s a variational lower bound?



HIGH-LEVEL INTRO TO VARIATIONAL
INFERENCE



Variational Inference

Problem:

— For observed variables x and latent variables z,
estimating the posterior p(z | x) is intractable



https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

Problem:

— For observed variables x and latent variables z,
estimating the posterior p(z | x) is intractable

time flies like an arrow

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

Problem:

— For observed variables x and latent variables z,
estimating the posterior p(z | x) is intractable

— For training data x and parameters z, estimating the
posterior p(z | x) is intractable

<N\@%@

M

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

Problem:

— For observed variables x and latent variables z,
estimating the posterior p(z | x) is intractable

— For training data x and parameters z, estimating the
posterior p(z | x) is intractable

Solution:
— Approximate p(z | x) with a simpler q(z)

— Typically g(z) has more independence assumptions
than p(z | x) - fine b/c q(z) is tuned for a specific x

— Key idea: pick a single g(z) from some family Q that
best approximates p(z | x)


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

Terminology:
— d(z): the variational approximation
— Q: the variational family

— Usually gg(z) is parameterized by some 0 called
variational parameters

— Usually py(z | x) is parameterized by some fixed a —
we’ll call them the parameters

Example Algorithms:
— mean-field variational inference
— loopy belief propagation
— tree-reweighted belief propagation
— expectation propagation


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

Is this trivial?

— Note: We are not defining a new distribution simple
do (z | X), there is one simple qg(z) for each p,(z | x)
— Consider the MCMC equivalent of this:
* you could draw samples z()~p(z | x)
* then train some simple gg(z) on z(V, z®) ..., z(N)

* hope that the sample adequately represents the posterior
for the given x

— How is VI different from this?

* VI doesn’t require sampling
* Vlis fast and deterministic
* Why? b/c we choose an objective function (KL divergence)

that defines which gg best approximates p,, and exploit
the special structure of gg to optimize it


https://www.cs.jhu.edu/~jason/tutorials/variational.html

Variational Inference

V.l. offers a new design decision

— Choose the distribution p,(z | x) that you really
want, i.e. don’t just simpify it to make it
computationally convenient

— Then design a the structure of another distribution
do(z) such that V.l. is efficient

Narrative adapted from Jason Eisner’s High-Level Explanation of VI:


https://www.cs.jhu.edu/~jason/tutorials/variational.html

THE MEAN FIELD APPROXIMATION



Mean Field Approximation

The mean field approximation assumes our variational
approximation gg(z) treats each variable as independent

Pa(z | x) = H% Zc, X

cEC

(@) = [[ a0 Q
7



Mean Field Approximation

The mean field approximation assumes our variational
approximation qgg(z) treats each variable as independent

Ising Model

20(2) = [ a:(=)




Mean Field Approximation

Latent Dirichlet Allocation (LDA)

* Uncollapsed Variational Inference, aka. Explicit V.I.
(original distribution)

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word
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Mean Field Approximation

Latent Dirichlet Allocation (LDA)

* Uncollapsed Variational Inference, aka. Explicit V.I.
(mean field variational approximation)

Document-specific
topic distribution @ Topic
Topic assignment @




MEAN FIELD VARIATIONAL INFERENCE



Two Cases for Intractability

Suppose we want to work with p(z|x)

* Casert:
given a joint distribution p(x, z)

= p(z|x) = p(z, 2) we assume
p(z) p(x) is
e Case intractable
give factor graph and potentials
p(z, 2)
= p(z | x) = we assume
p(z| o) Z(x) Z(x)is

intractable



Mean Field Approximation

The mean field approximation assumes our variational
approximation gg(z) treats each variable as independent

Pa(z | x) = H% Zc, X

cEC

(@) = [[ a0 Q
7



Mean Field V.I. Overview

Goal: estimate py(z | x)
we assume this is intractable to compute exactly

Idea: approximate with another distribution qg(z) = p(z | X)
for each x

Mean Field: assume gg(2) = []; q:(z; ©) ? ? ?
i.e., we decompose over variables

other choices for the decomposition of qg(z) give rise to
“structured mean field”

Optimization Problem: pick the g that minimizes KL(q || p)

§(z) = argmin KL(q(z)|[p(z | x))
q(z)eQ
§ = argmin KL(go(2)[|pa(2 | X))
S
Optimization Algorithm: coordinate descent

i.e. pick the best qi(z;) based on the other { q,(z;) }s.: being fixed

'equivalent '
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Optimizing KL Divergence

Question: How do we minimize KL?

0 = argmin KL(qg(2) || pa(z | X)),

ASS)

Answer #1: Oh no! We can’t even compute this KL.

Why we can’t compute KL..

KL(g(2) || p(z] %)) = Foge [1og( (=

p
= Eq(z) [logq(z)] —
= Ey(z) [log q(z)
= Ey(z) [log q(z)

we have the same problem
with an intractable data

—F

9)

q(z)

likelihood p(x) or an intractable

partition function Z(x)

J

log p(z | x)]

- Eq(z) lo (X7 Z)] + Eg_(z) [logP(X)]
a(z) 108 (X, 2)] + log p(x)

J

we assumed this
is intractable to
compute!

33



Optimizing KL D

Question: How do we minimize KL?

6 = argmin
gco |

ivergence

KL(g0(2) || Pa(z | %))

Answer #1: Oh no! We can’t even compute this KL.

Why we can’t compute KL..

KL(g(2) || p(z] %)) = Byt [log( a(=

J

2

p(z
— Eq(z) _log Q(Z). — q(z) [lng(Z X)]
= Ey(z) [l0gq(z)] — Eq(z) [log 5(z | x)] + Ey(z) [log Z(x)]
= Ey(z) [log q(2)] — Eq(z)/logp(z | x)] —|—‘log Z(x?

we have the same problem
with an intractable data
likelihood p(x) or an intractable
partition function Z(x)

we assumed this J
is intractable to
compute!
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Optimizing KL Divergence

* Question: How do we minimize KL?

6 = argminKL(gs(2) || pa(z | x))
fco | Y /

* Answer #2: We don’t need to compute this KL -
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

ELBO(g9) = Eq, () [l0g pa(X,2)] — Eqgy(2) 108 g (2)]
The ELBO for a DGM

Here is why...

0 = argmin KL(go(2) || pa(z | x))

= arginin By, (,) 10g g9(2)] — Eq,(z) [log pa(x, 2)] + 10g pa(x)
L

J

= argmin E, ) [log go(z)| — Ey,(z) [logpa (X%, 2) }
0 dropping the

= argmax ELBO(qp) intractable term
0 gives the ELBO



Optimizing KL Divergence

* Question: How do we minimize KL?

6 = argminKL(gs(2) || pa(z | x))
fco | Y /

* Answer #2: We don’t need to compute this KL -
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

ELBO(g9) = Eqy(a) [l08Pa (2 | X)| — Ey,(z) [log go(2)]
The ELBO for a UGM

Here is why...

0 = argmin KL(go(2z) || pa(z | x))

= argmin Fy,(z) [108 46(2)] = Ey z) [l0g Pa (2 | x)] + log Za(x)
|

i

= argmin K, ) [log g9(z)] — Ey, (2) 108 Pa(z | X)] j
0 dropping the

= argmax ELBO(qyp) intractable term
0 gives the ELBO



ELBO as Objective Function

What does maximizing ELBO(qg) accomplish?

ELBO(qy) =

Ey, (z) [log Pa(X, Z)]

1. The first expectation is
high if gg puts probability
mass on the same values
of z that p, puts
probability mass

- qu(Z) [log qeo (Z)]

2. The second term is the
entropy of g and the
entropy will be high if gg
spreads its probability
mass evenly

37



ELBO as lower bound

* Fora DGM:
— ELBO(q) is a lower bound for log p(x)

* Fora UGM:
— ELBO(q) is a lower bound for log Z(x)

Takeaway: in variational inference, we find the g that gives the
tightest bound on the normalization constant for p(z | x)



ELBO’s relation to log p(x)

Theorem: Proof #2:

7Qr Wu] 4. F(x) ELBG(@ D oy ?(x): KL(«LH?) + ELBo(cL)

@D KLlp) 20 (wibot praf)
l-e. L (s UMJ z ? F

Proof #1:

Recll Semct Tugpullys S(EDD) 2 EJFWT) R coneme §
oy 2() = log S, P(X ds (megacl) Key Takeaway:

]S ?\xﬂ@g wolt. \77 1) "“i‘*‘“f&"y KL 6 e sama as

S:‘A‘f) o Hlt EBOW) |ower bowd S layo(x
WL ] (S o } ‘ ¢

- x2) e .

- Ei(z)i'oj(‘%—{(;)\z <"°7 N I"Ul\

- Cz@)i"’) t’(x'a] - g?(z)ilﬁz(z)—& = E—LBO({)
=5 (o) f)(x) z ELBO(Y)
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VARIATIONAL AUTOENCODERS



Why VAES?

e Autoencoders:

— learn a low dimensional representation of the input, but hard to
work with as a generative model

— one of the key limitations of autoencoders is that we have no way
of sampling from them!
* Variational autoencoders (VAEs)

— by contrast learn a continuous latent space that is easy to sample
from!

— can generate new data (e.g. images) by sampling from the learned
generative model

41



Variational Autoencoders

Graphical Model Perspective
pgb(xa Z) P P

.

z ~ Gaussian(0, 1)

Figure from Doersch (2016)

The DGM diagram shows that the VAE model is
quite simple as a graphical model

(i)gnoring the neural net details that give rise to
X

Sampling from the model is easy:

— Consider a DGM where x = g4(z/10 + Z/||2]|)
(i.e. we don’t use parameters

— Then we can draw samples of z and directly convert
them to values x
Key idea of VAE: define g(z) as a neural net and
learn ¢ from data




Variational Autoencoders

Neural Network Perspective

* We can view a variational autoencoder (VAE) as an autoencoder
consisting of two neural networks

* VAEs (as encoders) define two distributions:
— encoder: gg(z | x)
— decoder: py(x | z)

* Parameters 0 and ¢ are neural network parameters (i.e. 8 are not the
variational parameters)

py(x | 2) qo(z | X)




Variational Autoencoders

Graphical Model Perspective

* We can also view the VAE from the perspective of variational inference
* In this case we have two distributions:
— model: py(z | x)
— variational approximation: q;_¢; e)(z | X)
*  We have the same model parameters ¢
* The variational parameters A are a function of NN parameters 6

Py(X, 2) 4z | x)

N N\@

z ~ Gaussian(0, 1) A =f(x; 0)




VAEs:
Neural
Network
View
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VAEs:
Neural
Network
View
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VAEs:
Neural
Network
View
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Reparameterization Trick

IX — f(2)]? ]

f(2)

Decoder
(P)

A

1X — f(2)|? |

f(2)

"S(X))[IN(0,1)]] | Decoder

Encoder

Q)

Encoder

(Q)

(P)

‘Sammeeﬂomﬂfm.ﬁ

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

Figure from Doersch (2016)
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VAE RESULTS



VAEs for Image Generation

Kingma & Welling (2014)
 introduced VAEs

Auto-Encoding Variational Bayes

* applied to image generation Dicder . Kinga Vi Wling

Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
IVIO e dpkingma@gmail.com welling.max@gmail.com

. N(z; o, |
p ¢(Z) ~ (Z’ O ) ) Abstract
1 m { 1 H rform efficient inf d learning in directed probabilisti
¢ p ¢(X | Z) I S a U It I V a rl a t e m?):ivelzz,ir;nwtflep;recs):llc: ofc lci)riltilrl:u?)fjesnf;ei[: Vafia:t?;:sg vl/rllth ;L?aitalp),;: p?)slte::i(l)i

distributions, and large datasets? We introduce a stochastic variational inference

Ld o

G a u S S I a n W I t h m e a n a n d and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is

M two-fold. First, we show that a reparameterization of the variational lower bound

V a rl a n C e C O m p u t e d b y a n yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with

continuous latent variables per datapoint, posterior inference can be made espe-

M L P) fu l ly C O n n e Ct e d n e u ra l cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.

n etWO rk Wit h a S i n gl e h i d d e n Theoretical advantages are reflected in experimental results.

layer with parameters ¢

* ge(z | x)is a multivariate
Gaussian with diagonal
covariance structure and with
mean and variance computed
by an MLP with parameters 0

Figure from Kingma & Welling (2014)



VAEs for Image Generation

— 1000

-100 : hmn : -125 . tram = 50000

—-130

T
1

—=110f

— Wake-Sleep (train)
- = Wake-Sleep (test)
—  MCEM (train)

- = MCEM (test)

- AEVB (train)

- - AEVB (test)

-135
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1 -150

Marginal log-likelihood

| | | |
= — — —
w S w N
o o o o
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0

0 10 20 30 40 50 60
# Training samples evaluated (millions)

Figure 3: Comparison of AEVB to the wake-sleep algorithm and Monte Carlo EM, in terms of the
estimated marginal likelihood, for a different number of training points. Monte Carlo EM is not an
on-line algorithm, and (unlike AEVB and the wake-sleep method) can’t be applied efficiently for
the full MNIST dataset.

Figure from Kingma & Welling (2014)
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.

Figure from Kingma & Welling (2014)
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VAEs for Image Generation
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space
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Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.
Figure from Kingma & Welling (2014)



VAEs for Text Generation

Bowman et al. (2015) Model
« example of an applicationof ~ * pg(z) ~N(z; o, 1)
VAEs to discrete data * py(x|z)isan LSTM Language
* built on the sequence-to- odel with parameters ¢
sequence framework: o qe(z I X) is a multivariate
— inputisreadinbyan LSTM Gaussian with mean and
— output is generated by an variance computed by an
LSTM-LM LSTM with parameters 6

RNNs work <EOS>
t t ¢

Decoding Decoding | | Decoding
LSTM  |~LSTM [+ LSTM
Cell Cell Cell

f f t

RNNs work <E0S> RNNs work

Figure 1: The core structure of our variational au-
toencoder language model. Words are represented
using a learned dictionary of embedding vectors.

Figure from Bowman et al. (2015)
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VAEs for Text Generation

INPUT
MEAN

SAMP. 1
SAMP. 2
SAMP. 3

we looked out at the setting sun .
they were laughing at the same time .

ill see you in the early morning .
i looked up at the blue sky .
it was down on the dance floor .

i went to the kitchen .
1 went to the kitchen .

1 went to my apartment .
i looked around the room .
i turned back to the table .

how are you doing ?
what are you doing ?

“ are you sure ?

what are you doing ?
what are you doing ?

Table 7: Three sentences which were used as inputs to the VAE, presented with greedy decodes from the

mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“t want to be with you . ”

“ do n’t want to be with you .
i do n’t want to be with you .
she did n’t want to be with him .

»

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Table 8: Paths between pairs of random points in
VAE space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

Figure from Bowman et al. (2015)
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VQ-VAE

* Vector Quantized VAE (VQ-VAE) learns a continuous
codebook, but the encoder outputs discrete codes

* Decoder takes a code and generates a sample
conditioned on it

e, e,e, e,
Embedding
Space

CNN | y— e p(xiz,)

zq(x) e, v.L

z,(x)

2,0~ q(zx)

<
re

Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point eo. The gradient V , L (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

Figure from van den Oord et al. (2018)
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VQ-VAE

* Vector Quantized VAE (VQ-VAE) learns a continuous
codebook, but the encoder outputs discrete codes

* Decoder takes a code and generates a sample
conditioned on it

Example: Generating Audio

Discrete

VQ latents
— J Condition
—1
Encoder / € »
Downsample 64x ———————— WaveNet
| Decoder

=\ [ e
L g

Figure from van den Oord et al. (2018)
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https://avdnoord.github.io/homepage/vqvae

¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

VQ-VAE

VQ-VAE Encoder and Decoder Training

Oeynd

(a) Overview of the architecture of our hierarchical
VQ-VAE. The encoders and decoders consist of
deep neural networks. The input to the model is a
256 x 256 image that is compressed to quantized
latent maps of size 64 x 64 and 32 x 32 for the
bottom and top levels, respectively. The decoder
reconstructs the image from the two latent maps.

Figure from Razavi et al. (2019)

(b) Multi-stage image generation. The top-level

PixelCNN prior is conditioned on the class label,

the bottom level PixelCNN is conditioned on the
class label as well as the first level code. Thanks
to the feed-forward decoder, the mapping between
latents to pixels is fast. (The example image with
a parrot is generated with this model).

60



¢ VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
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Figure 4: Class conditional random samples. Classes from the top row are: 108 sea anemone, 109
. . brain coral, 114 slug, 11 goldfinch, 130 flamingo. 141 redshank, 154 Pekinese, 157 papillon, 97
Flgure from Razavi et al. (2019) drake, and 28 spotted salamander.
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