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WHAT IS GENERATIVE AI?
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Artificial Intelligence
The basic goal of AI is to develop intelligent 
machines.

This consists of many sub-goals:
• Perception
• Reasoning
• Control / Motion / Manipulation
• Planning
• Communication
• Creativity
• Learning
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qQ: What does Generative AI 
have to do with any of 
these goals?

qA: It’s making in-roads into 
all of them.
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q Communication comprises the 
comprehension and generation of 
human language. 

q Large language models (LLMs) 
excel at both

q (Even though they are most often 
trained autoregressively, i.e. to 
generate a next word, given the 
previous ones)
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q The traditional way of learning in 
ML is via parameter estimation

q But in-context learning (i.e. 
providing training examples as 
context at test time) shows that 
learning can also be done via 
inference
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q LLMs are also (unexpectedly) 
good at certain reasoning tasks

q cf. Chain-of-Though Prompting 
(an ex. of in-context learning)



Artificial Intelligence
The basic goal of AI is to develop intelligent 
machines.

This consists of many sub-goals:
• Perception
• Reasoning
• Control / Motion / Manipulation
• Planning
• Communication
• Creativity
• Learning

16

Artificial Intelligence

Machine Learning

Deep Learning

GenAI

q LLMs are already being used for 
grounded planning for 
embodied agents, c.f. LLM-
Planner
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q Text-to-image models 
[Midjourney’s Discord server has 
18 million members (1.7 million 
were online this morning)]

q Text-to-music models
[MusicGen capable of 
conditioning on text and audio 
sample]
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q Multimodal foundation models 
learn to answer questions about 
images (and text in images)

q Diffusion models can be used as 
zero-shot classifiers
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q DayDreamer learns a generative 
model of experiences for RL, i.e. 
a World Model, without 
simulation

q Quadruped
robot learns
to walk in
under 1 hour
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qQ: What does Generative AI 
have to do with any of 
these goals?

qA: It’s making in-roads into 
all of them.



WHAT IS GENERATIVE AI CAPABLE OF?

21



Text Generation
Prompt: Write a proof of the fact that there are 
infinitely many primes; do it in the style of a 
Shakespeare play through a dialogue between two 
parties arguing over the proof.

GPT-4: Enter FIRST PARTY and SECOND PARTY. 

FIRST PARTY: Thou dost not understand, my friend, 
There simply is no upper end To primes, those 
numbers indivisible, No matter if it seems impossible. 

SECOND PARTY: But how dost thou so surely know? 
To prove this truth, what canst thou show? 

FIRST PARTY: Consider this, my doubtful peer, A 
clever proof that will make clear: Assume that there’s 
a final prime, The largest one we’ll see in time. Let’s 
call this number "P" for short, And then, my friend, 
we will purport To build a number "Q" that’s new, 
One larger than "P" and prime too. 

SECOND PARTY: But how, my friend, will this be 
done? The proof is not yet fairly won. 

FIRST PARTY: It’s simple, friend, just wait and see, 
We’ll multiply the primes, that’s key. All primes from 
two to "P" combined, Will make this new "Q" we will 
find. But one thing more we must include, To make 
the proof more watertight, We’ll add a one onto the 
end, And now the proof is in our sight. 

SECOND PARTY: I see it now, it’s crystal clear, For "Q" 
must be a prime, my dear. It can’t divide by any prime, 
All smaller than itself in time. And since we chose "P" 
as the last, This proves that our assumption’s past. 
There is no final prime, we see, The numbers go on 
endlessly.

22
Example from https://arxiv.org/pdf/2303.12712.pdf



Image Editing
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Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Text-to-Image Generation

24

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: close up headshot, futuristic old 
man, wild hair sly smile in front of 
gigantic UFO, dslr, sharp focus, dynamic 
composition, rule of thirds

Figure from https://stablediffusionweb.com/



Music Generation
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Figure from https://arxiv.org/pdf/2306.05284.pdf 

MusicGen
• A transformer decoder model over quantized 

units (discrete elements of a codebook of audio 
frames)

• Interleaves sounds by adjusting how codebooks 
attend to each other

• Permits conditioning on text and/or audio 
samples



Code Generation
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Example from https://arxiv.org/pdf/2303.12712.pdf



Video Generation
• Latent diffusion 

models use a low-
dimensional latent 
space for efficiency

• Key question: how 
to generate multiple 
correlated frames?

• ‘Align your latents’ 
inserts temporal 
convolution / 
attention  between 
each spatial 
convolution / 
attention

• ‘Preserve Your Own 
Correlation’ includes 
temporally 
correlated noise

27
Figure from https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt



SCALING UP
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Training Data for LLMs

29

The Pile:
• An open source dataset for 

training language models
• Comprised of 22 smaller 

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens 



RLHF
• InstructGPT uses 

Reinforcement 
Learning with Human 
Feedback (RLHF) to 
fine-tune a pre-
trained GPT model

• From the paper: 
“In human 
evaluations on our 
prompt distribution, 
outputs from the 1.3B 
parameter 
InstructGPT model are 
preferred to outputs 
from the 175B GPT-3, 
despite having 100x 
fewer parameters.”

30
Figure from https://arxiv.org/pdf/2203.02155.pdf 

https://arxiv.org/pdf/2203.02155.pdf


Memory Usage of LLMs
How to store a large language 
model in memory?
– full precision: 32-bit floats
– half precision: 16-bit floats
– Using half precision not only 

reduces memory, it also speeds 
up GPU computation

– “Peak float16 matrix multiplication 
and convolution performance is 16x 
faster than peak float32 
performance on A100 GPUs.” 
from Pytorch docs

31

Model Megatron-LM GPT-3

# parameters 8.3 billion 175 billion

full precision 30 Gb 651 Gb

half precision 15 Gb 325 Gb

GPU / TPU Max Memory

TPU v2 16 Gb

TPU v3/v4 32 Gb

Tesla V100 GPU 32 Gb

NVIDIA RTX A6000 48 Gb

Tesla A100 GPU 80 Gb

https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/


Distributed Training: Model Parallel

32
Figure from https://arxiv.org/pdf/2102.07988.pdf 

There are a variety of 
different options for 
how to distribute the 
model computation / 
parameters across 
multiple devices.

Matrix multiplication 
comprises most 
Transformer LM 
computation and can be 
divided along rows/columns 
of the respective matrices.

The most natural division is 
by layer: each device 
computes a subset of the 
layers, only that device 
stores the parameters and 
computation graph for 
those layers.

A more efficient solution is 
to divide computation by 
token and layer. This 
requires careful division of 
work and is specific to the 
Transformer LM.

https://arxiv.org/pdf/2102.07988.pdf


Cost to train

33
Figure from https://arxiv.org/pdf/2203.15556.pdf  

https://arxiv.org/pdf/2203.15556.pdf


Timeline: Language Modeling
20

00
n-

gr
am

s

20
10

RN
N-

LM
s

20
17

Tr
an

sf
or

m
er

LM
s

20
18

EL
M

O

BE
RT GP

T

20
19

GP
T-

2

Ro
BE

RT
a

34

20
20

GP
T-

3

20
21

In
st

ru
ct

GP T
La

M
BD

A

20
22

Pa
lm

Ch
at

GP
T

BL
O

O
M

20
23

Ll
am

a

GP
T-

4

Fa
lco

n

M
ist

ra
l

M
am

ba

20
24

Ge
m

in
i 1

.5
Cl

au
de

 3
Ll

am
a-

3
GP

T-
4o



Timeline: Image Generation
19
98

Le
Ne

t

20
09

Im
ag

eN
et

20
10

Pa
sc

al
VO

C

20
12

Al
ex

Ne
t

20
13

VA
Es

20
14

VG
G

R-
CN

N

GA
Ns

20
15

Di
ffu

sio
n 

m
od

el
s

Re
sN

et

35

20
17

Tr
an

sf
or

m er

20
20

DD
PM

20
21

Vi
sio

n 
Tr

an
sf

or
m er

Da
ll-

E

CL
IP

20
22

Da
ll-

E 
2

Im
ag

en
St

ab
le

 
di

ffu
sio

n
M

id
jo

ur
ne y

20
23

SD
XL

SD
XL

 
Tu

rb
o

St
ab

le
 

Vi
de

o 
Di

ffu
sio

n

20
24

St
ab

le
 

di
ffu

sio
n 

3

So
ra



Why learn the inner-
workings of GenAI?

38

(a metaphor)



Figure from https://www.astonmartin.com/en/



Figure from https://daily.jstor.org/the-science-of-traffic/
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Figure from https://www.energy.gov/eere/vehicles/fact-617-april-5-2010-changes-vehicles-capita-around-world

Figure from https://earthobservatory.nasa.gov/images/149321/2021-continued-earths-warming-trend
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Figure from GHSA

Figure from https://www.businesswire.com/news/home/20210624005926/en/Strategy-Analytics-Half-the-World-Owns-a-Smartphone

https://www.ghsa.org/sites/default/files/2023-06/GHSA%20-%20Pedestrian%20Traffic%20Fatalities%20by%20State%2C%202022%20Preliminary%20Data%20%28January-December%29.pdf
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Figure from https://www.npr.org/2024/01/16/1224913698/teslas-chicago-charging-extreme-cold



GENERATIVE AI IS PROBABILISTIC MODELING
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GenAI is Probabilistic Modeling

47

p(xt+1 | x1, . . . , xt)



What if I want to model 
EVERY possible 

interaction?

…or at least the interactions of the 
current variable with all those that came 

before it…

48

(RNN-LMs)



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector

49

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | fθ(w1))
      p(w3 | fθ(w2, w1))
      p(w4 | fθ(w3, w2, w1))
      p(w5 | fθ(w4, w3, w2, w1))
      p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:



Topics

50

• Generative models of text 
– RNN LMs / Autodiff 
– Transformer LMs
– Pre-training, fine-tuning, evaluation, decoding 

• Generative models of images 
– CNNs / Transformers for vision
– GANs, Conditional GANs
– VAEs and Diffusion models 

• Applying and adapting foundation models
– Reinforcement learning with human feedback 

(RLHF)
– Parameter-efficient fine tuning 
– In-context learning for text
– In-context learning for vision

• Multimodal foundation models
– Text-to-image generation
– Aligning multimodal representations 
– Visual-language foundation models

• Scaling models
– Efficient decoding strategies
– Distributed training
– Scaling laws and data
– Mixture of experts / FlashAttention

• What can go wrong?
– Safety/bias/fairness, Hallucinations, Adversarial 

(e.g., prompt injection) attacks
– Cheating – how to watermark, Legal issues, e.g., 

copyright,...
– Drift in performance, Data contamination, Lack of 

ground truth
• Advanced Topics 

– State space models
– Code generation
– Audio understanding and synthesis 
– Video synthesis



SYLLABUS HIGHLIGHTS
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Syllabus Highlights

The syllabus is located on the course webpage:

The course policies are required reading.

52

https://www.cs.cmu.edu/~mgormley/courses/10423/
http://423.mlcourse.org 
http://623.mlcourse.org  

http://423.mlcourse.org/
http://623.mlcourse.org/


Syllabus Highlights
• Grading: 40% homework, 10% quizzes, 20% 

exam, 25% project, 5% participation
• Exam: in-class exam, Mon, Mar. 31
• Homework: 5 assignments

– 8 grace days for homework assignments
– Late submissions: 80% day 1, 60% day 2, 40% 

day 3, 20% day 4
– No submissions accepted after 4 days w/o 

extension
– Extension requests: only for emergency 

situations, see syllabus
• Recitations: Fridays, same time/place as 

lecture (optional, interactive sessions)
• Readings: required, online PDFs, 

recommended for after lecture

• Technologies: 
– Piazza (discussion),
– Gradescope (homework), 
– Google Forms (polls), 
– Zoom (livestream), 
– Panopto (video recordings)

• Academic Integrity:
– Collaboration encouraged, but must be 

documented
– Solutions must always be written 

independently
– No use of found code / past work
– No use of AI tools to complete HW
– (Policies differ from 10-301/10-601)

• Office Hours: posted on Google Calendar 
on “Office Hours” page

53



Lectures
• You should ask lots of questions
– Interrupting (by raising a hand) to ask your question is strongly 

encouraged
– Asking questions later (or in real time) on Piazza is also great

• When I ask a question…
– I want you to answer
– Even if you don’t answer, think it through as though I’m about to 

call on you
• Interaction improves learning (both in-class and at my office 

hours)

54



Prerequisites
What they are:
Introductory machine learning. 
(i.e. 10-301, 10-315, 10-601, 10-701)

If you instead took an introduction 
to deep learning course, that is 
also fine 
(i.e. 11-485/11-685/11-785)

What is not required:
• Deep learning
• PyTorch

55

Depending on which prerequisite 
course you took and in which 

semester you took it, you may or 
may not have been exposed to 
deep learning and/or PyTorch. 

Either way is fine.



Homework
There will be 5 homework assignments during the semester. The 
assignments will consist of both conceptual and programming 
problems. 

56

Main Topic Implementation Application 
Area

Type

HW0 PyTorch Primer image classifier + 
Text classifier

vision + 
language

written + 
programming

HW1 Large Language 
Models

TransformerLM with 
GQA and RoPE

text gen written + 
programming

HW2 Image Generation Diffusion model image gen written + 
programming

HW3 Adapters for LLMs GPT-2 + LoRA instruction fine-
tuning

written + 
programming

HW4 Multimodal 
Foundation Models

text-to-image editing 
model

vision + 
language

written + 
programming

HW623 (10-623 only) read / analyze a recent 
research paper

genAI video 
presentation



Project
• Goals:
– Explore a generative modeling 

technique of your choosing
– Deeper understanding of 

methods in real-world 
application

– Report back to the class 
during a poster session 
to be held sometime over 
finals period

– Work in teams of 3 students

58

Prompt to ChatGPT-4o: Create an image of 
three Scottish terriers in traditional Scottish 

outfits working collaboratively on a project for 
a generative AI course



Textbooks

Instead, we will be directing 
your reading time to current 

research papers.

59

…do not exist for this course.



Where can I find…?
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Where can I find…?
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Where can I find…?
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Reminders

• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Jan 17
– Due: Mon, Jan 27 at 11:59pm
– Two parts: 

1. written part to Gradescope
2. programming part to Gradescope

– unique policy for this assignment: we will grant (essentially) any
and all extension requests

63



Learning Objectives
You should be able to…
1. Differentiate between different mechanisms of learning such as parameter tuning and 

in-context learning.
2. Implement the foundational models underlying modern approaches to generative 

modeling, such as transformers and diffusion models.
3. Apply existing models to real-world generation problems for text, code, images, audio, 

and video.
4. Employ techniques for adapting foundation models to tasks such as fine-tuning, 

adapters, and in-context learning.
5. Enable methods for generative modeling to scale-up to large datasets of text, code, or 

images.
6. Use existing generative models to solve real-world discriminative problems and for 

other everyday use cases.
7. Analyze the theoretical properties of foundation models at scale.
8. Identify potential pitfalls of generative modeling for different modalities.
9. Describe societal impacts of large-scale generative AI systems.

65



Q&A
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BACKGROUND:
N-GRAM LANGUAGE MODELS

79



n-Gram Language Model
• Goal: Generate realistic looking sentences in a human 

language
• Key Idea: condition on the last n-1 words to sample 

the nth word

80
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The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?

81

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)
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The bat made nightnoise at

The bat made noise at

The bat made noise
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The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because 
it is always true for every probability 

distribution



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

83

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2)
      p(w4 | w3)
      p(w5 | w4)
      p(w6 | w5)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightat

noise at

made noise

bat made

The bat

The

n-Gram Model (n=2)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

84

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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p(wt | wt-2 = made, 
    wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The, 
    wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows, 
    wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?

87

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Approacheth, denay. dungy 
Thither! Julius think: grant,--O 
Yead linens, sheep's Ancient, 
Agreed: Petrarch plaguy Resolved 
pear! observingly honourest 
adulteries wherever scabbard 
guess; affirmation--his monsieur; 
died. jealousy, chequins me. 
Daphne building. weakness: sun-
rise, cannot stays carry't, 
unpurposed. prophet-like drink; 
back-return 'gainst surmise 
Bridget ships? wane; interim? 
She's striving wet;

5-Gram Model
I tell you, friends, most charitable care
ave the patricians of you. For your 
wants,  Your suffering in this dearth, 
you may as well Strike at the heaven 
with your staves as lift them Against 
the Roman state, whose course will on
The way it takes, cracking ten thousand 
curbs Of more strong link asunder than 
can ever Appear in your impediment. 
For the dearth,  The gods, not the 
patricians, make it, and Your knees to 
them, not arms, must help. 

Training Data (Shakespeaere)



RECURRENT NEURAL NETWORK (RNN) 
LANGUAGE MODELS
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Recurrent Neural Networks (RNNs)
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x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5



The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because 
it is always true for every probability 

distribution

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | fθ(w1))
      p(w3 | fθ(w2, w1))
      p(w4 | fθ(w3, w2, w1))
      p(w5 | fθ(w4, w3, w2, w1))
      p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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START

p(w1|h1) 

h1

The

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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TheSTART

h1

p(w2|h2) 

h2

bat

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model

97

The batSTART

p(w3|h3) 

made

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3



RNN Language Model
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The bat madeSTART

p(w4|h4) 

noise

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4



RNN Language Model
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The bat made noiseSTART

p(w5|h5) 

at

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5



RNN Language Model
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The bat made noise atSTART

p(w6|h6) 

night

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

Answer:

Question: How can we create a distribution 
p(wt|ht) from ht?

h1 h2 h3 h4 h5 h6



RNN Language Model
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The bat made nightnoise atSTART

p(w7|h7) 

END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5 h6 h7



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)

h1 h2 h3 h4 h5 h6 h7



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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The bat made nightnoise at
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The same approach to 
sampling we used for an n-
Gram Language Model also 

works here for an RNN 
Language Model



Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

104
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

Shakespeare’s As You Like It
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

RNN-LM Sample
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

RNN-LM Sample
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

Shakespeare’s As You Like It
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


MODULE-BASED AUTOMATIC 
DIFFERENTIATION
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Backpropagation
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Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing 

(dui/dvj) is easy)
 



Backpropagation
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Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui 
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node



Backpropagation: 
Procedural Method

Drawbacks of 
Procedural Method
1. Hard to reuse / 

adapt for other 
models

2. (Possibly) harder to 
make individual 
steps more efficient

3. Hard to find source 
of error if finite-
difference check 
reports an error 
(since it tells you 
only that there is an 
error somewhere in 
those 17 lines of 
code)
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Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz " z " (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ



Module-based AutoDiff
• Key Idea: 

– componentize the computation of the neural-network into layers
– each layer consolidates multiple real-valued nodes in the 

computation graph (a subset of them) into one vector-valued node 
(aka. a module)

• Each module is capable of two actions:
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1. Forward computation of output b = [b1, . . . , bB ] given input
a = [a1, . . . , aA] via some di昀昀erentiable function f . That is
b = f(a).

2. Backward computation of the gradient of the input
ga = ∇aJ = [ ∂J

∂a1

, . . . , ∂J
∂aA

] given the gradient of output
gb = ∇bJ = [ ∂J

∂b1
, . . . , ∂J

∂bB
], where J is the 昀椀nal real‐valued

output of the entire computation graph. This is done via the
chain rule ∂J

∂ai
=

∑J
j=1

∂J
∂bj

dbj
dai

for all i ∈ {1, . . . , A}.

module

a

b gb

ga



Module-based AutoDiff
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Dimensions: input a ∈ RA, output b ∈ RB , gradient
of output ga ! ∇aJ ∈ RA, and gradient of input gb !

∇bJ ∈ RB .

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and! is element-wisemultiplication s.t. u!
v = [u1v1, . . . , uMvM ].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ! b ! (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga

Cross-Entropy Module Thecross-entropy layer has two in-
puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga



Module-based AutoDiff

Advantages of 
Module-based 
AutoDiff
1. Easy to reuse / 

adapt for other 
models

2. Encapsulated 
layers are easier 
to optimize (e.g. 
implement in C++ 
or CUDA)

3. Easier to find 
bugs because we 
can run a finite-
difference check 
on each layer 
separately
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Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ! Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) !We discard gx
9: return parameter gradients gα,gβ



Module-based AutoDiff (OOP Version) 

Object-Oriented Implementation:
– Let each module be an object
– Then allow the control flow dictate the creation of the computation graph
– No longer need to implement NNBackward(·), just follow the computation 

graph in reverse topological order
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1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ! b ! (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga



Module-based AutoDiff (OOP Version) 
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1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]



1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

Module-based AutoDiff (OOP Version) 
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1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()



Module-based AutoDiff (OOP Version) 
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1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()



PyTorch
The same simple 
neural network 
we defined in 
pseudocode can 
also be defined 
in PyTorch.
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Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html 

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html


PyTorch
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Q: Why don’t we call linear.forward() in PyTorch?

A: This is just syntactic sugar. There’s a special method in Python 
__call__ that allows you to define what happens when you treat 
an object as if it were a function. 

In other words, running the following:
    linear(x)
is equivalent to running:
    linear.__call__(x)
which in PyTorch is (nearly) the same as running:
    linear.forward(x)

This is because PyTorch defines every Module’s __call__ method 
to be something like this:
    def __call__(self):
        self.forward()



PyTorch
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Q: Why don’t we pass in the parameters to a PyTorch Module?

A: This just makes your code cleaner. 

In PyTorch, you store the parameters inside the Module and “mark” 
them as parameters that should contribute to the eventual gradient 
used by an optimizer


