
HOMEWORK 2
GENERATIVE MODELS OF IMAGES *

10-423/10-623 GENERATIVE AI
http://423.mlcourse.org

OUT: Feb. 07, 2024
DUE: Feb. 19, 2024

TAs: Ifigeneia, Qin, Jing, Jacob

Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. Please use the
provided template. Submissions can be handwritten, but must be clearly legible; otherwise, you
will not be awarded marks. Alternatively, submissions can be written in LATEX. Each answer
should be within the box provided. If you do not follow the template, your assignment may
not be graded correctly by our AI assisted grader and there will be a 2% penalty (e.g., if the
homework is out of 100 points, 2 points will be deducted from your final score).

– Programming: You will submit your code for programming questions to Gradescope. There is
no autograder. We will examine your code by hand and may award marks for its submission.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on the course website.

Question Points

Convolutional Neural Networks 6

Encoder-only Transformers 8

Generative Adversarial Network (GAN) 5

Understanding Diffusion Models 18

Programming: Diffusion Models 21

Code Upload 0

Collaboration Questions 2

Total: 60

*Compiled on Monday 12th February, 2024 at 16:22

1

http://423.mlcourse.org

Homework 2: Generative Models of Images 10-423/10-623

1 Convolutional Neural Networks (6 points)
1.1. Suppose we define a convolution layer that takes as input a 3D tensor x ∈ RC×Nh×Nw which is

indexed as xc,i,j where c selects the pixel channel, i selects the row of the pixel, and j selects
the column of the pixel. The convolution parameters θ ∈ RC×Kh×Kw are indexed in the same
way. θ0 ∈ R is the intercept/bias parameter. The output 3D tensor has just a single channel,
y ∈ R1×Nh×Nw .

y1,h,w = θ0 +
C∑
c=1

Kh∑
i=1

Kw∑
j=1

θc,i,jxc,m,n, (1)

where m = h−
⌊
Kh

2

⌋
+ (i− 1) and n = w −

⌊
Kw

2

⌋
+ (j − 1) (2)

∀h ∈ {1, . . . , Nh}, w ∈ {1, . . . , Nw} (3)

where we have written m and n as functions of w,Kh,Kw, i, j for notational convenience.

1.1.a. (3 points) Short answer: The valid indices for xc,m,n are c ∈ {1, . . . , C}, m ∈ {1, . . . , Nh},
n ∈ {1, . . . , Nw}. So, as defined, this convolution layer indexes into some values xc,m,n that
do not exist! Let’s call these non-existent pixels “hallucinated pixels” and assume they take
value 0. How many columns of hallucinated pixels are needed on the left pl and the right pr?
How many rows of hallucinated pixels are need on the top pt and the bottom pb? Report your
answer by defining pl, pr, pt, pb.

1.1.b. (3 points) Short answer: Now suppose we create a new input 3D tensor x′ ∈
RC×(Nh+pb+pt)×(Nw+pl+pr) by explicitly adding pl columns on the left of x, pr columns on
the right, pt rows on top, and pb rows on bottom—all the newly added columns/rows have
value 0. These rows/columns are called padding. Define a new convolution layer by rewrit-
ing Equations (1),(2),(3) so that the input is x′, the resultant output tensor y′ still has shape
R1×Nh×Nw , and we only index into valid positions of x′. The values of y′ should be the
same as those that would have been in y if hallucinated pixels were allowed in our original
formulation.

2 of 22

Homework 2: Generative Models of Images 10-423/10-623

2 Encoder-only Transformers (8 points)
2.1. (2 points) Drawing: Suppose we feed a sentence w1, . . . , wN of length N into a decoder-only

Transformer model (aka. Transformer LM), which defines a distribution p(w1, . . . , wN). Draw
a directed graphical model representing this probability distribution. Your drawing must include
exactly N nodes, one node for each word wn in the sentence.

2.2. Suppose we feed a sentence w1, . . . , wN of length N into an encoder-only Transformer model, to
obtain one output layer embedding hn ∈ RD per word wn. We then compute a score vector sn per
word wn as follows:

sn = exp(Whn + b), ∀n ∈ {1, . . . , N}

where W ∈ RV×D and b ∈ RV , and V is the size of your output vocabulary. Assume your output
vocabulary is the set of possible part-of-speech tags for the words in the input language, e.g. for
English input, the parts of speech are nouns, verbs, adjectives, etc. Each tag is represented by an
integer 1, . . . , V .

2.2.a. (3 points) Use the score vectors st to define a conditional probability distribution over a se-
quence of part-of-speech tags t1, . . . , tN given the words:

p(t1, . . . , tN | w1, . . . , wN) = · · ·

The distribution you define must be globally normalized, not locally normalized.

3 of 22

Homework 2: Generative Models of Images 10-423/10-623

2.2.b. (3 points) Drawing: Draw the corresponding factor graph for this probability distribution.
Your drawing must include exactly 2N nodes, one node for each word wn in the sentence and
one for each tag tn.

4 of 22

Homework 2: Generative Models of Images 10-423/10-623

3 Generative Adversarial Network (GAN) (5 points)
3.1. Suppose we want to define a GAN-inspired model for inpainting grayscale images. Each original

image is a matrix x ∈ (0, 1)Nw×Nh with scalars between 0 and 1 exclusive. The image is accom-
panied by a binary pixel mask m ∈ {0, 1}Nw×Nh , where mij = 1 indicates that the pixel should
be masked out and mij = 0 indicates the pixel should be left intact. Our model is a variant of
U-Net that takes in an input image x and and a mask m and returns a reconstructed image x′ with
the masked pixels filled in by the model, x′ = gθ(x,m). You decide to train your model by using
two loss functions in combination.

3.1.a. (2 points) Short answer: Define a squared error loss ℓmse(θ) for one example (x,m) that,
when minimized, encourages the masked out pixels of the original image to match the recon-
structed pixels output by the model. To be safe, your definition must ensure that the masked
out pixels are never visible to gθ.

3.1.b. (2 points) Short answer: Now suppose we have a discriminator dϕ(x) that returns the proba-
bility that x is a real image and not from the generator gθ. How could your objective function
above be combined with GAN-style training to train the generator so that it is effective at
inpainting, and the discriminator so that it is effective at distinguishing real from inpainted
images? Briefly describe a GAN-style objective ℓgan(ϕ, θ) for one example (x,m) and your
training algorithm.

3.1.c. (1 point) Short answer: Describe one possible disadvantage of training with only ℓmse(θ) as
compared to using this combined training approach.

5 of 22

Homework 2: Generative Models of Images 10-423/10-623

6 of 22

Homework 2: Generative Models of Images 10-423/10-623

4 Understanding Diffusion Models (18 points)

Introduction

Diffusion models are revolutionizing how we generate data, achieving impressive results in text-
conditioned image generation. In this section, we will study the variational interpretation of diffusion
models.

Given observed samples p(x) from a distribution of interest, the goal of a generative model is to learn
to model its true data distribution. Once learned, we can generate new samples from our approximate
model at will. In many situations, we can imagine the data x we see as coming from a latent represen-
tation z responsible for capturing abstract properties that we can’t directly observe. Mathematically,
we can imagine the latent variables and the data we observe as modeled by a joint distribution p(x, z).
Directly computing and maximizing the likelihood p(x) is difficult. Instead, we maximize a lower
bound:

log p(x) ≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
. (4)

qϕ(z | x) is called encoder and can be any distribution with parameters ϕ.

Diffusion Probabilistic Models (Ho et al., 2020) can be viewed as a sequence, of length T , of latent
variables which all have the same dimensionality with the data:

p(x0:T) = p(xT)×
T∏
t=1

pθ(xt−1 | xt), (5)

where p(x0) is the data we observe, x1:T are the latent variables of the model, and xT ∼ N (0, I).
Equation (5) is also called the reverse process of the diffusion model.

The encoder or forward process of a diffusion model is:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1). (6)

The mean and variance of the encoder of a diffusion model are predefined. Therefore, the encoder of
Equation 6 does not have any learnable parameters ϕ.

The ELBO (Equation 4) for the diffusion model described by Equations 5, 6 becomes:

log p(x) ≥ Eq(x1:T |x0)

[
log

pθ(x0:T)

q(x1:T | x0)

]
. (7)

7 of 22

https://arxiv.org/pdf/2006.11239.pdf

Homework 2: Generative Models of Images 10-423/10-623

ELBO surgery

4.1. (5 points) Prove that we can break down Equation (7) as:

log p(x) ≥ Eq(x1|x0)[log pθ(x0 | x1)] +
T−1∑
t=1

Eq(xt−1,xt,xt+1|x0)

[
log

pθ(xt | xt+1)

q(xt | xt−1)

]
︸ ︷︷ ︸

Lt

+C, (8)

where C is a constant term that does not depend on θ.

8 of 22

Homework 2: Generative Models of Images 10-423/10-623

4.2. (2 points) Can you explain what is the effect of the term Lt on the reverse process pθ(xt | xt+1)
of the diffusion model when we try to maximize the ELBO in Equation (8) and why? When is this
term minimized?

Image Diffusion

4.3. (2 points) Assume the encoder of the diffusion model at step t is given by:

q(xt | xt−1) = N (xt;
√
αtxt−1, (1− αt)I), αt > 0. (9)

Describe a way to obtain a sample of the diffusion process at timestep t = τ . Also, state the time
complexity of your algorithm as a function of τ .

9 of 22

Homework 2: Generative Models of Images 10-423/10-623

4.4. (3 points) Reparameterization trick. The reparameterization trick is a powerful mathematical
tool that allows us to generate samples of any Gaussian distribution x ∼ N (µ, σ2I) by sampling
the standard normal normal distribution using the following transformation:

x = µ+ σϵ, where ϵ ∼ N (0, I). (10)

Use the reparameterization trick (Equation 10) to show that we can write the encoder of Equation 9
as:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), where ᾱt =

t∏
i=1

αi. (11)

4.5. (2 points) Describe a way to obtain a sample of the forward diffusion process at timestep t = τ
using the formulation of Equation 11. Also, state the time complexity of your algorithm as a
function of τ .

10 of 22

Homework 2: Generative Models of Images 10-423/10-623

Image Denoising

It can be proved (see Appendix A by Ho et al., 2020) that Equation 8 can be rewritten:

log p(x) ≥ Eq(x1|x0)[log pθ(x0 | x1)]−
T∑
t=2

Eq(xt|x0) [DKL (q(xt−1 | xt,x0), pθ(xt−1 | xt))]︸ ︷︷ ︸
L′

t

+C,

(12)

4.6. (3 points) The terms q(xt−1 | xt,x0) in Equation 12 can act as a ground-truth signal, since it
defines how to denoise a noisy image xt with access to what the final, completely denoised image
x0 should be.

Prove that:

q(xt−1 | xt,x0) =
q(xt | xt−1)q(xt−1 | x0)

q(xt | x0)
. (13)

4.7. (1 point) The term L′t in Equation 12 is a denoising matching term. When we train θ to maximize
the ELBO of Equation 12, can you explain what is the effect of term L′t on the denoising step
pθ(xt−1 | xt)?

11 of 22

https://arxiv.org/pdf/2006.11239.pdf

Homework 2: Generative Models of Images 10-423/10-623

5 Programming: Diffusion Models (21 points)

Introduction

In this section, you will dive into the practical aspects of implementing the diffusion model we saw in
Problem 4. Throughout this programming assignment, you will gain hands-on experience into state-of-
the-art techniques for image generation and denoising tasks.

It’s worth noting that, due to limited computing resources, the dataset provided for this exercise is only
a subset of the original dataset. Therefore, the quality of the generated images may not meet expecta-
tions. Nevertheless, your experimentation with DDPM will offer valuable insights into its capabilities
and potential for broader applications in machine learning and data analysis. Upon completion, you’ll
have acquired practical experience in building and leveraging DDPMs, opening doors to a deeper un-
derstanding of diffusion models.

Dataset

The dataset for this homework is the Animal Faces-HQ dataset (AFHQ), consisting of 15,000 high-
quality images at 512 × 512 resolution. The dataset includes three domains of cat, dog, and wildlife,
and in our assignment you only need to use cat images to reduce the computation complexity.

Starter Code

The main structure of the files is organized as follows:

hw2/
data/
diffusion.py
main.py
requirements.txt
run_in_colab.ipynb
trainer.py
unet.py

Here is what you will find in each file:

1. data: Contains the AFHQ dataset.

2. diffusion.py: Constructs the diffusion model, including the forward process, backward pro-
cess, and scheduler, which you will implement. (Hint: This is the only file you need to modify.
Locations in the code where changes ought to be made are marked with a TODO.)

3. main.py: Serves as the main entry point for training and evaluating your diffusion model. Run
it using the command python main.py. Append flags to this command to adjust the diffusion
model’s configuration.

4. requirements.txt: Lists the packages that need to be installed for this assignment.

5. run_in_colab.ipynb: Provides command lines to train and evaluate your diffusion model
in Google Colab.

6. trainer.py: Provides code for training and evaluating the diffusion model.

12 of 22

https://github.com/clovaai/stargan-v2/blob/master/README.md#animal-faces-hq-dataset-afhq

Homework 2: Generative Models of Images 10-423/10-623

7. unet.py: Contains code for the U-Net network, which aims to model the denoising function for
the diffusion model.

Flags

All the parameters printed in the config can be modified by passing flags to main.py. Table 1 contains
a list of flags you may find useful while implementing HW2. You can change other parameters as well
in a similar manner.

Configuration Parameter Example Flag Usage
Model image size --image_size 32
Model batch size --batch_size 32
Model data domain of AFHQ dataset --data_class cat
Directory where the model is stored --save_folder ./results/
Path of a trained model --load_path ./results/model.pt
Directory from which to load dataset --data_path ./data/train/
Number of iterations to train the model --train_steps 10000
Number of steps of diffusion process, T --time_steps 300
Number of output channels of the first layer
in U-Net

--unet_dim 16

Learning rate in the training --learning_rate 1e-3
Frequency of periodic save, sample and
(optionally) FID calculation

--save_and_sample_every 1000

Enable FID calculation --fid
Enable visualization --visualize

Table 1: Useful flags for main.py

Command Line

We recommend conducting this homework on Colab. Colab provides a free T4 GPU for code execution,
albeit with a time limitation that may result in slower training. In the event of GPU depletion on Colab,
options include waiting for GPU recovery, switching Google accounts, or purchasing additional GPU
resources.

To facilitate code execution, utilize the provided command lines, which are also available in the
”run in colab.ipynb” file. Ensure to prepend ”%” before the ”cd” command and include ”!” before
other commands when working on Colab.

Download AFHQ dataset:

mkdir -p ./data
wget -N https://cmu.box.com/shared/static/5

iydd9zn3ednl27rcq0qud2scq7839ym -O ./data/afhq_v2.zip
unzip -q ./data/afhq_v2.zip -d ./data

Install required packages:

pip install -r requirements.txt

13 of 22

Homework 2: Generative Models of Images 10-423/10-623

Tips: Consider validating your implementation on smaller image sizes, batch sizes, and fewer training
steps to expedite the training process.

python main.py \
--data_path ./data/train \
--save_folder path_to_save_folder \
--time_steps 50 \
--train_steps 10000 \
--image_size 32 \
--batch_size 32 \
--learning_rate 1e-3 \
--unet_dim 16

Visualize the diffusion process:

python main.py \
--data_path ./data/train/ \
--load_path path_to_saved_model \
--save_folder path_to_save_folder \
--time_steps 50 \
--train_steps 10000 \
--image_size 32 \
--batch_size 32 \
--learning_rate 1e-3 \
--unet_dim 16 \
--visualize

Diffusion

In this problem, you will implement Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020), in the Diffusion class in diffusion.py.

Figure 1: The Markov chain of forward (reverse) diffusion process of generating a sample by slowly adding
(removing) noise.

Forward Process (Noise ← Image): In this problem, x0 ∼ q(x) corresponds to the pixels of the
image. As we saw in Problem 4, the forward diffusion process sequentially applies a small amount of
Gaussian noise to the data sample x0 for T steps, producing a sequence of noisy samples x1, . . . ,xT .
In Equation 9, we derived the diffusion step:

q(xt|xt−1) = N (xt;
√
αtxt−1, 1− αtI), (14)

14 of 22

https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2006.11239.pdf

Homework 2: Generative Models of Images 10-423/10-623

where xt is the image after t diffusion steps, I is the identity matrix. The step sizes are controlled by
a variance schedule {αt ∈ (0, 1)}Tt=1 such that the data sample x0 gradually loses its distinguishable
features as step t becomes larger. This is shown in Fig. 1.

In Problem 4.4, we used the reparameterization trick to sample xt directly from x0:

xt =
√
ᾱtx0 +

√
1− αtϵ,where ϵ ∼ N (0, I). (15)

Noise Schedule: In this assignment, we use the improved cosine-based variance schedule of (Nichol &
Dhariwal, 2021):

αt = clip
(

ᾱt

ᾱt−1
, 0.001, 1

)
, ᾱt =

f(t)

f(0)
,

where f(t) = cos

(
t/T + s

1 + s
· π
2

)2

,

(16)

and we set s = 0.008 to prevent αt from becoming too large when close to t = 0.

Reverse Process (Noise→ Image): The reverse model pθ(xt−1|xt) (Fig. 1) is trained to maximize the
lower bound of Equation 12.

We note that the forward process q(xt|xt−1) does not contain any trainable parameters. In Equation 13,
we did the first step to compute the term q(xt−1|xt,x0) that appears in our objective function (Equa-
tion 12). In fact, we have already derived the three terms of Equation 13. In particular, q(xt | xt−1) is
given by Equation 9. From Problem 4.4, we also know that:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), where ᾱt =

t∏
i=1

αi. (17)

This derivation can be modified to also yield the Gaussian parameterization describing q(xt−1 | x0).
After tedious numerical combinations to combine the three Gaussian terms in Equation 13, we obtain:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), Σ̃t), where:

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x0,

Σ̃t =
1− ᾱt−1

1− ᾱt
(1− αt)I = σ2

t I.

(18)

We have therefore shown that at each step, q(xt−1|xt,x0) is normally distributed, with mean µ̃t(xt,x0)
that is a function of xt and x0, and variance Σ̃t as a function of ᾱt coefficients. In order to
match approximately the denoising transition step pθ(xt−1|xt) to ground-truth denoising transition step
q(xt−1|xt,x0) as closely as possible, we can also model it as a Gaussian. Furthermore, since Σ̃t is a
priori known during training, we can immediately construct the variance of the approximate denoising
transition step to also be Σ̃t. Therefore, to define pθ(xt−1|xt), we only need to find its mean µθ(xt, t).
µθ(xt, t) is implemented by a neural network that only takes xt as an input, and not x0. This is because
pθ(xt−1|xt) is conditioned only on xt and not x0.

Under these assumptions, one can show that minimizing the KL divergence in Equation 12 boils down
to learning a neural network to predict the original ground truth image x0 from an arbitrarily noisified
version of it xt.

15 of 22

Homework 2: Generative Models of Images 10-423/10-623

Going one step further, one can show that this is equilavent to training a neural network ϵθ(xt, t) that
learns to predict the source noise ϵ that determines xt from x0. This can be understood by rearranging
the terms in Equation 15:

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵ

)
. (19)

Reverse Processs Model: The reverse process model ϵθ is defined in unet.py and is an implementa-
tion of a CNN called U-Net, as illustrated in Fig. 2. U-Net’s role here is to model the denoising function
at each step of the reverse diffusion process. The architecture’s ability to handle details at multiple
scales and its effectiveness in capturing both local and global features make it well-suited for the task
of denoising in diffusion models. By predicting the noise that was added at each step of the forward
diffusion process, the U-Net helps to gradually reconstruct the data sample from noise.

Figure 2: The structure of U-Net.

Training: The training algorithm is described in Alg. 1. We utilize a minibatch of data to train our
reverse process model, denoted as ϵθ, which estimates the noise introduced during the forward diffusion
process. You are required to implement the function forward, q_sample and p_loss within the
Diffusion class. The p_loss function defines the training loss using the L1 loss. Additionaly, We
set a noise scheduler and pre-define some coefficients in the __init__ function for efficient reuse, so
you should also fill in the blanks there.

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, ..., T})
4: ϵ ∼ N (0, I)
5: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ ▷ forward diffusion process

6: Take optimizer step on L1 loss,∇θ∥ϵ− ϵθ(xt, t)∥1
7: until converged

Sampling: The sampling algorithm is described in Alg. 2. The real implementation considers a mini-
batch of samples, and use extract function to extract coefficients for batched operation. You need
to implement function sample, p_sample, and p_sample_loop in the Diffusion class that
defines the reverse diffusion process to generate images.

16 of 22

Homework 2: Generative Models of Images 10-423/10-623

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: ϵt ← ϵθ(xt, t) ▷ predicted noise
5: x̂0 ← 1√

ᾱt

(
xt −

√
1− ᾱtϵt

)
▷ estimated x̂0

6: x̂0 ← clamp(x̂0,−1, 1) ▷ rectify x̂0

7: µ̃t ←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1(1−αt)

1−ᾱt
x̂0 ▷ posterior mean of xt−1

8: σ2
t ←

1−ᾱt−1

1−ᾱt
(1− αt) ▷ posterior variance of xt−1

9: xt−1 ← µ̃t + σtz ▷ reverse diffusion process
return x0

Evaluation: To gauge the improvement in generative prowess throughout the training process, calculate
the Fréchet Inception Distance (FID) between the training dataset and the generated samples from the
current model. FID serves as a crucial metric in assessing the quality of generated data, providing a
quantitative measure that goes beyond traditional visual inspection.

FID is a widely adopted metric in the realm of generative models, offering a robust evaluation of the
dissimilarity between the true data distribution and the generated distribution. By incorporating both
the mean and covariance of feature representations extracted from a pre-trained neural network, FID
captures nuanced differences and similarities, offering valuable insights into the fidelity of generated
samples.

We use clean-fid package to easily compute the FID score between resized training images and
generated images.

17 of 22

Homework 2: Generative Models of Images 10-423/10-623

Diffusion Empirical Questions

Clarification: The code to generate the following figures are already provided, you can get figures in
wandb once you complete the diffusion part.

5.1. (4 points) Training: Plot the training loss of your Diffusion model above over 1,000 training steps
with the recommended parameters in the above command line. Your model should be generating
blurry cats at this point. Additional recommended flags: --train_steps 1000.

[Expected runtime on Colab T4: 5-10 minutes]

Training Loss

5.2. (4 points) Training: During training time, the starter code uses the ‘compute fid’ function
from ‘clean-fid’ to compute the FID value between training samples and generated samples.
Get the FID value every 100 training steps and plot it over 1,000 training steps with the
recommended parameters in the above command line. Additional recommended flags: --
save_and_sample_every 100 --train_steps 1000 --fid.

[Expected runtime on Colab T4: 15-60 minutes]

FID

18 of 22

Homework 2: Generative Models of Images 10-423/10-623

5.3. (4 points) Visualization: Use the trained model after 1,000 steps to illustrate the forward diffusion
process on the initial batch of the training dataset at key time intervals: 0%, 25%, 50%, 75%, and
99% of the total timesteps. The resulting figure should resemble the provided sample, though the
images will vary due to inherent randomness.

Figure 3: Sample Figure of the Forward Diffusion Process.

Forward Process

5.4. (4 points) Visualization: Next, input the noise images generated from the preceding forward pro-
cess (i.e., the image from the last timestep in the forward process) to the diffusion model. Utilize
these images to generate visualizations of the backward diffusion process at key intervals: 0%,
25%, 50%, 75%, and 99% of the total timesteps. The resulting figure should resemble the pro-
vided sample, though the images will vary due to inherent randomness.

Figure 4: Sample Figure of the Backward Diffusion Process.

19 of 22

Homework 2: Generative Models of Images 10-423/10-623

Backward Process

5.5. (5 points) Visualization: Finally, train the model for a full 10,000 iterations and show the images
generated in the last sample batch. The images should be a substantial improvement over training
with fewer iterations. Additional recommended flags: --save_and_sample_every 1000
--train_steps 10000 --fid False.

[Expected runtime on Colab T4: 1-3 hours]

Backward Process

20 of 22

Homework 2: Generative Models of Images 10-423/10-623

6 Code Upload (0 points)
6.1. (0 points) Did you upload your code to the appropriate programming slot on Gradescope?

Hint: The correct answer is ‘yes’.

⃝ Yes

⃝ No

For this homework, you should upload all the code files that contain your new and/or changed
code. Files of type .py and .ipynb are both fine.

21 of 22

Homework 2: Generative Models of Images 10-423/10-623

7 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

7.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

7.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.

22 of 22

	Convolutional Neural Networks
	Encoder-only Transformers
	Generative Adversarial Network (GAN)
	Understanding Diffusion Models
	Programming: Diffusion Models
	Code Upload
	Collaboration Questions

