
HOMEWORK 1
GENERATIVE MODELS OF TEXT *

10-423/10-623 GENERATIVE AI
http://423.mlcourse.org

OUT: Jan. 27, 2024
DUE: Feb. 07, 2024

TAs: Advaith, Afreen, Haohui, Tiancheng

Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. Please use the
provided template. Submissions can be handwritten, but must be clearly legible; otherwise, you
will not be awarded marks. Alternatively, submissions can be written in LATEX. Each answer
should be within the box provided. If you do not follow the template or your submission is
misaligned, your assignment may not be graded correctly by our AI assisted grader.

– Programming: You will submit your code for programming questions to Gradescope. There is
no autograder. We will examine your code by hand and may award marks for its submission.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on the course website.

Question Points

Recurrent Neural Network (RNN) Language Models 7

Transformer Language Models 15

Sliding Window Attention 8

Programming: RoPE and GQA 24

Code Upload 0

Collaboration Questions 2

Total: 56

*Compiled on Tuesday 30th January, 2024 at 15:15

1

http://423.mlcourse.org

Homework 1: Generative Models of Text 10-423/10-623

1 Recurrent Neural Network (RNN) Language Models (7 points)
1.1. (3 points) Numerical answer: Consider an RNN (Elman Network) that takes inputs xt ∈ {0, 1}2,

has hidden vectors ht ∈ R2, and output units yt ∈ R for all t ∈ {1, . . . , T}. Assume the recurrence
is given by:

ht = slide(Whhht−1 +Whxxt + bh)

yt = slide(Wyhht + by)

where slide(a) = min(1,max(0, a)) is the activation function. Define parameters Whh ∈
R2×2,Whx ∈ R2×2,Wyh ∈ R1×2, bh ∈ R2, by ∈ R to satisfy the following condition: yt = 1
if ∃ r, s ≤ t such that xr,0 = 1 and xs,1 = 1 and yt = 0 otherwise. Assume h0 = [0, 0]T .

1.2. An autoregressive language model defines a probability distribution over sequences x1:T of the
form: p(x1:T) =

∏T
t=1 p(xt | x1, . . . , xt−1).

(a) (2 points) Short answer: Suppose we are given an input x1:T and we define a bidirectional
RNN of the following form:

ft = σ(Wffft−1 +Wfxxt + bf), ∀t ∈ {1, . . . , T}
gt = σ(Wgggt+1 +Wgxxt + bg), ∀t ∈ {1, . . . , T}
ht = σ(Whfft +Whggt + bg), ∀t ∈ {1, . . . , T}

(Notice that ft builds up context from the left, gt builds up context from the right, and ht
combines the two.) Can we define an autoregressive language model of the form p(x1:T) =∏T

t=1 p(xt | ht−1)? If so, define the probability distribution. If not, why not?

2 of 20

Homework 1: Generative Models of Text 10-423/10-623

(b) (2 points) Short answer: Suppose BiRNN(x1:t−1) computes a bidirectional RNN on the sub-
sequence x1:t−1 and then returns ht−1. Can we define an autoregressive language model of
the form p(x1:T) =

∏T
t=1 p(xt | BiRNN(x1:t−1)? If so, define the probability distribution. If

not, why not?

3 of 20

Homework 1: Generative Models of Text 10-423/10-623

2 Transformer Language Models (15 points)
2.1. (2 points) Transformers use scaled-dot-product attention:

st,j = kT
j qt/

√
|k|, ∀j, t

at = softmax(st),∀t

where the values, queries, and keys are respectively given by: vj = WT
v xj , qj = WT

q xj , and
kj = WT

k xj for all j and vj ,vq,vk ∈ Rdk .

(a) (2 points) Short answer: Multiplicative attention instead defines the attention weights as:

s̃t,j = kT
j Wsqt/

√
|k|,∀j, t

ãt = softmax(s̃t),∀t

where Ws ∈ Rdk×dk is a parameter matrix. Could a Transformer with multiplicative atten-
tion learn a different class of functions than the simpler scaled-dot-product attention? Briefly
justify your answer.

(b) (2 points) Short answer: Concatenated attention defines the attention weights as:

ŝt,j = wT
s [kj ;qt], ∀j, t

ât = softmax(ŝt), ∀t

where ws ∈ R2dk is a parameter vector, and [a;b] is the concatenation of vectors a and b. Do
there exist parameters ws such that st,j will approximately equal the angle θ between the two
vectors kj ,qt, or to cos(θ)? (Briefly justify your answer—a formal proof is not required.)

4 of 20

Homework 1: Generative Models of Text 10-423/10-623

(c) (2 points) Short answer: Additive attention defines the attention weights as:

ŝt,j = wT
s tanh(Ws[kj ;qt]),∀j, t

ât = softmax(ŝt), ∀t

where the parameters are ws ∈ Rds and Ws ∈ Rds×ds , dimensionality ds is a hyperparameter,
and [a;b] is the concatenation of vectors a and b. Do there exist parameters ws,Ws such that
st,j will approximately equal the angle θ between the two vectors kj ,qt, or to cos(θ)? (Briefly
justify your answer—a formal proof is not required.)

2.2. Self-attention is typically computed via matrix multiplication. Here we consider multi-headed
attention without a causal attention mask.

X = [x1, . . . ,xN]T

V(i) = XW(i)
v

K(i) = XW
(i)
k

Q(i) = XW(i)
q

S(i) = Q(i)(K(i))T /
√
dk

A(i) = softmax(S(i))

X′(i) = A(i)V(i)

X′ = concat(X′(1), . . . ,X′(h))

where N is the sequence length, h is the number of attention heads, and each row involving i is
defined ∀i ∈ {1, . . . , h}.

(a) (3 points) Short answer: Is the attention matrix A(i) always symmetric? If yes, show that it
is. If not, describe a condition that would ensure it is symmetric.

5 of 20

Homework 1: Generative Models of Text 10-423/10-623

(b) (4 points) Short answer: Suppose we have two attention heads, h = 2, we let dk = dm/h,
and we have a single input X. Let X′ be the output of multi-headed attention on X with the
parameters:

W(1)
v ,W

(1)
k ,W(1)

q ,W(2)
v ,W

(2)
k ,W(2)

q ∈ Rdm×dk

Now suppose we take those same parameters and concatenate along the rows to yield new
parameters:

W′
v = concat(W(1)

v ,W(2)
v), W′

k = concat(W(1)
k ,W

(2)
k), W′

q = concat(W(1)
q ,W(2)

q) ∈ Rdm×dm

And let X′′ be the output of single-headed attention on X with the parameters W′
v,W

′
k,W

′
q.

In this case, does X′′ = X′? Justify your answer.

6 of 20

Homework 1: Generative Models of Text 10-423/10-623

3 Sliding Window Attention (8 points)
3.1. The simplest way to define sliding window attention is by setting the causal mask M to only

include a window of 1
2w + 1 tokens, with the rightmost window element being the current token

(i.e. on the diagonal). Then our attention computation is:

X′ = softmax((QKT /
√
dk) +M)V (1)

For example, if we have a sequence of length N = 6, and window size w = 4, then our mask
matrix is:

M =



0 −∞ −∞ −∞ −∞ −∞
0 0 −∞ −∞ −∞ −∞
0 0 0 −∞ −∞ −∞

−∞ 0 0 0 −∞ −∞
−∞ −∞ 0 0 0 −∞
−∞ −∞ −∞ 0 0 0


(a) (1 point) Short answer: If we implement sliding window using the matrix multiplications

described in Equation 1, what is the time complexity in terms of N and w? (For this and
subsequent questions, assume that the cost of multiplying two matrices X ∈ Rm×n and Y ∈
Rn×p is O(mnp).)

(b) (1 point) Short answer: If we implement sliding window using the matrix multiplications
described in Equation 1, what is the space complexity in terms of N and w?

7 of 20

Homework 1: Generative Models of Text 10-423/10-623

(c) (4 points) Pseudocode: Write pseudocode/math for a function that takes in the queries, keys,
and values and the window size w and computes the X′:

SCALEDDOTPRODUCTATTENTION(Q,K,V, dk, w)

Your pseudocode/math must have lower asymptotic computational than the naive matrix mul-
tiplication approach described above. Your solution can and should include for loops. Assume
access to a function softmax(x) which applies softmax to a vector x and a function tensor(·)
that can be used to contruct vectors, matrices, tensors of arbitrary shape.

(d) (1 point) Short answer: What is the space complexity of your pseudocode in terms of N and
w?

(e) (1 point) Short answer: What is the time complexity of your pseudocode in terms of N and
w?

8 of 20

Homework 1: Generative Models of Text 10-423/10-623

4 Programming: RoPE and GQA (24 points)

Introduction

In this section, you will take a run-of-the-mill GPT model and upgrade it to incorporate two of the key
ingredients found in state-of-the-art large language models (LLMs), such as LLAMA-2.

The first ingredient are rotary position embeddings (RoPE). These will replace the existing absolute
position embeddings with a relative position embedding that rotates small segments of each key and
query vector.

The second ingredient is grouped-query attention (GQA). Although the GQA mechanism is fundamen-
tally still causal attention, it enables the model to use less memory and run faster.

You will experiment with how these two model improvements lead to changes in model performance.
And you will even evaluate how they perform in tandem.

Upon completion of this section, you will unfortunately not be able to claim to have trained a large
language model, for the dataset we provide here (the complete works of Shakespeare) is rather small if
not trite. However, you can reasonably claim to have built your own LLAMA-2 model.

Dataset

The dataset for this homework is a collection of the complete works of Shakespeare. The dataset file is
input.txt, and is around 1.1MB in size.

Starter Code

The starter code was originally authored by Andrej Karpathy, of OpenAI fame, and released as minGPT.
It offers a clear glimpse into the inner workings of a GPT model. We have simplified the codebase and
provided to you a modified version. Ours contains the following files:

hw1/
requirements.txt
input.txt
chargpt.py
mingpt/

model.py
trainer.py
utils.py

Here is what you will find in each file:

1. requirements.txt: A list of packages that need to be installed for this homework. This
homework only requires 2 packages - torch and einops.

2. input.txt: The dataset—the works of Shakespeare.

3. chargpt.py: The main entry point used to train your transformer. It can be run with the com-
mand python chargpt.py. Append flags to this command to adjust the transformer configu-
ration.

4. mingpt/model.py: The only file you need to modify for this homework. This file con-
tains the construction of the GPT model. A vanilla, working transformer implementation

9 of 20

https://arxiv.org/pdf/2307.09288.pdf
https://karpathy.ai/
https://github.com/karpathy/minGPT

Homework 1: Generative Models of Text 10-423/10-623

is already provided. You will implement the classes RotaryPositionalEmbeddings
and GroupedQueryAttention. You will also need to make changes to the class
CausalSelfAttention while implementing RoPE. (Hint: Locations in the code where
changes ought to be made are marked with a TODO.)

5. mingpt/trainer.py: Code for the training loop of the transformer.

6. mingpt/utils.py: Helper functions for saving logs and configs.

Flags

All the parameters printed in the config can be modified by passing flags to chargpt.py. Table 1
contains a list of flags you may find useful while implementing HW1. You can change other parameters
as well in a similar manner. Simply specify the config node (i.e. one of {system,data,model,trainer}),
followed by a period ‘.’, followed by the parameter you wish to modify.

Configuration Parameter Example Flag Usage
Model sequence length --data.block_size=128

(model.block_size is autoset based on this flag)
Directory where model is stored --system.work_dir=out/new_chargpt
Number of query heads
(hyperparameter for GQA)

--model.n_query_head=6

Number of key-value heads
(hyperparameter for GQA)

--model.n_kv_head=3
(n_query_head must be divisible by n_kv_head)
(For standard multi-head attention n_query_head = n_kv_head)

Directory from which to load a model
trained in a previous run

--model.pretrained_folder=out/chargpt3

Whether to enable RoPE embeddings --model.rope=True
Number of iterations to train the
model

--trainer.max_iters=200

Device type (useful for debugging),
one of

--trainer.device=cpu

Table 1: Useful flags for chargpt.py

Model

The default model in chargpt.py is a GPT model with 6 transformer layers. Each attention layer
uses h = 6 attention heads. The maximum sequence length is N = 128. Because the vocabulary is
comprised of only characters, the vocabulary size is only 65. The embedding dimension is dmodel = 192
and the key/value/query dimension size is dk = dmodel/h = 32.

10 of 20

Homework 1: Generative Models of Text 10-423/10-623

Rotary Position Embeddings (RoPE)

In this section, you will implement Rotary Position Embeddings (RoPE) (Su et al., 2021).

Background: Absolute position embeddings are added to the word embeddings in the first layer of a
standard Transformer language model. Subsequent layers propagate position information up from the
bottom.

Traditional attention is defined as below.

qj = WT
q xj ,∀j

kj = WT
k xj ,∀j

st,j = kT
j qt/

√
dk,∀j, t

at = softmax(st), ∀t

where dk = |kj | is the size of the query/key/value vectors.

RoPE: Rotary Position Embeddings (RoPE) (Su et al., 2021) incorporate positional information di-
rectly into the attention computation, in every layer. If the input to the next attention layer is
X = [x1, . . . ,xN]T , then we introduce two functions fq(xj , j) and fk(xj , j), which compute the
position-aware queries and keys respectively. Then the attention scores are computed as below:

qj = WT
q xj , ∀j kj = WT

k xj ,∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√
dk, ∀j, t

at = softmax(st),∀t

where d = dk/2, Wk,Wq ∈ Rdmodel×dk . For some fixed absolute position m, the rotary matrix
RΘ,m ∈ Rdk×dk is given by:

RΘ,m =



cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2
0 0 0 0 . . . sinmθdk/2 cosmθdk/2


The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

11 of 20

https://arxiv.org/pdf/2104.09864.pdf
https://arxiv.org/pdf/2104.09864.pdf

Homework 1: Generative Models of Text 10-423/10-623

Because of the block sparse pattern in Rθ,m, we can efficiently compute the matrix-vector product of
Rθ,m with some arbitrary vector y in a more efficient manner:

RΘ,my =



y1
y2
y3
y4
...

yd−1

yd


⊗



cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2


+



−y2
y1
−y4
y3
...

−yd
yd−1


⊗



sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2


Implementing this efficiently in PyTorch still requires some care. If we have some matrix of embeddings
Y = [y1, . . . ,yN]T ∈ RN×dk (in practice this Y would be either the queries Q or the keys K),
then we want to construct a new matrix Ỹ = g(Y; Θ) such that Ỹm,· = RΘ,mym. Without loss of
generality, we can permute the indices of the vectors ym such that we are working with the indices of
the first/second half of the vector instead of the even/odd indices. Below let d = dk for brevity.

Ỹ = g(Y; Θ)

=

 Y1,1 · · · Y1, d2
Y1, d2+1 · · · Y1,d

...
...

...
...

YN,1 · · · YN, d2
YN, d2+1 · · · YN,d

⊗

 cos 1θ1 · · · cos 1θ d
2

cos 1θ1 · · · cos 1θ d
2

...
...

...
...

cosNθ1 · · · cosNθ d
2

cosNθ1 · · · cosNθ d
2



+

 −Y1, d2+1 · · · −Y1,d Y1,1 · · · Y1, d2
...

...
...

...
−YN, d2+1 · · · −YN,d YN,1 · · · YN, d2

⊗

 sin 1θ1 · · · sin 1θ d
2

sin 1θ1 · · · sin 1θ d
2

...
...

...
...

sinNθ1 · · · sinNθ d
2

sinNθ1 · · · sinNθ d
2


Or more compactly:

C =


1θ1 · · · 1θ d

2
1θ1 · · · 1θ d

2
...

...
...

...
Nθ1 · · · Nθ d

2
Nθ1 · · · Nθ d

2


Ỹ =g(Y; Θ)

=
[
Y·,1:d/2 Y·,d/2+1:d

]
⊗ cos(C)

+
[
−Y·,d/2+1:d Y·,1:d/2

]
⊗ sin(C)

Now we can compute RoPE embeddings efficiently as below:

Q = XWq K = XWk

Q̃ = g(Q; Θ) K̃ = g(K; Θ)

S = Q̃K̃T /
√
dk

A = softmax(S)

You do not have to understand all the math in the paper, but you may go through it to understand the
intuition behind RoPE.

Implementation: You will implement RoPE within minGPT. To do so, you should make
changes to the RotaryPositionalEmbeddings and the CausalSelfAttention classes in
mingpt/model.py.

12 of 20

Homework 1: Generative Models of Text 10-423/10-623

RoPE Empirical Questions

4.1. (4 points) Plot the training loss of your RoPE implementation and vanilla minGPT over 600 itera-
tions with a sequence length of 128.

4.2. (4 points) Plot the training loss of your RoPE implementation and vanilla minGPT over 800 total
training iterations: 600 iterations with a sequence length of 128, followed by 200 iterations with a
sequence length of 256.

13 of 20

Homework 1: Generative Models of Text 10-423/10-623

4.3. (2 points) Provide a sample from your RoPE model after 600 iterations of training with a sequence
length of 128. Condition the sample on the first line of your favorite Shakespeare play.

4.4. (2 points) Provide a sample from your RoPE model after 600 iterations with a sequence length of
128, followed by 200 iterations with a sequence length of 256. Condition the sample on the first
line of your favorite Shakespeare play.

14 of 20

Homework 1: Generative Models of Text 10-423/10-623

Grouped Query Attention (GQA)

Figure 1: Schematic representation of attention mechanisms, showcasing Multi-head attention with individ-
ual keys and values for each head, Grouped-query attention with queries grouped to share common keys and
values, and Multi-query attention utilizing a singular key and value for all queries.

In this section, you will implement Grouped Query Attention (GQA) (Ainslie et al., 2023).

GQA: Grouped Query Attention (GQA) is a technique in neural network architectures that mod-
ifies the attention mechanism used in models such as transformers. It involves dividing the query
heads into groups, each sharing a single key head and value head. This approach can interpo-
late between Multi-Query Attention (MQA) and Multi-Head Attention (MHA), offering a balance
between computational efficiency and model quality [Figure 1].

Let hq denote the number of query heads and hkv the number of key/value heads. We assume hq
is divisible by hkv and g = hq/hkv is the size of each group (i.e. the number of query vectors per
key/value vector).

Our parameter matrices for GQA are all the same size: W(g,i)
q ,W

(g)
k ,W

(g)
v ∈ Rdmodel×dk where

dk = dmodel/hq. However, we now have different numbers of query, key, and value heads:

X = [x1, . . . ,xT]
T

V(i) = XW(i)
v ,∀i ∈ {1, . . . , dkv}

K(i) = XW
(i)
k ,∀i ∈ {1, . . . , dkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , dkv}, ∀j ∈ {1, . . . , g}

Above, we define g times more query vectors than key/value vectors. Then we compute the scaled
dot-product between each query vector (i, j) and its corresponding key (i) and sum over the queries
within each group to get the similarity scores. The similarity scores are used to compute an atten-
tion matrix, but with only hkv heads:

S(i) =

g∑
j=1

Q(i,j)(K(i))T /
√

dk

A(i) = softmax(S(i))

X′(i) = A(i)V(i)

15 of 20

https://arxiv.org/pdf/2305.13245.pdf

Homework 1: Generative Models of Text 10-423/10-623

Implementation Details: You will implement GQA in the GroupedQueryAttention class in
mingpt/model.py. Much of your code will be similar to that in CausalSelfAttention.

Hint: You may find it easier to first re-implement CausalSelfAttention us-
ing einops.rearrange() in place of tensor.view()/tensor.transpose() and
einops.einsum() in place of the @ operator. If you implement GroupedQueryAttention
by extending an implementation of this form, it might be more straightforward.

• Initialization:

– Familiarize yourself with the configuration settings that initialize the attention mechanism,
including the number of query heads, key/value heads, and embedding dimensions.

– Ensure that the embedding dimension is divisible by the number of query and key/value
heads.

• Regularization:

– Incorporate dropout layers for attention and residuals to prevent overfitting.

• Dimensionality and Projections:

– Implement the linear projection layers for queries, keys, and values, considering the di-
mensionality constraints and the grouped nature of the mechanism.

• Rotary Positional Embeddings:

– If rotary positional embeddings are enabled, integrate RoPE with query and key projec-
tions. (Note: Integrating RoPE and GQA is entirely optional, but straightforward.)

• Forward Pass:

– In the forward method, transform the input according to the query, key, and value projec-
tions.

– Apply the attention mechanism by computing grouped scaled dot-product attention

– Mask the attention to ensure causality (preventing future tokens from being attended to).

– Aggregate the attention with the values and project the output back to the embedding
dimension.

• Memory Efficiency:

– Monitor and record the CUDA memory allocation before and after the attention operation
to analyze the memory efficiency of the GQA. A reference code to monitor memory is
present in CausalSelfAttention class.

16 of 20

Homework 1: Generative Models of Text 10-423/10-623

GQA Empirical Questions

The questions below assume you are using absolute position embeddings, not RoPE.

4.5. (4 points) Plot the average time taken to compute attention per iteration in milliseconds across {1,
2, 3, 6} number of key heads.

4.6. (4 points) Plot the memory consumption in MB per iteration across {1, 2, 3, 6} number of key
heads.

17 of 20

Homework 1: Generative Models of Text 10-423/10-623

4.7. (4 points) Plot the training loss of your GQA implementation with 2 key heads vs vanilla (multi
head attention) minGPT over 600 iterations with a sequence length of 128.

18 of 20

Homework 1: Generative Models of Text 10-423/10-623

5 Code Upload (0 points)
5.1. (0 points) Did you upload your code to the appropriate programming slot on Gradescope?

Hint: The correct answer is ‘yes’.

⃝ Yes

⃝ No

For this homework, you should upload all the code files that contain your new and/or changed
code. Files of type .py and .ipynb are both fine.

19 of 20

Homework 1: Generative Models of Text 10-423/10-623

6 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

6.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

6.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.

20 of 20

	Recurrent Neural Network (RNN) Language Models
	Transformer Language Models
	Sliding Window Attention
	Programming: RoPE and GQA
	Code Upload
	Collaboration Questions

