

10-423/10-623 Generative AI

Machine Learning Department School of Computer Science Carnegie Mellon University

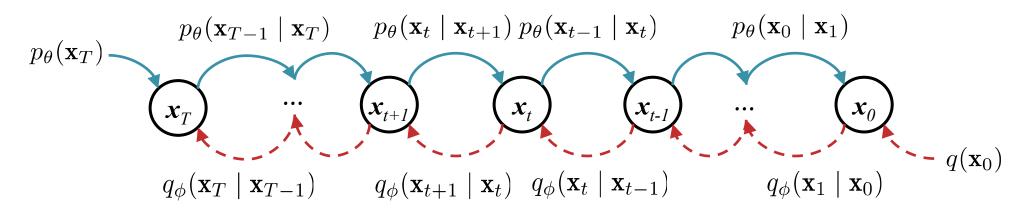
Homework 2 Recitation Diffusion Models Variational Inference

Feb. 12, 2024

Agenda

- 1. Overview of diffusion model
- 2. Diffusion model math
- 3. HW2 starter code overview
- 4. Overview of Fréchet Inception Distance (FID)
- 5. Helpful functions & practice reading documentation

Diffusion Model



Forward Process: $q_{\phi}(\mathbf{x}_{1:T}) = q(\mathbf{x}_0) \prod_{t=1}^{T} q_{\phi}(\mathbf{x}_t \mid \mathbf{x}_{t-1})$

(Learned) Reverse Process:

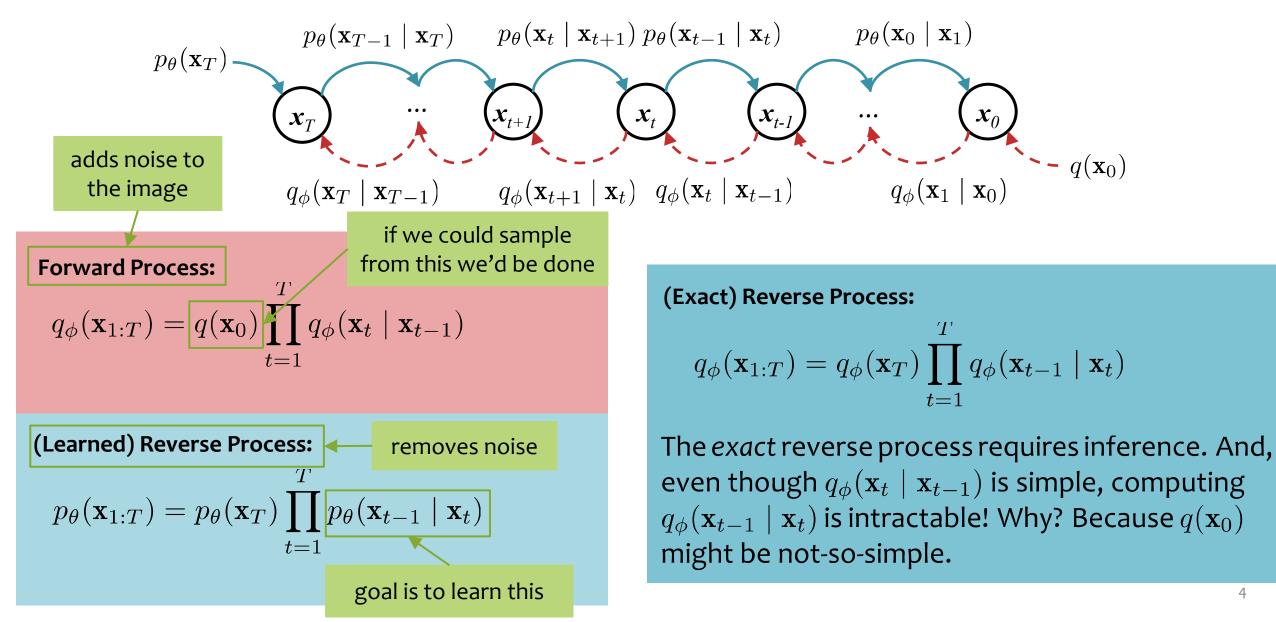
$$p_{\theta}(\mathbf{x}_{1:T}) = p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})$$

(Exact) Reverse Process:

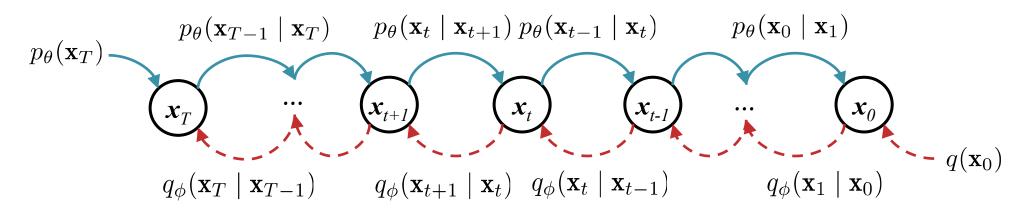
$$q_{\phi}(\mathbf{x}_{1:T}) = q_{\phi}(\mathbf{x}_{T}) \prod_{t=1}^{T} q_{\phi}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})$$

The exact reverse process requires inference. And, even though $q_{\phi}(\mathbf{x}_t | \mathbf{x}_{t-1})$ is simple, computing $q_{\phi}(\mathbf{x}_{t-1} | \mathbf{x}_t)$ is intractable! Why? Because $q(\mathbf{x}_0)$ might be not-so-simple.

Diffusion Model



Diffusion Model

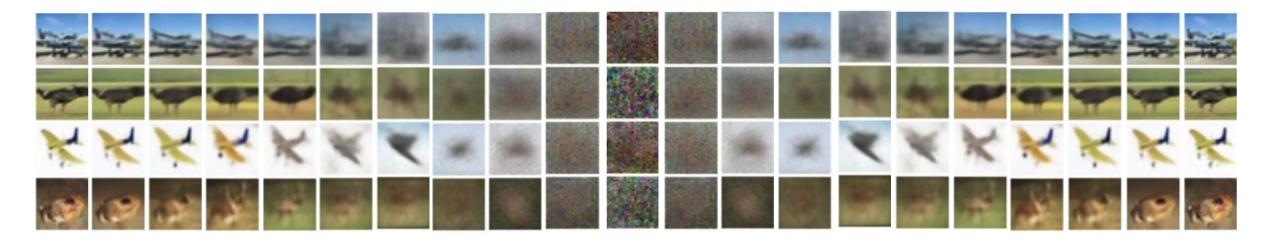


How does this actually work?

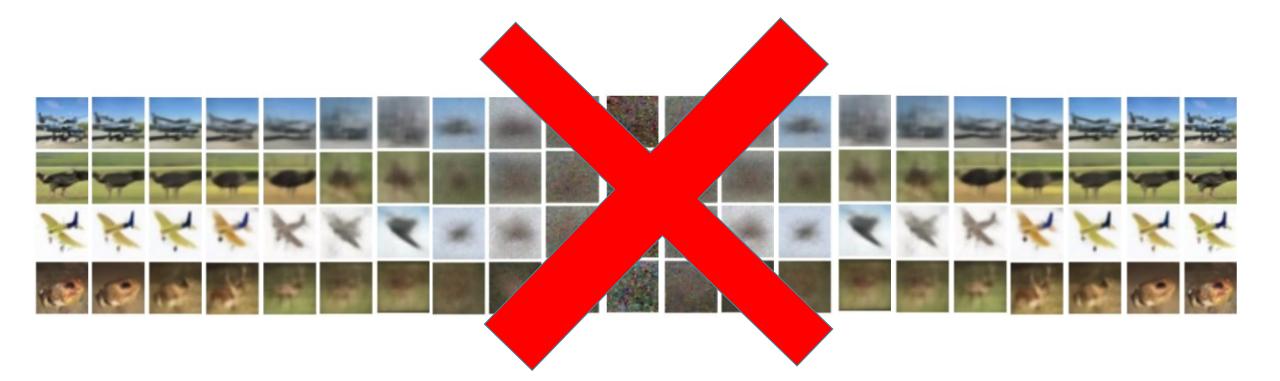
Generating an image from noise in a single step

Generating an image from noise in 500 steps

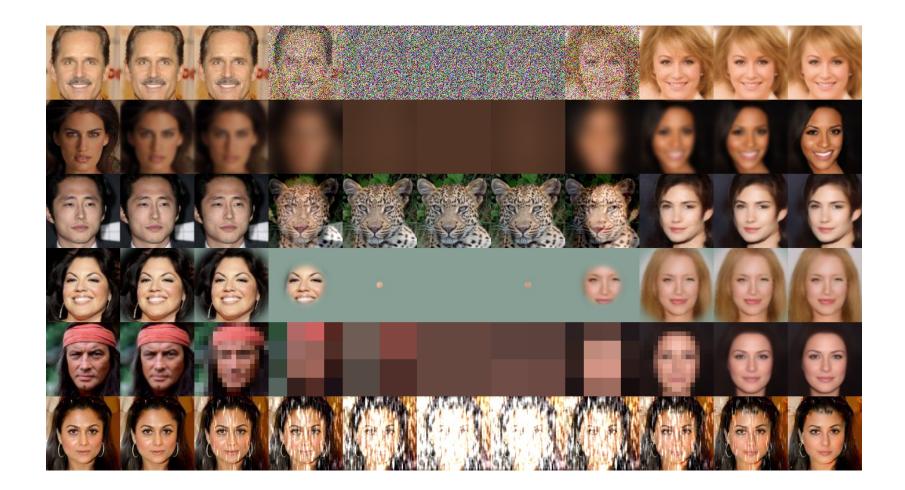
Denoising is not image recovery

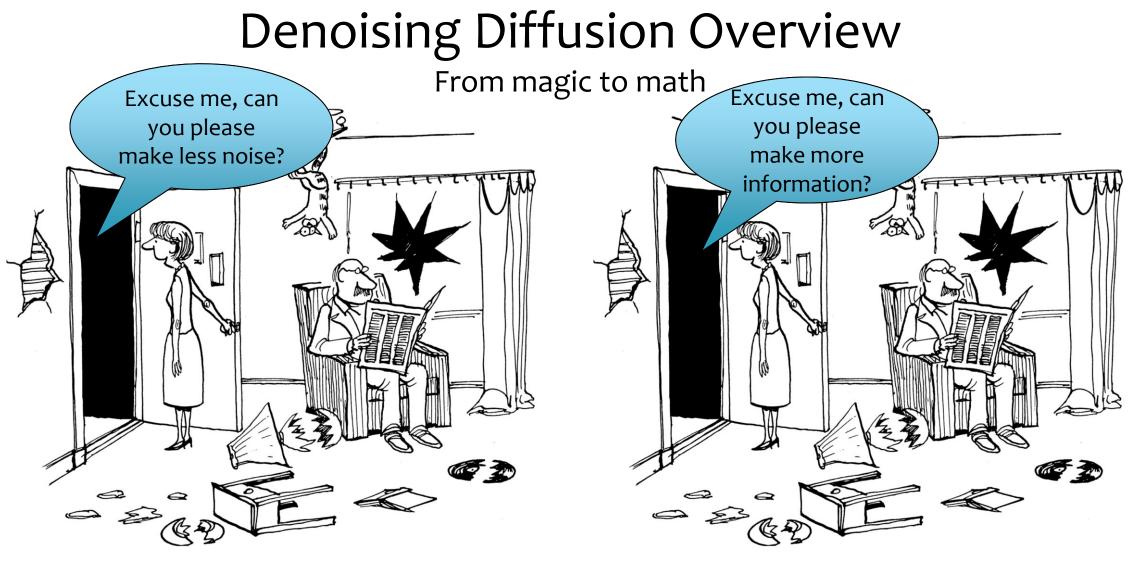


Denoising is not image recovery



Denoising is not image recovery

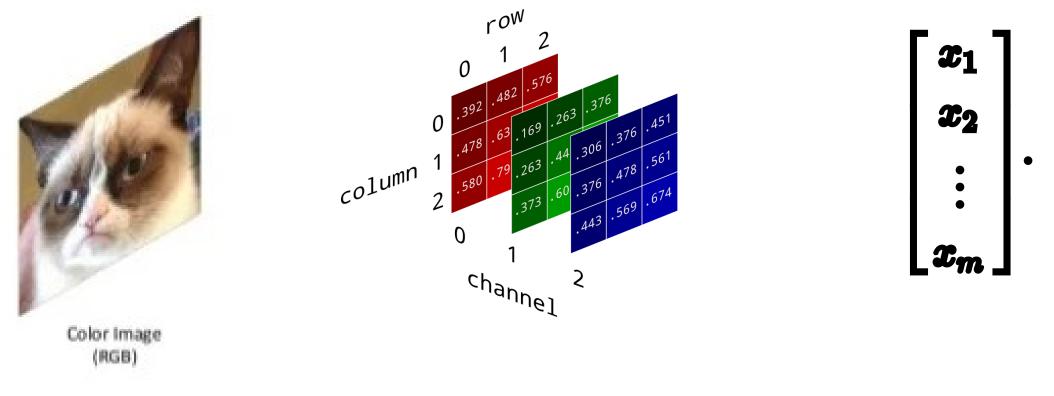




X

An alternative perspective

Images as vectors



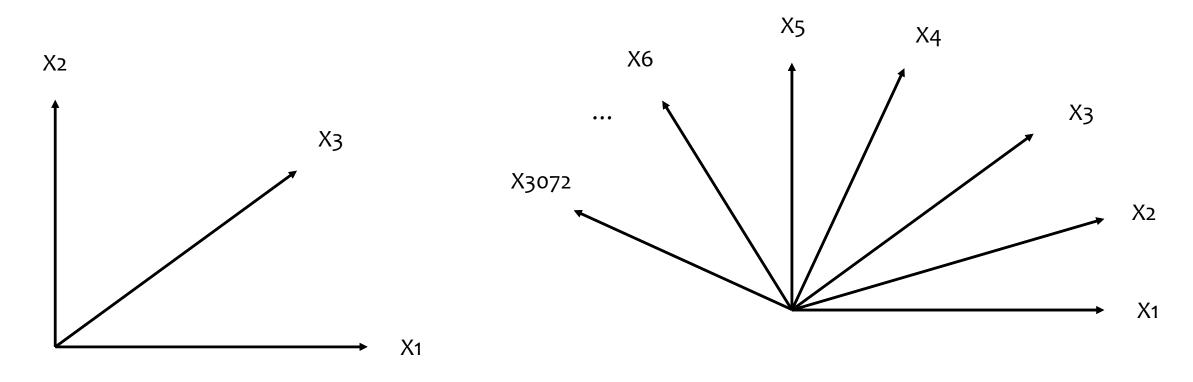
32 by 32 pixel image

32 x 32 x 3 tensor

3072 dimensional vector

An alternative perspective

Images as vectors

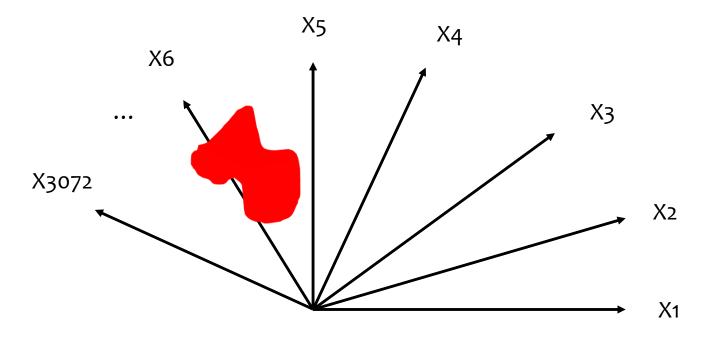


Representation of 3D space with 3 axis

In image is a vector in 3072 dimensional space

An alternative perspective

Manifold hypothesis



If we can find the correct representation of images in high dimensional space, all 32x32 color images of cats will occupy a latent manifold

Latent Variable Models

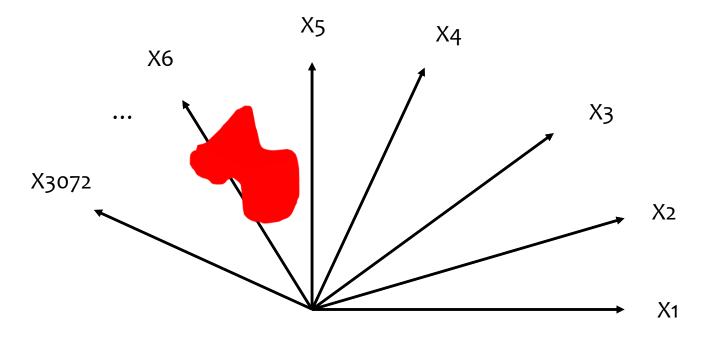
- For GANs, we assume that there are (unknown) latent variables which give rise to our observations
- The **noise vector z** are those latent variables
- After learning a GAN, we can interpolate between images in latent z space



Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In the 6th row, you see a room without a window slowly transforming into a room with a giant window. In the 10th row, you see what appears to be a TV slowly being transformed into a window.

An alternative perspective

Manifold hypothesis



If we could just sample this latent manifold, we would be able to generate any cat picture that could ever exist

But how to sample it?

An alternative perspective

Diffusion as sampling

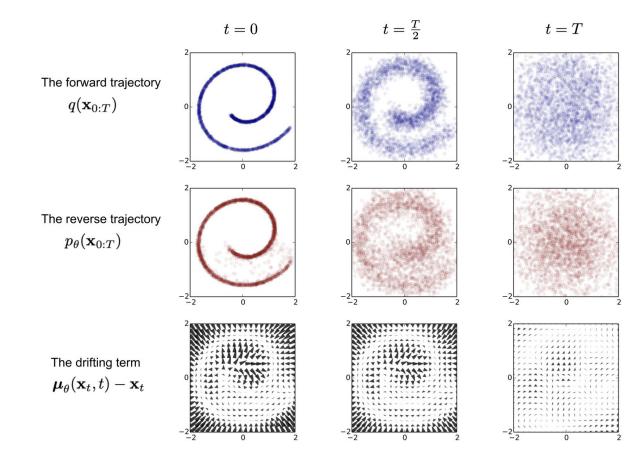
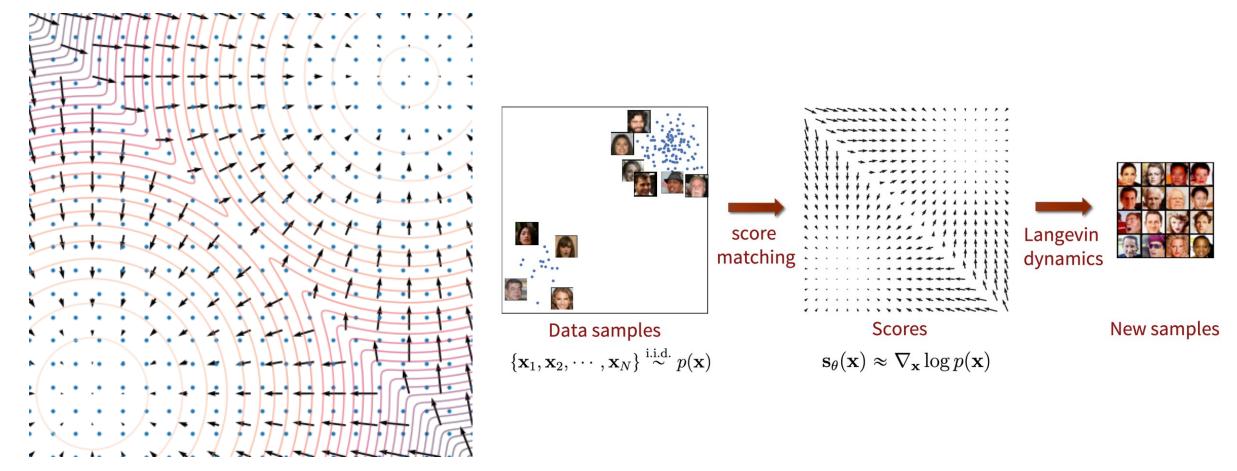


Fig. 3. An example of training a diffusion model for modeling a 2D swiss roll data. (Image source: <u>Sohl-Dickstein et al., 2015</u>)

Denoising Diffusion Overview An alternative perspective

Sampling the latent manifold using diffusion



Score matching with Langevin Dynamics – see Section 3.2 of DDPM paper for more details arxiv.org/pdf/2006.11239.pdf

Bayes' Rule (Theorem)

$$P(A) = \bigcirc, P(B|A) = \bigcirc$$

$$P(B) = \bigcirc, P(A|B) = \bigcirc$$

$$P(B) = \bigcirc, P(A|B) = \bigcirc$$

$$P(A|B) = \bigcirc (A|B) = \bigcirc$$

$$P(A) \cdot P(B|A) = \bigcirc (A|B) = \bigcirc$$

$$P(A) \cdot P(B|A), i.e.$$

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)}$$

$$P(B|A) = \frac{P(A) \cdot P(B|A)}{P(B)}$$

Jensen's Inequality

If function $f(\cdot)$ is concave, then:

 $\mathbb{E}[f(X)] \le f(\mathbb{E}[X])$

$$\log p(\boldsymbol{x}) = \log \int p(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$$
 We use marginalization
To make latent variable
appear

$$\log p(\boldsymbol{x}) = \log \int p(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$$

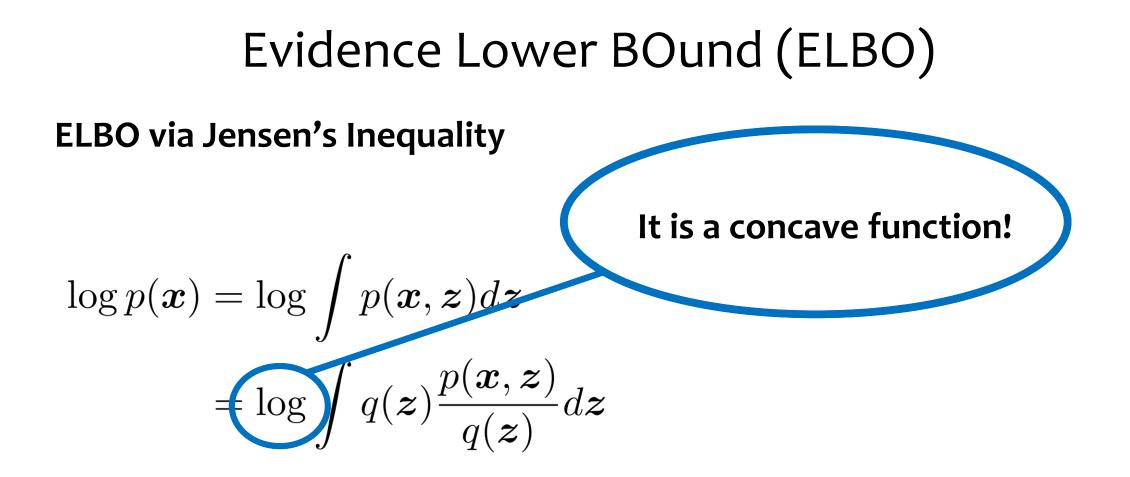
$$= \log \int q(\boldsymbol{z}) \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z}$$

We need this term for the expectation of Jensen's

$$\log p(\boldsymbol{x}) = \log \int p(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$$

=
$$\log \int q(\boldsymbol{z}) \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z}$$

We cancel out to preserve
The equality



$$\log p(\boldsymbol{x}) = \log \int p(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$$

= $\log \int q(\boldsymbol{z}) \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z}$
($\geq \int q(\boldsymbol{z}) \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z}$ We use Jensen's to swap log and expectation

ELBO

$$\log p(\boldsymbol{x}) \geq \int q(\boldsymbol{z}) \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z} \qquad \text{ELBO is your best friend}$$

ELBO

$$\log p(\boldsymbol{x}) \ge \int q(\boldsymbol{z}) \log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z}$$

= $\mathbb{E}_q \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \right]$
Maximize this

Reparameterization is a method of generating random numbers by transforming some base distribution $p(\epsilon)$ to a desired distribution $p_{\theta}(z)$

$$\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}) \longrightarrow g(\boldsymbol{\epsilon}; \boldsymbol{\theta}) \longrightarrow p_{\boldsymbol{\theta}}(\boldsymbol{z})$$

Reparameterization is a method of generating random numbers by transforming some base distribution $p(\epsilon)$ to a desired distribution $p_{\theta}(z)$

$$\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}) \longrightarrow g(\boldsymbol{\epsilon}; \boldsymbol{\theta}) \longrightarrow p_{\boldsymbol{\theta}}(\boldsymbol{z})$$

A simple distribution to sample from

Reparameterization is a method of generating random numbers by transforming some base distribution $p(\epsilon)$ to a desired distribution $p_{\theta}(z)$

$$\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}) \longrightarrow g(\boldsymbol{\epsilon}; \boldsymbol{\theta}) \longrightarrow p_{\boldsymbol{\theta}}(\boldsymbol{z})$$

A simple transformation

Gaussian Distribution:

We want samples from $m{x} \sim \mathcal{N}(m{\mu}, \sigma^2 m{I})$

Gaussian Distribution

$$oldsymbol{\epsilon} \sim \mathcal{N}(oldsymbol{0},oldsymbol{I})$$

We sample standard Normal

Gaussian Distribution

$$oldsymbol{\epsilon} \sim \mathcal{N}(oldsymbol{0},oldsymbol{I})$$

 $oldsymbol{x} = oldsymbol{\mu} + \sigma oldsymbol{\epsilon}$ We apply linear transformation

Gaussian Distribution

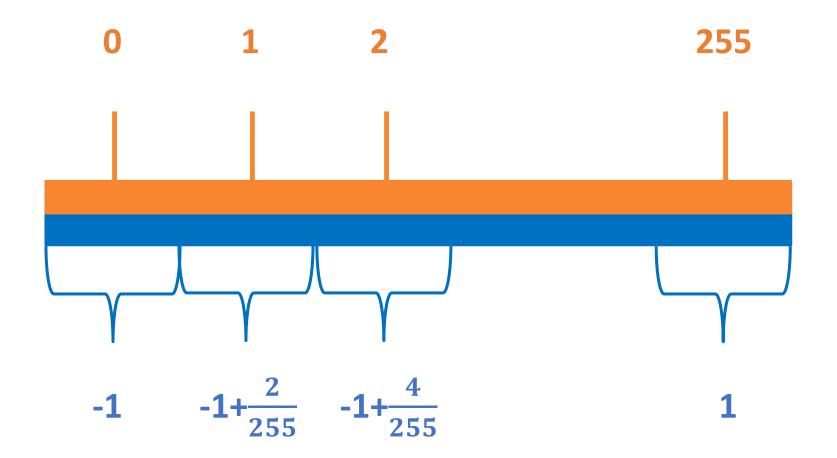
$$oldsymbol{\epsilon} \sim \mathcal{N}(oldsymbol{0},oldsymbol{I})$$

$$x = \mu + \sigma \epsilon$$

$$oldsymbol{x} \sim \mathcal{N}(oldsymbol{\mu}, \sigma^2 oldsymbol{I})$$

The transformed sample comes from the desired Gaussian distribution

Data Scaling



Starter Code Walkthrough How do we implement a diffusion model?

We have 5 ingredients

- U-Net Model
- Trainer code
- Noise scheduler
- Training implementation
- Sampling implementation

\sim handout

- > __pycache__
- > data
- 🗬 diffusion.py
- 🗬 main.py
- ≡ requirements.txt
- run_in_colab.ipynb
- 🝦 trainer.py
- 🍦 unet.py
- > latex_template
- Homework-2.pdf

Starter Code Walkthrough U-Net

- U-Net's role here is to model the denoising function at each step of the reverse diffusion process.
- Multi-scale features

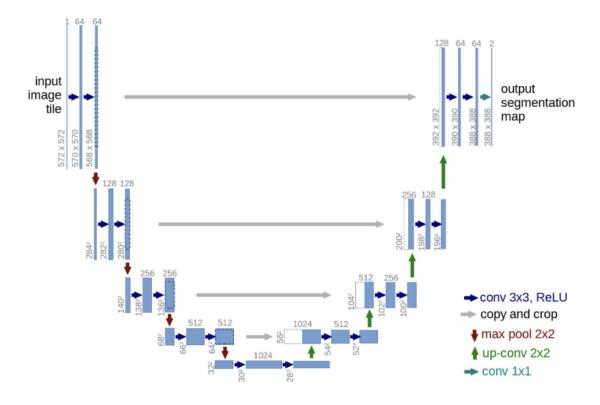
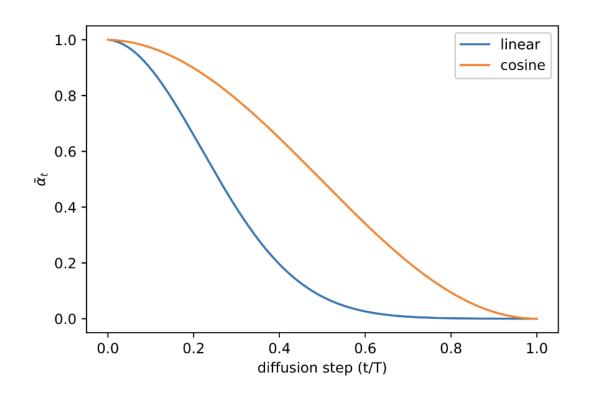


Figure 2: The structure of U-Net.

Starter Code Walkthrough Noise Scheduler

• Control the amount of noise we add in each step of the diffusion forward process.



 we adopt the improved cosinebased variance schedule, introduced in (Nichol & Dhariwal, 2021).

$$\begin{aligned} \alpha_t &= \operatorname{clip}\left(\frac{\bar{\alpha}_t}{\bar{\alpha}_{t-1}}, 0.001, 1\right), \bar{\alpha}_t = \frac{f(t)}{f(0)}, \\ \text{where } f(t) &= \cos\left(\frac{t/T+s}{1+s} \cdot \frac{\pi}{2}\right)^2, \end{aligned}$$

Starter Code Walkthrough How do we train a denoising U-Net model?

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, ..., T\})$
- 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$
- 5: $\mathbf{x}_t \leftarrow \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 \bar{\alpha}_t} \boldsymbol{\epsilon}$

▷ forward diffusion process

- 6: Take optimizer step on L_1 loss, $\nabla_{\theta} \| \boldsymbol{\epsilon} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \|_1$
- 7: **until** converged

- 1. Take a training image
- 2. Pick a random time step
- Run forward diffusion to generate a noisy version at that time step
- 4. Use our model to predict the noise that was added
- 5. Calculate the loss between the actual noise and the predicted noise

Starter Code Walkthrough How do we sample an image?

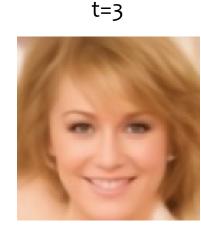
t=0

t=3

We want a model that can revert images with any amount of noise t=n to the previous step t=n-1

How do we achieve this?

Starter Code Walkthrough How do we train a denoising U-Net model?



t=0

t=1

We want a model that can revert images with any amount of noise t=n to the previous step t=n-1

We adopt the Option C Sampling algorithm from the lecture

Algorithm 1 Sampling (Option C)

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for $t \in \{1, \dots, T\}$ do 3: $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 4: $\hat{\mathbf{x}}_0 \leftarrow (\mathbf{x}_0 + (1 - \bar{\alpha}_t)\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)) / \sqrt{\bar{\alpha}_t}$ 5: $\hat{\boldsymbol{\mu}}_t \leftarrow \alpha_t^{(0)} \hat{\mathbf{x}}_0 + \alpha_t^{(t)} \mathbf{x}_t$ 6: $\mathbf{x}_{t-1} \leftarrow \hat{\boldsymbol{\mu}}_t + \sigma_t^2 \boldsymbol{\epsilon}$

7: return \mathbf{x}_0

Starter Code Walkthrough How do we train a denoising U-Net model?

 \triangleright rectify $\hat{\mathbf{x}}_0$

 \triangleright posterior mean of x_{t-1}

 \triangleright posterior variance of x_{t-1}

▷ reverse diffusion process

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(0, I)$
- 2: for t = T, ..., 1 do 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = 0$
- 4: $\boldsymbol{\epsilon}_t \leftarrow \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)$ 5: $\hat{\mathbf{x}}_0 \leftarrow \frac{1}{\sqrt{\overline{\alpha}_t}} \left(\mathbf{x}_t - \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}_t \right)$
- 6: $\hat{\mathbf{x}}_0 \leftarrow clamp(\hat{\mathbf{x}}_0, -1, 1)$
- 7: $\tilde{\boldsymbol{\mu}}_{t} \leftarrow \frac{\sqrt{\alpha_{t}(1-\bar{\alpha}_{t-1})}}{1-\bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})}{1-\bar{\alpha}_{t}} \hat{\mathbf{x}}_{0}$ 8: $\sigma_{t}^{2} \leftarrow \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t}} (1-\alpha_{t})$
- 9: $\mathbf{x}_{t-1} \leftarrow \tilde{\boldsymbol{\mu}}_t + \sigma_t \mathbf{z}$ return \mathbf{x}_0

predicted noise
 b estimated x̂0
 2. Denoise in a loop

1. Start from a noisy image

Starter Code Walkthrough What functions do we need to write?

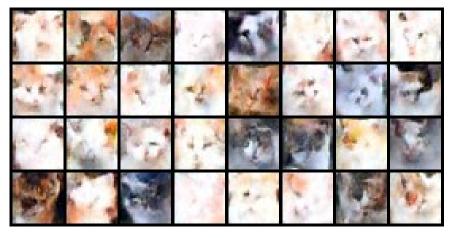
- Training
 - Forward
 - P_loss
 - Q_sample

- Sampling
 - Sample
 - P_sample_loop
 - P_sample

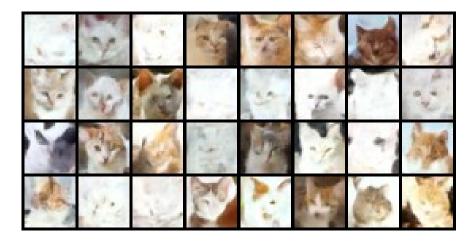
Starter Code Walkthrough Flags

Configuration Parameter	Example Flag Usage
Model image size	image_size 32
Model batch size	batch_size 32
Model data domain of AFHQ dataset	data_class cat
Directory where the model is stored	save_folder ./results/
Path of a trained model	<pre>load_path ./results/model.pt</pre>
Directory from which to load dataset	data_path ./data/train/
Number of iterations to train the model	train_steps 10000
Number of steps of diffusion process, T	time_steps 300
Number of output channels of the first layer	unet_dim 16
in U-Net	
Learning rate in the training	learning_rate 1e-3
Frequency of periodic save, sample and	save_and_sample_every 1000
(optionally) FID calculation	
Enable FID calculation	fid
Enable visualization	visualize

How do we measure the quality of a generated image?



Vaguely Cat-like



Decently Fluffy Cats

Fréchet distance

$$F(A,B) = \inf_{lpha,eta} \max_{t\in[0,1]} \left\{ d\Big(Aig(lpha(t)ig), Big(eta(t)ig)\Big)
ight\}$$

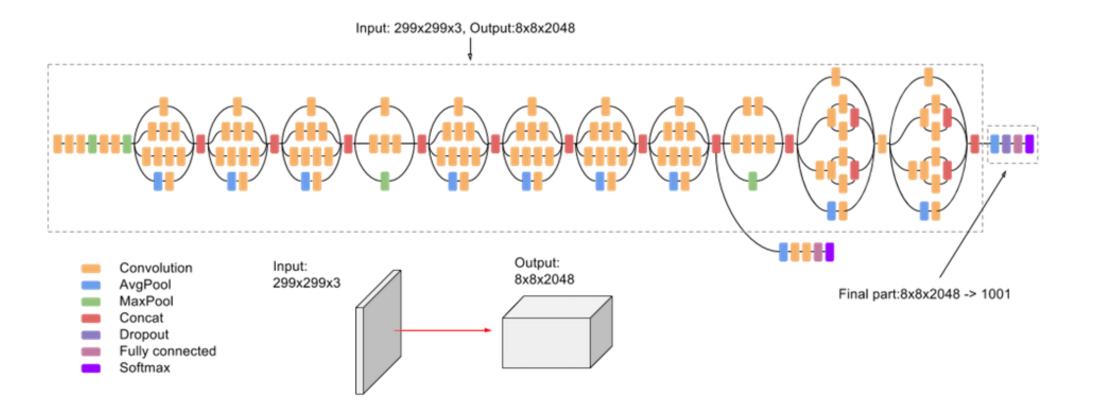
Fréchet distance for probability distributions

$$d_F(\mu,
u):=ig(\inf_{\gamma\in\Gamma(\mu,
u)}\int_{{\mathbb R}^n imes{\mathbb R}^n}\|x-y\|^2\,{
m d}\gamma(x,y)ig)^{1/2},$$

BUT for two multidimensional Gaussians

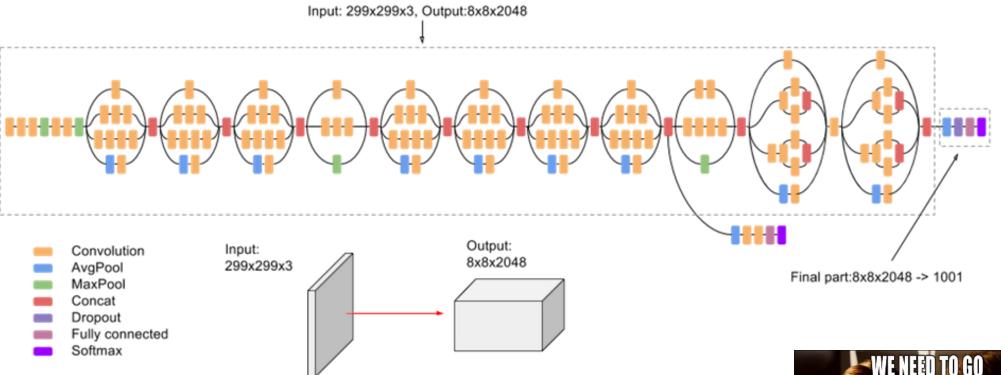
$$d_F(\mathcal{N}(\mu,\Sigma),\mathcal{N}(\mu',\Sigma'))^2 = \|\mu-\mu'\|_2^2 + \mathrm{tr}igg(\Sigma+\Sigma'-2(\Sigma\Sigma')^{rac{1}{2}}igg)$$

Inception model



48 layers SOTA in 2015 on ImageNet top-5 error Named after an internet meme

Inception model

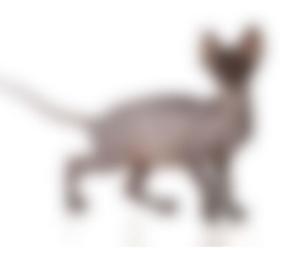


48 layers SOTA in 2015 on ImageNet top-5 error Named after an internet meme

How do we measure the quality of a generated image?

High score

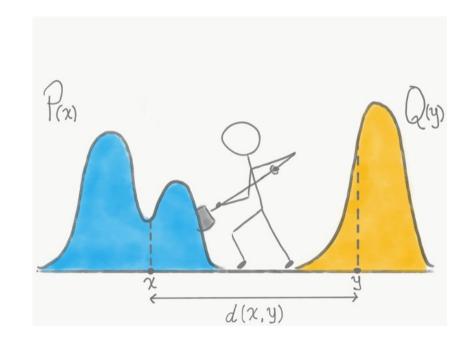
Why do I need a huge NN and so much math to tell me if my cat photos are fluffy or ugly?



Looking into the details

- "Earthmover Distance"
- Wasserstein Distance
- Kantorovich-Rubinstein Metric
- Cramér distance
- Mallows distance
- Fréchet Distance
 - Wasserstien-2 Distance

These are all closely related ideas!

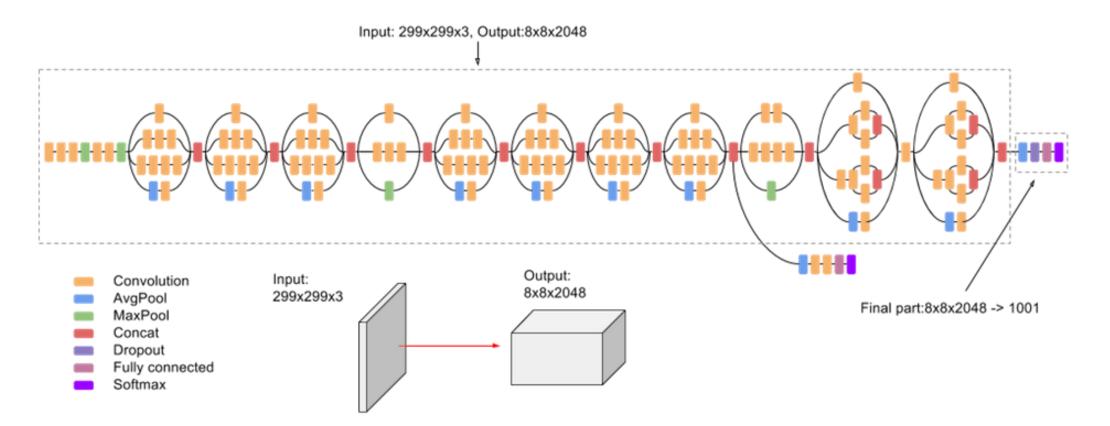


If transported optimally, how much probability mass would need to be moved to change one distribution into the other?

An alternative to the Kullback-Leibler Divergence

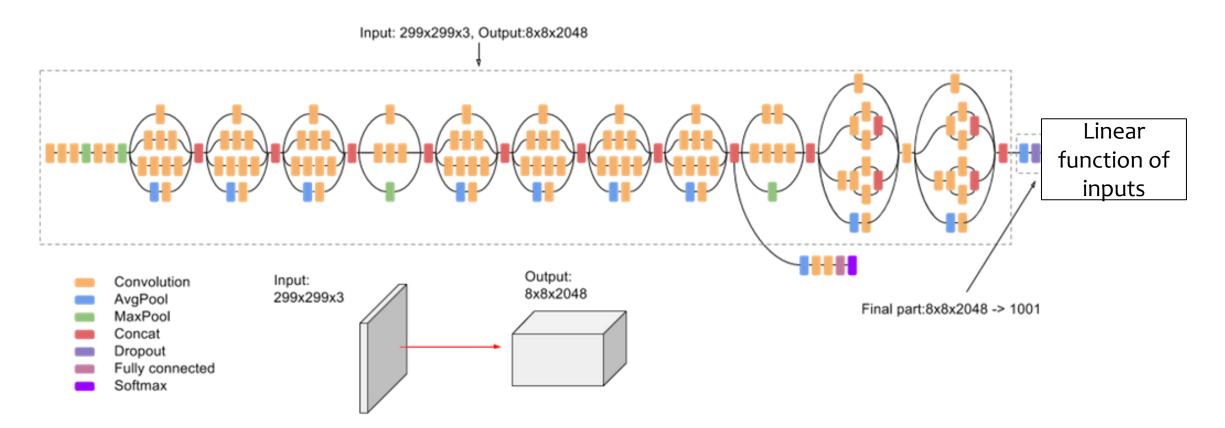
Looking into the details

Inception module -- how does that work?



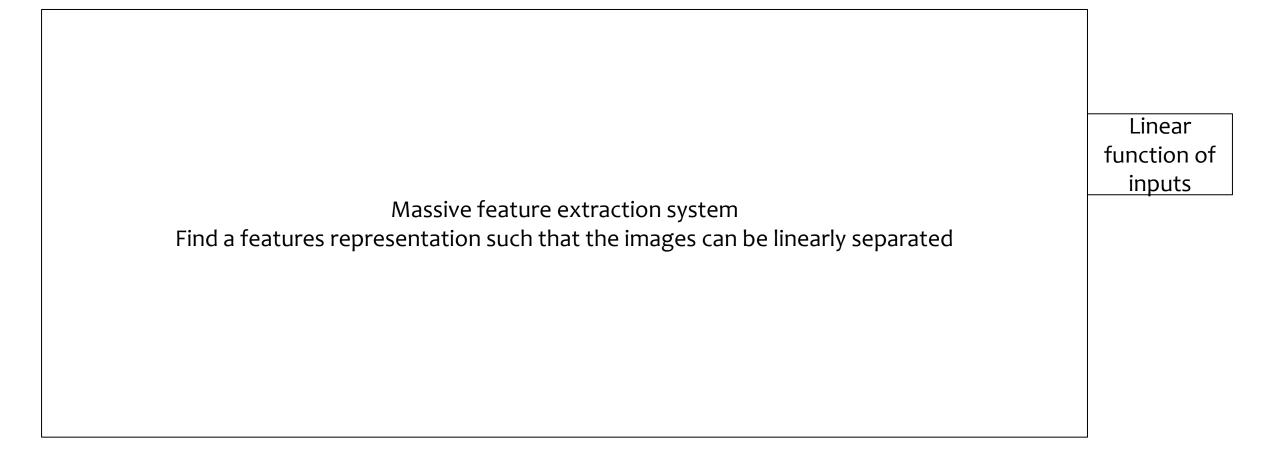
Looking into the details

Inception module -- how does that work?



Looking into the details

Inception module -- how does that work?



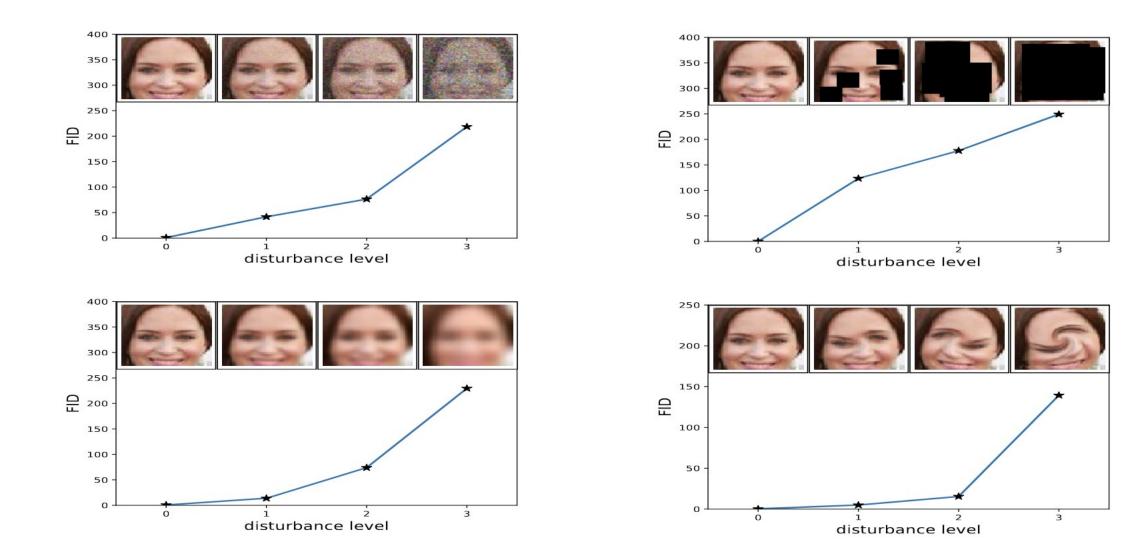
Putting it all together

Summary

- 1. Extract the features from real images and generated images using an Inceptonv3 model.
- 2. Approximate the distribution of features as multivariate Gaussians (max entropy).
- 3. Find the distance between the two distribution of features.

Code snippet

Python 3.7.10 (default, Feb 26 2021, 18:47:35) [GCC 7.3.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information.



TORCH.CLAMP

torch.clamp(input, min=None, max=None, *, out=None) → Tensor

Clamps all elements in input into the range [min , max]. Letting min_value and max_value be min and max , respectively, this returns:

 $y_i = \min(\max(x_i, \min_ value_i), \max_ value_i)$

If min is None, there is no lower bound. Or, if max is None there is no upper bound.

• NOTE

If min is greater than max torch.clamp(..., min, max) sets all elements in input to the value of max.

Parameters

- **input** (*Tensor*) the input tensor.
- min (Number or Tensor, optional) lower-bound of the range to be clamped to
- max (Number or Tensor, optional) upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code snippet return?

import torch import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = torch.clamp(x, min=4, max=6)
print(y)

TORCH.CLAMP

torch.clamp(input, min=None, max=None, *, out=None) → Tensor

Clamps all elements in input into the range [min , max]. Letting min_value and max_value be min and max , respectively, this returns:

 $y_i = \min(\max(x_i, \min_ value_i), \max_ value_i)$

If min is None, there is no lower bound. Or, if max is None there is no upper bound.

• NOTE

If min is greater than max torch.clamp(..., min, max) sets all elements in input to the value of max.

Parameters

- input (Tensor) the input tensor.
- min (Number or Tensor, optional) lower-bound of the range to be clamped to
- max (Number or Tensor, optional) upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code snippet return?

import torch import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = torch.clamp(x, min=4, max=6)
print(y)

TypeError: clamp() received an invalid combination of arguments - got (numpy.ndarray, max=int, min=int), but expected one of: * (Tensor input, Tensor min, Tensor max, *, Tensor out) * (Tensor input, Number min, Number max, *, Tensor out)

TORCH.CLAMP

torch.clamp(input, min=None, max=None, *, out=None) → Tensor

Clamps all elements in input into the range [min , max]. Letting min_value and max_value be min and max , respectively, this returns:

 $y_i = \min(\max(x_i, \min_ value_i), \max_ value_i)$

If min is None, there is no lower bound. Or, if max is None there is no upper bound.

• NOTE

If min is greater than max torch.clamp(..., min, max) sets all elements in input to the value of max.

Parameters

- input (Tensor) the input tensor.
- min (Number or Tensor, optional) lower-bound of the range to be clamped to
- max (Number or Tensor, optional) upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code snippet return?

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = torch.clamp(x, min=4, max=6) print(y)

TORCH.CLAMP

torch.clamp(input, min=None, max=None, *, out=None) → Tensor

Clamps all elements in input into the range [min , max]. Letting min_value and max_value be min and max , respectively, this returns:

 $y_i = \min(\max(x_i, \min_ value_i), \max_ value_i)$

If min is None, there is no lower bound. Or, if max is None there is no upper bound.

• NOTE

If min is greater than max torch.clamp(..., min, max) sets all elements in input to the value of max.

Parameters

- **input** (*Tensor*) the input tensor.
- min (Number or Tensor, optional) lower-bound of the range to be clamped to
- max (Number or Tensor, optional) upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code snippet return?

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = torch.clamp(x, min=4, max=6) print(y)

Output: tensor([[4, 4, 4], [4, 5, 6], [6, 6, 6]])

TORCH.CUMPROD

torch.cumprod(input, dim, *, dtype=None, out=None) → Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if <u>input</u> is a vector of size N, the result will also be a vector of size N, with elements.

 $y_i = x_1 imes x_2 imes x_3 imes \cdots imes x_i$

Parameters

- input (Tensor) the input tensor.
- dim (int) the dimension to do the operation over

Keyword Arguments

- dtype (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.
- **out** (*Tensor*, *optional*) the output tensor.

What does the following code snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 0)
print(y)

TORCH.CUMPROD

torch.cumprod(input, dim, *, dtype=None, out=None) → Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if <u>input</u> is a vector of size N, the result will also be a vector of size N, with elements.

 $y_i = x_1 imes x_2 imes x_3 imes \cdots imes x_i$

Parameters

- input (Tensor) the input tensor.
- dim (int) the dimension to do the operation over

Keyword Arguments

- dtype (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.
- **out** (*Tensor*, *optional*) the output tensor.

What does the following code snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 0)
print(y)

Output: tensor([[1, 2, 3, 4, 5]])

TORCH.CUMPROD

torch.cumprod(input, dim, *, dtype=None, out=None) → Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if <u>input</u> is a vector of size N, the result will also be a vector of size N, with elements.

 $y_i = x_1 imes x_2 imes x_3 imes \cdots imes x_i$

Parameters

- input (Tensor) the input tensor.
- dim (int) the dimension to do the operation over

Keyword Arguments

- dtype (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.
- **out** (*Tensor*, *optional*) the output tensor.

What does the following code snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 1)
print(y)

TORCH.CUMPROD

torch.cumprod(input, dim, *, dtype=None, out=None) → Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if <u>input</u> is a vector of size N, the result will also be a vector of size N, with elements.

 $y_i = x_1 imes x_2 imes x_3 imes \cdots imes x_i$

Parameters

- input (Tensor) the input tensor.
- dim (int) the dimension to do the operation over

Keyword Arguments

- dtype (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.
- **out** (*Tensor*, *optional*) the output tensor.

What does the following code snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 1)
print(y)

Output: tensor([[1, 2, 6, 24, 120]])

TORCH.FULL

torch.full(size, fill_value, \star , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) \rightarrow Tensor

 $Creates \ a \ tensor \ of \ size \ \ size \ \ filled \ with \ \ fill_value \ . \ The \ tensor's \ dtype \ is \ inferred \ from \ \ fill_value \ .$

Parameters

- size (int...) a list, tuple, or torch. Size of integers defining the shape of the output tensor.
- fill_value (Scalar) the value to fill the output tensor with.

Keyword Arguments

- **out** (*Tensor*, *optional*) the output tensor.
- dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
- layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch.strided.
- device (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (*bool, optional*) If autograd should record operations on the returned tensor. Default: False.

What does the following code snippet return?

import torch

x1 = torch.full(2, 3, 3)x2 = torch.ones(2,3) * 3

print(x1 == x2)

TORCH.FULL

torch.full(size, fill_value, \star , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) \rightarrow Tensor

 $Creates \ a \ tensor \ of \ size \ \ size \ \ filled \ with \ \ \underline{fill_value} \ . \ The \ tensor's \ dtype \ is \ inferred \ from \ \ \underline{fill_value} \ .$

Parameters

- size (int...) a list, tuple, or torch.Size of integers defining the shape of the output tensor.
- fill_value (Scalar) the value to fill the output tensor with.

Keyword Arguments

- **out** (*Tensor*, *optional*) the output tensor.
- dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
- layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch.strided.
- device (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (*bool, optional*) If autograd should record operations on the returned tensor. Default: False.

What does the following code snippet return?

import torch

x1 = torch.full(2, 3, 3)x2 = torch.ones(2,3) * 3

print(x1 == x2)

Output:

TypeError: full() received an invalid combination of arguments - got (int, int, int), but expected one of: * (tuple of ints size, Number fill_value, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) * (tuple of ints size, Number fill_value, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires grad)

TORCH.FULL

torch.full(size, fill_value, \star , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) \rightarrow Tensor

 $Creates \ a \ tensor \ of \ size \ \ size \ \ filled \ with \ \ fill_value \ . \ The \ tensor's \ dtype \ is \ inferred \ from \ \ fill_value \ .$

Parameters

- size (int...) a list, tuple, or torch.Size of integers defining the shape of the output tensor.
- fill_value (Scalar) the value to fill the output tensor with.

Keyword Arguments

- **out** (*Tensor*, *optional*) the output tensor.
- dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
- layout (torch.layout , optional) the desired layout of returned Tensor. Default: torch.strided .
- device (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (*bool, optional*) If autograd should record operations on the returned tensor. Default: False.

What does the following code snippet return?

import torch

x1 = torch.full((2, 3), 3) x2 = torch.ones(2,3) * 3

print(x1 == x2)

TORCH.FULL

torch.full(size, fill_value, \star , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) \rightarrow Tensor

 $Creates \ a \ tensor \ of \ size \ \ size \ \ filled \ with \ \ \underline{fill_value} \ . \ The \ tensor's \ dtype \ is \ inferred \ from \ \ \underline{fill_value} \ .$

Parameters

- size (int...) a list, tuple, or torch.Size of integers defining the shape of the output tensor.
- fill_value (Scalar) the value to fill the output tensor with.

Keyword Arguments

- **out** (*Tensor*, *optional*) the output tensor.
- dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
- layout (torch.layout, optional) the desired layout of returned Tensor. Default: torch.strided.
- device (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (*bool, optional*) If autograd should record operations on the returned tensor. Default: False .

What does the following code snippet return?

import torch

x1 = torch.full((2, 3), 3) x2 = torch.ones(2,3) * 3

print(x1 == x2)

Output:

tensor([[True, True, True], [True, True, True]])

TORCH.FULL

torch.full(size, fill_value, \star , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) \rightarrow Tensor

 $Creates \ a \ tensor \ of \ size \ \ size \ \ filled \ with \ \ fill_value \ . \ The \ tensor's \ dtype \ is \ inferred \ from \ \ fill_value \ .$

Parameters

- size (int...) a list, tuple, or torch. Size of integers defining the shape of the output tensor.
- fill_value (Scalar) the value to fill the output tensor with.

Keyword Arguments

- **out** (*Tensor*, *optional*) the output tensor.
- dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
- layout (torch.layout , optional) the desired layout of returned Tensor. Default: torch.strided .
- device (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (*bool, optional*) If autograd should record operations on the returned tensor. Default: False .

What does the following code snippet return?

import torch

x1 = torch.full((2,3), 3)
x2 = torch.ones(2,3) * 3

print((x1 == x2).all())

TORCH.FULL

torch.full(size, fill_value, \star , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) \rightarrow Tensor

 $Creates \ a \ tensor \ of \ size \ \ size \ \ filled \ with \ \ \underline{fill_value} \ . \ The \ tensor's \ dtype \ is \ inferred \ from \ \ \underline{fill_value} \ .$

Parameters

- size (int...) a list, tuple, or torch.Size of integers defining the shape of the output tensor.
- fill_value (Scalar) the value to fill the output tensor with.

Keyword Arguments

- **out** (*Tensor*, *optional*) the output tensor.
- dtype (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
- layout (torch.layout , optional) the desired layout of returned Tensor. Default: torch.strided .
- device (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- **requires_grad** (*bool, optional*) If autograd should record operations on the returned tensor. Default: False .

What does the following code snippet return?

import torch

x1 = torch.full((2,3), 3) x2 = torch.ones(2,3) * 3

print((x1 == x2).all())

Output: tensor(True)

You after finishing HW2

