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Reminders

• Homework 2: Generative Models of Images
– Out: Thu, Feb 8
– Due: Tue, Feb 20 at 11:59pm
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KL DIVERGENCE
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Recall…



KL Divergence
• Definition: for two distributions q(x) and p(x) over x ∈ 𝒳, the KL 

Divergence is: 

• Properties:
– KL(q || p) measures the proximity of two distributions q and p
– KL is not symmetric: KL(q || p) ≠ KL(p || q) 
– KL is minimized when q(x) = p(x) for all x ∈ 𝒳
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KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

=

{

∑

x
q(x) log q(x)

p(x)
∫

x
q(x) log q(x)

p(x)dx

Recall…



KL Divergence
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Understanding the Behavior of KL as an objective function

Example 1: Keeping all else constant, consider the 
effect of a particular x’ on KL(q || p)

x’ q(x’) p(x’) q(x’) log(q(x’)/p(x’)) effect on 
KL(q || p)

1 0.9 0.9 0 no increase

2 0.9 0.1 1.97 big increase

3 0.1 0.9 -0.21 little decrease

4 0.1 0.1 0 little decrease

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

Example 2: Which q distribution minimizes KL(q || p)?

p 0.7
0.2
0.1

= q(1) 1/3
1/3
1/3

= q(2) 0.7
0.2
0.1

= q(3) 0.1
0.1
0.1

= Q: If we’re minimizing KL, 
why not return q(3)?
A: Because it’s not a 
distribution!

q(2) minimizes KL

KL does insist on 
good 

approximations 
for values that 

have high 
probability in q

KL does not insist 
on good 

approximations 
for values that 

have low 
probability in q

Recall…



KL Divergence

6

Understanding the Behavior of KL as an objective function

KL(q||p) = Eq(x)

[

log
q(x)

p(x)

]

Example 3: Which q distribution minimizes KL(q || p)?

2
-2

2-2

2
-2

2-22
-2

2-2

2
-2

2-2

2
-2

2-2

p(x) = N (µ = [0, 0]T ,Σ)
q(x1, x2) = N1(x1 | µ1,σ

2

1)N2(x2 | µ2,σ
2

2)

Recall…



VARIATIONAL DIFFUSION MODELS AND
VARITIONAL AUTOENCODERS (VAES)
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Diffusion Models
• Next we will consider (1) diffusion models and (2) 

variational autoencoders (VAEs)
– Although VAEs came first, we’re going to dive into diffusion 

models since they will receive more of our attention
• The steps in defining these models is roughly:
– Define a probability distribution involving Gaussian noise
– Use a variational lower bound as an objective function
– Learn the parameters of the probability distribution by optimizing 

the objective function
• So what is a variational lower bound?
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HIGH-LEVEL INTRO TO VARIATIONAL 
INFERENCE

9



Variational Inference
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Problem:
– For observed variables x and latent variables z, 

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the 

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html
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Variational Inference
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Problem:
– For observed variables x and latent variables z, 

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the 

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
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Variational Inference
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Problem:
– For observed variables x and latent variables z, 

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the 

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
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Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the
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Solution:
– Approximate p(z | x) with a simpler q(z)
– Typically q(z) has more independence assumptions 

than p(z  | x) – fine b/c q(z) is tuned for a specific x
– Key idea: pick a single q(z) from some family Q that 

best approximates p(z | x) 

Variational Inference

13

Problem:
– For observed variables x and latent variables z, 

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the 

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference
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Terminology:
– q(z): the variational approximation
– Q: the variational family
– Usually qθ(z) is parameterized by some θ called 

variational parameters 
– Usually pα(z | x) is parameterized by some fixed α – 

we’ll call them the parameters 

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

Example Algorithms:
– mean-field variational inference
– loopy belief propagation
– tree-reweighted belief propagation
– expectation propagation

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference
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Is this trivial?
– Note: We are not defining a new distribution simple 

qθ (z | x), there is one simple qθ(z) for each pα(z | x) 
– Consider the MCMC equivalent of this:

• you could draw samples z(i)～p(z | x) 
• then train some simple qθ(z) on z(1), z(2) ,…, z(N) 

• hope that the sample adequately represents the posterior 
for the given x 

– How is VI different from this?
• VI doesn’t require sampling
• VI is fast and deterministic
• Why? b/c we choose an objective function (KL divergence) 

that defines which qθ best approximates pα, and exploit 
the special structure of qθ to optimize it

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Variational Inference
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V.I. offers a new design decision
– Choose the distribution pα(z | x) that you really 

want, i.e. don’t just simpify it to make it 
computationally convenient

– Then design a the structure of another distribution 
qθ(z) such that V.I. is efficient

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


THE MEAN FIELD APPROXIMATION
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Mean Field Approximation
The mean field approximation assumes our variational 
approximation qθ(z) treats each variable as independent
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Ising Model

Mean Field Approximation
The mean field approximation assumes our variational 
approximation qθ(z) treats each variable as independent
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Mean Field Approximation
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c=1 ⇥cxPV
v=1
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c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}
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For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]
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2.2 IBP
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For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]
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✓m � Dir(↵) [draw distribution over topics]
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The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the
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Dirichlet

Document-specific 
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Approximate with q 

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(original distribution)



Mean Field Approximation
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Topic assignment

Topic

Latent Dirichlet Allocation (LDA)
• Uncollapsed Variational Inference, aka. Explicit V.I.

(mean field variational approximation)



MEAN FIELD VARIATIONAL INFERENCE
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Two Cases for Intractability

Suppose we want to work with p(z|x)
• Case 1:

given a joint distribution p(x, z)

• Case 2:
give factor graph and potentials

30

we assume 
p(x) is 

intractable

we assume 
Z(x) is 

intractable



Mean Field Approximation
The mean field approximation assumes our variational 
approximation qθ(z) treats each variable as independent
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Mean Field V.I. Overview
1. Goal: estimate pα(z | x) 

we assume this is intractable to compute exactly
2. Idea: approximate with another distribution qθ(z) ≈ pα(z | x) 

for each x 
3. Mean Field: assume qθ(z) = ∏t qt(zt; θ)

i.e., we decompose over variables
other choices for the decomposition of qθ(z) give rise to 
“structured mean field”

4. Optimization Problem: pick the q that minimizes KL(q || p)

5. Optimization Algorithm: coordinate descent
i.e. pick the best qt(zt) based on the other { qs(zs) }s≠t being fixed

32
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Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #1: Oh no! We can’t even compute this KL. 

33

we assumed this 
is intractable to 

compute!

Why we can’t compute KL…

we have the same problem 
with an intractable data 

likelihood p(x) or an intractable 
partition function Z(x) 



Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #1: Oh no! We can’t even compute this KL. 

34

we assumed this 
is intractable to 

compute!

Why we can’t compute KL…

we have the same problem 
with an intractable data 

likelihood p(x) or an intractable 
partition function Z(x) 



Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #2: We don’t need to compute this KL
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

35

Here is why…

dropping the 
intractable term 
gives the ELBO

The ELBO for a DGM



Optimizing KL Divergence
• Question: How do we minimize KL?

• Answer #2: We don’t need to compute this KL
We can instead maximize the ELBO (i.e. Evidence Lower BOund)

36

Here is why…

dropping the 
intractable term 
gives the ELBO

The ELBO for a UGM



ELBO as Objective Function

What does maximizing ELBO(qθ) accomplish?

37

1. The first expectation is 
high if qθ puts probability 
mass on the same values 
of z that pα puts 
probability mass

2. The second term is the 
entropy of qθ and the 
entropy will be high if qθ 
spreads its probability 
mass evenly



ELBO as lower bound

• For a DGM:
– ELBO(q) is a lower bound for log p(x)

• For a UGM:
– ELBO(q) is a lower bound for log Z(x)

Takeaway: in variational inference, we find the q that gives the 
tightest bound on the normalization constant for p(z | x)

38
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ELBO’s relation to log p(x)
Theorem: Proof #2:

Proof #1:

Key Takeaway:



VARIATIONAL AUTOENCODERS
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Why VAEs?

• Autoencoders:
– learn a low dimensional representation of the input, but hard to 

work with as a generative model
– one of the key limitations of autoencoders is that we have no way 

of sampling from them!

• Variational autoencoders (VAEs)
– by contrast learn a continuous latent space that is easy to sample 

from!
– can generate new data (e.g. images) by sampling from the learned 

generative model

41



Variational Autoencoders
Graphical Model Perspective
• The DGM diagram shows that the VAE model is 

quite simple as a graphical model 
(ignoring the neural net details that give rise to 
x)

• Sampling from the model is easy:
– Consider a DGM where x = gɸ(z/10 + z/||z||)

(i.e. we don’t use parameters ɸ)
– Then we can draw samples of z and directly convert 

them to values x
• Key idea of VAE: define gɸ(z) as a neural net and 

learn ɸ from data

42
Figure from Doersch (2016)
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pɸ(x, z) 
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Variational Autoencoders
Neural Network Perspective
• We can view a variational autoencoder (VAE) as an autoencoder 

consisting of two neural networks
• VAEs (as encoders) define two distributions:

– encoder: qθ(z | x)
– decoder: pɸ(x | z) 

• Parameters θ and ɸ are neural network parameters (i.e. θ are not the 
variational parameters)

43
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Variational Autoencoders
Graphical Model Perspective
• We can also view the VAE from the perspective of variational inference
• In this case we have two distributions:

– model: pɸ(z | x) 
– variational approximation: qλ=f(x; θ)(z | x)

• We have the same model parameters ɸ
• The variational parameters λ are a function of  NN parameters θ

44

ɸz
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pɸ(x, z) qλ(z | x)

λ

z
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z ~ Gaussian(0, I) λ = f(x; θ)



VAEs: 
Neural 

Network 
View
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VAEs: 
Neural 

Network 
View
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VAEs: 
Neural 

Network 
View
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Reparameterization Trick

49

Encoder 
(   ) 

Decoder 
(   ) 

Sample    from 

Encoder 
(   ) 

Decoder 
(   ) 

Sample    from 

* 

+ 

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X)�D [Q(z|X)kP(z|X)]] =
EX⇠D [Ez⇠Q [log P(X|z)]�D [Q(z|X)kP(z)]] .

(8)
If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)�D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to

10

Figure from Doersch (2016)



VAE RESULTS
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VAEs for Image Generation
Kingma & Welling (2014)
• introduced VAEs
• applied to image generation
Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is a multivariate 

Gaussian with mean and 
variance computed by an 
MLP,  fully connected neural 
network with a single hidden 
layer with parameters ɸ

• qθ(z | x) is a multivariate 
Gaussian with diagonal 
covariance structure and with 
mean and variance computed 
by an MLP with parameters θ

51
Figure from Kingma & Welling (2014)



VAEs for Image Generation

52
Figure from Kingma & Welling (2014)



VAEs for Image Generation

53
Figure from Kingma & Welling (2014)



VAEs for Image Generation
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VAEs for Text Generation
Bowman et al. (2015)
• example of an application of 

VAEs to discrete data
• built on the sequence-to-

sequence framework:
– input is read in by an LSTM
– output is generated by an 

LSTM-LM

Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is an LSTM Language 

Model with parameters ɸ
• qθ(z | x) is a multivariate 

Gaussian with mean and 
variance computed by an 
LSTM with parameters θ

55
Figure from Bowman et al. (2015)



VAEs for Text Generation
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Figure from Bowman et al. (2015)



VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous 

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample 

conditioned on it

58
Figure from van den Oord et al. (2018)
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https://avdnoord.github.io/homepage/vqvae

Example: Generating Audio

https://avdnoord.github.io/homepage/vqvae


VQ-VAE
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Figure from Razavi et al. (2019)

• VQ-VAE-2 
extended the 
original idea 
by learning 
two levels 
(bottom and 
top) and a 
strong prior 
over the latent 
space

• Samples from 
this new 
model can be 
convincing 
even at high-
fidelity
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