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Agenda

- In context learning, COT

-  LoRA

- Instruction Fine Tuning

- Code Walkthrough and Implementation Details
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Learning from Small Data

How can we learn from a small amount of data?
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Learning from Small Data

How can we learn from a small amount of data?

Few-Shot learning

Zero-Shot learning
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What is Few-Shot Learning?
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What is Few-Shot Learning?
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What is ZERO-Shot Learning?
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What is ZERO-Shot Learning?

?
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How to Approach Few-Shot Learning?
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How to Approach Few-Shot Learning?

One Answer: Meta Learning

10

Carnegie
Mellon
University



What is Meta Learning?
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What is Meta Learning?

Learning to Learn?
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What is Meta Learning?

Learning to Learn?
Optimize Few-Shot Learning Performance
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What is Meta Learning?

Learning to Learn?
Optimize Few-Shot Learning Performance

Train input example
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What is Meta Learning?

Learning to Learn?
Optimize Few-Shot Learning Performance

Train input example

Train target
example

= (Cat
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How Can We Solve This Problem?

Train input example
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Train target
example

= (Cat
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How Can We Solve This Problem?

One Answer: Treat Like Regular
Supervised Learning

Train input example

Train target
example

= (Cat
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How Can We Solve This Problem?

One Answer: Treat Like Regular
Supervised Learning

Train input example

Tranformer/ Train target

RNN example

— Cat
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What is In-Context Learning?
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What is In-Context Learning?

Cat Cat

LLM
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Cat
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What is In-Context Learning?

LLMs “know how to learn” even though we didn't “learn to learn”!

Cat Cat

=) Cat
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Can We Improve In-Context Learning Using Prompt
Engineering?

LLM

= Cat
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Can We Improve In-Context Learning Using Prompt

Engineering?
Cat Cat Dog
Catbecause pecause because because
stripés  whiskers nose eyes ?

| LLM Cat
— because

eyes
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Can We Improve In-Context Learning Using Prompt

Engineering?
“Chain-of-thought prompting”
Cat Cat Dog
Catbecause pecause because because
stripés  whiskers nose eyes ?
LLM Cat
— because
eyes
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Can We Improve In-Context Learning Using Prompt
Engineering?

“Chain-of-thought
prompting”
(a better example)
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Can We Improve In-Context Learning Using Prompt

Engineering?

“Chain-of-thought
prompting”

(a better example) -

Standard Prompting

P
| Model Input | ~

Q: Roger has 5 tennis balls. He buys 2 more cans of “

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

~ Model Output
(
l\ A: The answer is 27. x

. do they have?

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

/

A: The cafeteria had 23 apples originally. They used ’

20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

| answeris 9. ¢
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Problem with Few-Shot Learning:
Context is Expensive
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Problem with Few-Shot Learning:
Context is Expensive

We can improve zero-shot learning with prompt engineering
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Problem with Few-Shot Learning:
Context is Expensive

We can improve zero-shot learning with prompt engineering

(c) Zero-shot (d) Zero-shot-CoT (Ours)

/Q: A juggler can juggle 16 balls. Half of the balls are golf balls,\ /" Q: A juggler can juggle 16 balls. Half of the balls are golf balls, \
and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are
there? there?

A: The answer (arabic numerals) is A: Let’s think step by step.
(Output) 8 X (Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls

\ j Qre blue. That means that there are 4 blue golf balls. v /
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Adapting LLMs for Specific Tasks using Fine Tuning

Although pre-trained language models like GPT possess vast language knowledge, they lack
specialization in specific areas.

Fine-tuning addresses this limitation by allowing the model to learn from domain-specific
data to make it more accurate and effective for targeted applications.
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What is Full Fine Tuning?

- Full fine-tuning is the process of
training the entire model on the

. An untrained
task-specific data. LLM An LLM that
understands
Abunch of text
text data
- This means all the model layers are \/_/

adjusted during the training process. ATLLI it
text An LLM
g )l()tunch of gi?gs?gﬁ)ag:j
. . . involving N
- BUT, is this always computationally code
feasible?
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Limitations of Full Fine Tuning

Total Training Memory for a model includes the following:
Model + Optimiser + Activations + Gradients

Spending an
insane amount
to finetune

- When full fine tuning, gradient needs to be calculated for foundation models

every parameter. And in full precision training(fp32), the
gradient for each parameter takes up 4 bytes of memory.

- Now imagine training a 13B parameter model. 13B * Using
4bytes = 52 Gigabytes of memory is required for the LoRA to
finetune

gradients alone! .
foundation models

- What about the time required to backpropagate through ;
ALL these parameters? Carnegie
Mellon
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LoRA: Low Rank Adaptation

- LoRA addresses some of the drawbacks of full
fine-tuning.
Pretrained

- How? Weights
By freezing the pre-trained model weights and

dxd
injecting trainable rank decomposition matrices WeR
into each layer of the Transformer architecture.

33
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LoRA Explained

- LoRA reimagines fine tuning not as learning better parameters, but as adjustments
required to the existing parameters to make them better.

Finetuned Weights Weight Update
f_H I—H
Wee = Woe + AW

H_J

Pretrained Weights
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LoRA Explained

- LoRA hinges on the following concepts:

1. Pre-trained language models have a low “intrinsic dimension”. They can still learn efficiently
despite a random projection to a smaller subspace.

2. If you have a large matrix, with a significant degree of linear dependence (and thus a low intrinsic
dimension), you can express that matrix as a factor of two comparatively small matrices.

Wor + AWz = Wyx + BAzx
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LoRA Explained

How are we saving memory with LoRA?

The full 5x5 matrix above has 25 values in it,
whereas if we count the values in the
decomposed matrices, there are just 10 (5 +
5).

As the matrix we are trying to approximate
gets larger and larger(delta W), we work
with a smaller and smaller proportion of
values in our decomposed matrices(A and
B), compared to the full-size matrix.

36

NS | w
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Rank

16

512

7B

167,332

334,664

669,328

1,338,656

2,677,312

85,673,987

13B

228,035

456,070

912,140

1,824,281

3,648,561

116,753,964

70B 180B
529,150 848,528
1,058,301 1,697,056
2,116,601 3,394,113
4,233,202 6,788,225
8,466,404 13,576,450

270,924,934 434,446,406
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How Does LoRA Work?

- So, first, we freeze the model parameters. We'll be using these parameters to make
inferences, but we won't update them.

Model Parameters

N\

ey 1

N
T’;'?\\'Vi:
e
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How Does LoRA Work?

- Then we create two matrices. These are sized in such a way that, when they're multiplied
together, they'll be the same size as the weight matrices of the model we're fine tuning.

Model Parameters Fine Tune Matrices A and B

[}
Yk
e

;Qd\\
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How Does LoRA Work?

- Then we calculate the the change matrix(delta W)

Fine Tune Matrices A and B

X [ ] =

Change Matrix

40

Carnegie
Mellon
University



How Does LoRA Work?

We pass our input through the frozen weights and the change matrix.

output

A

Model Parameters

J\S@E’,

e .
C J 2}{} ©

Change Matrix

Input

41

Carnegie
Mellon
University



42

How Does LoRA Work?

- We calculate the loss and update matrices A and B.

output
ﬁ Loss Function I

—

[ ]
Model Parameters Change Matrix Fine Tune Matrices Aand B

o\
TAv

Input Carnegie
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How Does LoRA Work?

- Atinference time we add the change matrix to the frozen weights and pass the input.

Model Parameters Change Matrix LoRA updated parameters
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How Does LoRA Work?

P.S: Don't forget the scaling factor!

b= "W %AW:p — W -+ %BA:E

44
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Instruction Fine Tuning

Instruction
Exemplar
Label

Instruction
Exemplar
Label

Relevant Label: v -
Instructions: v/

Input

What is the sentiment of this?
This movie is great

Answer: Positive [N

What is the sentiment of this?
Worst film I've ever seen
Answer: Negative

[more exemplars]

What is the sentiment of this?
This movie is terrible
Answer:

Output
Negative

45

Instruction fine-tuning is a technique used to train
the model using examples that demonstrate how it

should respond to a specific instruction.
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Talk is cheap.

Chauwrmna the code.

Linus Torvalds

University



eminGPT

available GPT implementations minGPT

University




Dataset

Rotten Tomatoes - Movie
Review Dataset (Classification)

gpt2 untrained:

“Predict the sentiment of the
following text: You are terrible,
Label:”

Response: “ Yes. Murders of this
kind...”

48
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Code Structure

-handout

lora.py
model.py

dataloader.py
train.py
generate.py
configs
O finetune_config_params.py

configurator.py
requirements.tx

49
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Code Structure

-handout
e J|ora.py (30-35 lines)

50
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Code Structure

-handout

lora.py (30-35 lines) o
model.py (2 lines) Training
dataloader.py (5 lines)

train.py (1 lines)
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Code Structure

-handout

lora.py (30-35 lines)
model.py (2 lines)
dataloader.py (5 lines)
train.py (1 lines)

generate.py (10 lines)

Training

Evaluation

52
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Lora.py

- only add LoRA to the linear layer
- so we tweak Linear Layer to support LoRA

- inherit from the Linear Layer
-  We should also be able to use this tweaked layer as our normal Linear layer
if rank<=0.

Helpful PyTorch functions:
e NN Linear Layer (source code to skim through the existing functions): Link
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https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
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Lora.py

class LoRALinear(nn.Linear):
e _ init_ () -> create the parameters (only if lora rank is >0)
O Helpful PyTorch functions:

B torch.nn.parameter.Parameter(torch.empty(in_dim, out_dim))
Link
e reset_parameter() -> set the initial values for the parameters
O Helpful PyTorch functions:

B torch.nn.init (Link)
e forward() -> called in each forward pass of the model
train() -> called only when model.train() is called .
e eval() -> called only when model.eval() is called gﬂ;iﬂ;;lgle

University



https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html
https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_
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Wait but why do we need to (re)implement train and
eval?

e How do you know if your weights have been merged in or not?
o Use self.has_weights_merged
e When do you want your weights to be merged? (train or eval)?
e When do you want your weights to be de-merged? (train or eval)?

e Ensure that your train/eval/forward have weights in the required format
(merged/de-merged) - if not, merge/de-merge them
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Hwant-The writeup tells me to do full fine tuning with
LoRA layer implemented. How do | do that?

e setr=0
e What this does is it never initializes your lora_a, lora_b matrix

O soyour layer is now the equivalent of Linear.
e Account for this in your train, forward and eval functions! (hint: use
self.is_lora())
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In LoRA you are only updating lora weight (and no other weights).
How do you ensure that in practice?

Implement def mark_only_lora_as_trainable(model)

Hint: iterate through named_parameters() (Link)
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https://pytorch.org/docs/stable/generated/torch.nn.Module.html
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Additional Files:

model.py: add lora to attention layers
dataloader.py: Write your instruction for fine tuning. Also decide if you

want to make your labels more descriptive!
train.py : make your model actually use lora

Ipython train.py --init_from="gpt-medium” --out_dir="gpt_lora_r:16_alpha:32"
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Where do | change values of my hyperparams?

e Hyperparameters in LoRA: r, alpha, Ir, max_iters..

e finetune_config_params.py

e command line (Eg python train.py --init_dir="lora-pls-work3")

59
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Generate.py

e Encouraged to just look at the generations gpt2-untrained vs finetuned gpt2
produces (use  get_generation(prompt) method in the generate.py)
e Implement your own accuracy function:

O Check if LoRA actually produced the labels you told it to

B GPT2 (and other small LMs (Even 7B ones)) may have trouble generating
EOS and so one hack is to ask it to generate a limited number of tokens
and look for labels in the first few characters.

B Often labels generated will be garbage, make sure to consider those as
negative predictions in your accuracy function

Ipython generate.py --init_from="resume” --out_dir="gpt_lora_r:16_alpha:32” .
Carnegie
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| Just spent 0!} entire " .5 But at least we have
Al budget on ' working model
tuning a mode{ " now, right?

‘.

e have a working
model, right?




