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“Deep Style” from https://deepdreamgenerator.com/#gallery
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The basic goal of Al is to develop intelligent

Artificial Intelligence @WELTIEE

machines.

This consists of many sub-goals:

Perception

Reasoning

Control / Motion [/ Manipulation
Planning

Communication

Creativity

Learning

Machine Learning

Deep Learning

1 Q: What does Generative Al
have to do with any of
these goals?

JA: It’s making in-roads into
all of them.




Artificial Intelligence @WELTIEE

Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning O Communication comprises the

« Control | Motion | Manipulation comprehension and generation of
human language.

* Plannin
& O Large language models (LLMs)
* Communication excel at both
« Creativity O (Even though they are most often
: trained autoregressively, i.e. to
* Learning

generate a next word, given the
previous ones)
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The basic goal of Al is to develop intelligent

Artificial Intelligence @WELTIEE

Machine Learning

machines. Deep Learning

This consists of many sub-goals:

Perception
Reasoning Q The traditional way of learning in
Control / Motion [ Manipulation ML is via parameter estimation
Planning O But in-context learning (i.e.
Communication providing training examples as
Creativity context at test time) shows that
: learning can also be done via
Learning

inference
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Artificial Intelligence @WELTIEE

Machine Learning

The basic goal of Al is to develop intelligent

machines. Deep Learning
This consists of many sub-goals: GenAl

* Perception

* Reasoning O LLMs are also (unexpectedly)

* Control/ Motion [ Manipulation = good at certain reasoning tasks

* Planning  cf. Chain-of-Though Prompting
« Communication (an ex. of in-context learning)

Chain-of-Thought Prompting

* (Creativity

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

[ ] Le a rn i n g tennis balls does he have now?
: Roger started witl 15 1‘1\,7::.,43 ans of 3 tennis balls

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have? J

N
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Artificial Intelligence @WELTIEE

Machine Learning

The basic goal of Al is to develop intelligent

machines. Deep Learning
This consists of many sub-goals: GenAl

* Perception

* Reasoning d LLMs are already being used for

e Control [ Motion [ Manipulation grounded planning for
* Planning embodied agents, c.f. LLM-

e« Communication Planner

* Creativity
* Learning
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Artificial Intelligence @WELTIEE

Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning A Text-to-image models

* Control / Motion / Manipulation ~ [Midjourney’s Discord server has

* Planning 18 million members (1.7 million
* Creativity  Text-to-music models

[ MusicGen capable of
conditioning on text and audio
sample]

* Learning
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“Deep Style” from https://deepdreamgenerator.com/#gallery



Artificial Intelligence @WELTIEE

Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning O Multimodal foundation models

* Control / Motion [ Manipulation ~  |earn to answer questions about
* Planning images (and text in images)
« Communication  Diffusion models can be used as

e Creativity zero-shot classifiers

* Learning
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Artificial Intelligence @WELTIEE

Machine Learning

The basic goal of Al is to develop intelligent
machines. Deep Learning

This consists of many sub-goals:
* Perception

* Reasoning O DayDreamer learns a generative

* Control/ Motion [ Manipulation ~ model of experiences for RL, i.e.

* Planning a World Model, without
[ Communication SimUlatiOn E\I& Replay Buffer
« Creativity d Quadruped Tt
: robot learns ]
* Learning , 2
to walk in '..._‘

u n d e r 1 h O u r Actor Critic World Model
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1 Q: What does Generative Al
have to do with any of
these goals?

JA: It’s making in-roads into
all of them.




WHAT IS GENERATIVE Al CAPABLE OF?



Text Generation

Prompt: Write a proof of the fact that there are
infinitely many primes; do it in the style of a
Shakespeare play through a dialogue between two
parties arguing over the proof.

GPT-4: Enter FIRST PARTY and SECOND PARTY.

FIRST PARTY: Thou dost not understand, my friend,
There simply is no upper end To primes, those
numbers indivisible, No matter if it seems impossible.

SECOND PARTY: But how dost thou so surely know?
To prove this truth, what canst thou show?

FIRST PARTY: Consider this, my doubtful peer, A
clever proof that will make clear: Assume that there’s
a final prime, The largest one we’ll see in time. Let’s
call this number "P" for short, And then, my friend,
we will purport To build a number "Q" that’s new,
One larger than "P" and prime too.

Example from https://arxiv.org/pdf/2303.12712.pdf

SECOND PARTY: But how, my friend, will this be
done? The proof is not yet fairly won.

FIRST PARTY: It’s simple, friend, just wait and see,
We’ll multiply the primes, that’s key. All primes from
two to "P'" combined, Will make this new "Q" we will
find. But one thing more we must include, To make
the proof more watertight, We’ll add a one onto the
end, And now the proof is in our sight.

SECOND PARTY: | see it now, it’s crystal clear, For "Q"
must be a prime, my dear. It can’t divide by any prime,
All smaller than itself in time. And since we chose "P"
as the last, This proves that our assumption’s past.
There is no final prime, we see, The numbers go on
endlessly.



Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping
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Figure from Saharia et al. (2022)



Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic old
man, wild hair sly smile in front of
gigantic UFO, dslr, sharp focus, dynamic
composition, rule of thirds

https://stablediffusionweb.com

24
Figure from https://stablediffusionweb.com/



Music Generation

______

MusicGen

This is the demo for MusicGen, a simple and controllable model for music generation

at: “Simple and Controllabl

liaa for longer sequences, more control and no queue.

Describe your music Condition on a melody (optional) File or Mic

lofi slow bpm electro chill with organic samples O file mic

Drop Audio Here

Click to Upload

MusicGen

* Atransformer decoder model over quantized
units (discrete elements of a codebook of audio
frames)

* Interleaves sounds by adjusting how codebooks
attend to each other

* Permits conditioning on text and/or audio
samples

Figure from https://arxiv.org/pdf/2306.05284.pdf
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Code Generation

. p £
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Figure 1.3: We queried GPT-4 three times, at roughly equal time intervals over the span of a month
while the system was being refined, with the prompt “Draw a unicorn in TikZ”. We can see a clear
evolution in the sophistication of GPT-4’s drawings.

GPT-4 vs ChatGPT

Prompt:

A function f is called {increasing}_{emphasize!} if f(s) £(t) holds for every s t. Consider the formula:
limit_{x goes to 0} {limit when n approaches infinite} underscore{
\matrix[ [ sum of i from 1 to n (f(nx) - integral from O to x sin(nx) dx ),

((x + 2/8)"2 - 5)/((4x-1/x"2) /(n xor 3)), \\ , ..., partial f(x/n)
over partial x * (e"{-ixomega n x} + 3(x#7) ) , f inverse of (x mod n) ]]
multiply \matrix{1, 1, ..., 1 \\'1, 1, ..., 1} }

{grey_color{this gives us a good impression about the function}}
Convert the above paragraph to LaTeX.

GPT-4:
A function f is called increasing if f(s) < f(t) holds for every s < t. Consider the formula:

: +2)%-5

Sy (fng) — fZsin(na)dz),  EEE)SS
nH3 cee

lim lim ; i X [1 ; 1:|
z—0n—o0 . 2 e

M;—Iﬁl - (e7ne 4 3(a#7)), f~(z mod n)

this gives us a good impression about the function

Example from https://arxiv.org/pdf/2303.12712.pdf

I want to write a customized optimizer in pytorch, the optimizer should do:

1. the parameters for the optimizer ie learning rate, momentum ,weigth decay, d_dim, k and factor alpha
2. the optimizer goee through each parameter in the network, and then

== Get the gradient of this parameter, reshape it to 2D by looping through the dimensions, and keeping the dimension whose actual
dimension (shape) is equal to d_dim, do an SVD decomposition of the parameter so W = U\Sigma V.

== Keep the top k singular vectors of W, so we get a new matrix W_k = U \Sigma k V.

== Keep the top 2k singular vectors of W, 2o we get a new matrix W_{2k} = U \Sigma_{2k} V.

-= Normalize W_k according to the momentum of the F-norm of W_{2k}.

== Truncate each coordinate of W_k to the top alpha percentile of all the coordinates, in absolute value.
== Apply momentum on W_k, and then update the network parameters using this momentum.

== Apply weight decay.

GPT-4: ChatGPT:

def step(self): def step(self):
for group in self.param_groups: for group in self.param_groups:
for p in group['parame']: for p in group['params']:
if p.grad is None: if p.grad is None:
continue continue
grad « p.grad.data grad = p.grad.data
# reshape grad to 20 grad = grad.reshape(-1, grad.shape[-1]) # reshape to 2D
grad_2d = grad.reshape(-1, group['d_dim'])
# SVD decomposition # SVD decomposition
U, S, V = torch.svd(grad_2d) u, &, v = torch.svd(grad)
# keep top k singular vectors
Gk = U[:, :group['k']] E torch.diag(S[:groupl'k'1]) B # Keep top k and 2k singular vectore
VI[:, :group['k']].T k = group['k']

# keep top 2k singular vectors

G_2x = U[:, :2egroup['k']] [§ torch.dieg(S[:2egroup['x'1])

[ Vi, :2egroupl'kll.T

# normalize G_k

G_k /= torch.norm(G_2k, p=2)

# truncate G_k

threshold = torch.quantile(torch.abs(G_k),

group['alpha'])

G_k[torch.abs(G_k) < threshold] = 0

# apply momentum

if 'momentum_buffer' not in group:
group['nomentun_buffer'] = torch.zeros_like(G_k)

group[ 'momentum_buffer'] = group['momentum'] «

group[ 'momentum_buffer'] + G_k

# update parameters

p.data.add_(-group['lr']  group['momentum_buffer'])

# apply weight decay

if group['weight_decay'] != 0:
p.data.add_(-group['weight_decay'] » group['lr'],
p.data)

# Normalize according to momentum of F-norm of G_2k
grad_k = u_k B torch.diag(e_Xx) g v_k.t()

norm_2k = £_2k.nora()

grad k = grad k + group['momentun'] / norm_2k

# Truncate to top alpha percentile

alpha = group['alpha']

percentile = grad k.abs().flatten().kthvalue(int(alpha
grad_k.numel()))

grad_klgrad_k.abs() < percentile] = 0

#® Apply veight decay
p.data.add_(-group['lr'], grad_k + group['weight_decay']
+ p.data)

Figure 3.4: GPT-4 vs ChatGPT at implementing a customized Pytorch optimizer module. We

highlight the astuteness of GPT-4 vs the mistake by ChatGPT at ‘applying momentum’.
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Video Generation

 Latent diffusion
models use a low-
dimensional latent
space for efficiency

* Key question: how
to generate multiple
correlated frames?

« ‘Align your latents’
inserts temporal
convolution/
attention between
each spatial
convolution/
attention

* ‘Preserve Your Own
Correlation’ includes
temporally
correlated noise

27

Figure from https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt



SCALING UP



Training Data for LLMs

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC g
ArXiv

The Pile:

* An open source dataset for
training language models

* Comprised of 22 smaller
datasets

* Favors high quality text

* 825 Gb = 1.2 trillion tokens

PubMed Central

BC2
StackExchange
PMA
FreeLaw USPTO NIH [OpenWebText2 Wikipedia DM Math I

29



Figure from

InstructGPT uses
Reinforcement
Learning with Human
Feedback (RLHF) to
fine-tune a pre-
trained GPT model

From the paper:

“In human
evaluations on our
prompt distribution,
outputs from the 1.3B
parameter
InstructGPT model are
preferred to outputs
from the 175B GPT-3,
despite having 100x
fewer parameters.”

RLHF

Step 1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis A prompt and A new prompt ™
Sampled from our Explain e moon several model Explain e moon is Sampled from Write a story
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled.
Y P o O . Y
A labeler Rty s The policy -
.0
demonstrates the @ MQ - Q generates 22 W -
desired output 7 steeot.  thamoon.. an output. x4
behaV|0r. Some people went \*/ v
o the maan.. A labeler ranks
“ the OUtpUtS from @ Once upon a time..,
This data is used oFT best to worst. 0-0-0-0 ‘
to fine-tune GPT-3 /0)?5{\ The reward model .
with supervised \\5‘2(/' calculates a S
o e ‘ ./ e _o
learning. 2 Thi ) \ reward for N
- is datais used v the output.
BERB to train our 2R Y
e o o
reward model. Y The reward is
r _
0-0-0-0 used tq update k
the policy
using PPO.

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.
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https://arxiv.org/pdf/2203.02155.pdf

Memory Usage of LLMs

How to store a large language
model in memory?

— full precision: 32-bit floats

— half precision: 16-bit floats

— Using half precision not only
reduces memory, it also speeds
up GPU computation

— “Peak float16 matrix multiplication
and convolution performance is 16x
faster than peak float32
performance on A100 GPUs.”

Wodel | Megatronim |G

# parameters 8.3 billion 175 billion
full precision 30 Gb 651 Gb
half precision 15 Gb 325 Gb

GPU) TPy

TPU v2 16 Gb
TPU v3/v4 32 Gb
Tesla V100 GPU 32Gb
NVIDIA RTX A6000 48 Gb
Tesla A100 GPU 80 Gb
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https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/

Distributed Trammg Model Parallel

c‘ft“ a:*e the best  <eoc> W DeV|ce1 O | Device 2 [ ! Devrce 5 [ Transformer layer57 7 ] ; rDVeivrc;e 5 ﬂ [ B fr;nsfor;ner Iayer5 S ] 7;
“ ; | I e R e e e b e e e e e e e e !
[ ra:s il i ] [ Layer 3 part 1 J  |_Layer 3 part 1 J | ' Deviced | Transformer layer 4 ] pavicaz | | Transformer layer 4 |
| \/ | T e e e e e T e s e =
I - ) ! — f '
[ Transformer layer N-1 ] L J e , :
z I o | Deviees [ Transformeriayer3 ] ) | Devices [ Transformeriayers ] .
[ Layer2pan1 : Layer2part1 ][ 1 ﬁ el o o etk
[ Transformer layer 2 ] i S~ N S—______ y N oo ___ B
7 7 Ij f ' Device 2 [ Transformer layer 2 ] | : Déiicso [ Transformer layer 2 ] :
[ Transformer layer 1 ] | /v:\ ; ( — T g —
T g :‘[Layer1pan1J | Layer1part1]! Fo- T e === o R ] Fmmmmmmmo o o o o o - - D oo -
Ay R T : VDeV|ce1 , [ = Transformer |ayer1 e ] ! I Device 1 [ Transformer layer 1 ] :
é i [ R — e j '~» - == ’
<coe> Cats are the  best | 7 —
(a) Transformer-based LM (b) Operation partitioning (c) Microbatch-based pipeline (d) Token-based pipeline
(Megatron-LM) parallelism (GPipe) parallelism (TeraPipe)
There are a variety of Matrix multiplication The most natural divisionis A more efficient solution is
different options for comprises most by layer: each device to divide computation by
how to distribute the Transformer LM computes a subset of the token and layer. This
model computation / computation and can be layers, only that device requires careful division of
parameters across divided along rows/columns stores the parameters and work and is specific to the
multiple devices. of the respective matrices. computation graph for Transformer LM.

those layers.
Figure from


https://arxiv.org/pdf/2102.07988.pdf

Cost to train

1T

100B

=
o
o

Parameters

X% X %

100M

1017 1019 1021 1023 1025
FLOPs

Figure from

— Approach 1
—— Approach 2
—— Approach 3

Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)
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https://arxiv.org/pdf/2203.15556.pdf
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Timeline: Image Generation




Why learn the inner-
workings of GenAl?

(a metaphor)
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Figure from https://earthobservatory.nasa.gov/images/149321/2021-continued-earths-warming-trend

2021 ties 2018 for Sixth Warmest Year on Record
Global Temperature Anomaly (°C compared to the 1951-1980 average)
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Figure from https://www.energy.gov/eere/vehicles/fact-617-april-5-2010-changes-vehicles-capita-around-world



Figure from GHSA

Number of Annual U.S. Pedestrian Fatalities, 1980-2022
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Figure from https://www.businesswire.com/news/home/20210624005926/en/Strategy-Analytics-Half-the-World-Owns-a-Smartphone


https://www.ghsa.org/sites/default/files/2023-06/GHSA%20-%20Pedestrian%20Traffic%20Fatalities%20by%20State%2C%202022%20Preliminary%20Data%20%28January-December%29.pdf
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GENERATIVE Al IS PROBABILISTIC MODELING



GenAl is Probabilistic Modeling

p(xii1 | 21, ..., 2¢)



What if | want to model
EVERY possible
interaction?

...or at least the interactions of the
current variable with all those that came
beforeit...

(RNN-LMs)

48




RNN Language Model

T
RNN Language Model: p(w1,ws, ..., wr) = | [ p(w: | fo(we-1,...,w1))
t=1

p(W1, W, W3) cee W6) =
The p(W1)

(The ) (Toat ) p(W, | fo(wi))

[ The ] [ bat ][ made ] p(W3 fe(wz, W1))

[ The ][ bat ][ made | [ noise ] p(W fG(W3) W,, W1))

[ The ][ bat ][ made |( noise |[ at | p(W fe(w W , W, W1))

[ The ][ bat ][ made |[ noise |[ at ][ night | p(W6 fe(W W,, W3, W, W1))

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector




Topics

Generative models of text e Scaling models
— RNN LMs [ Autodiff — Efficient decoding strategies
— Transformer LMs — Distributed training
— Pre-training, fine-tuning, evaluation, decoding — Scaling laws and data
Generative models of images — Mixture of experts [ FlashAttention
— CNNs /Transformers for vision *  What can go wrong?
— GANs, Conditional GANs — Safety/bias/fairness, Hallucinations, Adversarial
— VAEs and Diffusion models (e.g., prompt injection) attacks
Applying and adapting foundation models — Cheating — how to watermark, Legal issues, e.g.,
— Reinforcement learning with human feedback copyright,...
(RLHF) — Drift in performance, Data contamination, Lack of
— Parameter-efficient fine tuning ground truth
— In-context learning for text * Advanced Topics
— In-context learning for vision — State space models
Multimodal foundation models — Code generation
— Text-to-image generation — Audio understanding and synthesis
— Aligning multimodal representations — Video synthesis

— Visual-language foundation models



SYLLABUS HIGHLIGHTS



Syllabus Highlights

The syllabus is located on the course webpage:

The course policies are required reading.


http://423.mlcourse.org/
http://623.mlcourse.org/

Syllabus Highlights

Grading: 40% homework, 10% quizzes, 20% * Technologies:

exam, 25% project, 5% participation — Piazza (discussion),
Exam: in-class exam, Mon, Mar. 31 — Gradescope (homework),
Homework: 5 assignments — Google Forms (polls),
— 8 grace days for homework assignments — Zoom (livestream),
— Late submissions: 80% day 1, 60% day 2, 40%  — Panopto (video recordings)
day 3, 20% day 4  Academic Integrity:
— No submissions accepted after 4 days w/o — Collaboration encouraged, but must be
extension documented
— Extension requests: only for emergency — Solutions must always be written
situations, see syllabus independently
Recitations: Fridays, same time/place as — No re-use of found code / past assignments
lecture (optional, interactive sessions) — Severe penalties (i.e.. failure)
Readings: required, online PDFs, — (Policies differ from 10-301/10-601)
recommended for after lecture .

Office Hours: posted on Google Calendar
on “Office Hours” page



Lectures

* You should ask lots of questions

— Interrupting (by raising a hand) to ask your question is strongly
encouraged

— Asking questions later (or in real time) on Piazza is also great

* When | ask a question...

— | want you to answer
— Even if you don’t answer, think it through as though I’'m about to
call on you

* Interaction improves learning (both in-class and at my office
hours)



Prerequisites

What they are: What is not required:

Introductory machine learning. * Deep learning
(i.e. 10-301, 10-315, 10-601, 10-701) * PyTorch

Depending on which prerequisite
course you took and in which
semester you took it, you may or
may not have been exposed to
deep learning and/or PyTorch.
Either way is fine.




Homework

There will be 5 homework assignments during the semester. The
assignments will consist of both conceptual and programming
problems

Area

HW1

HW2

PyTorch Primer

Large Language
Models

Image Generation
Adapters for LLMs

Multimodal
Foundation Models

(10-623 only)

image classifier +
Text classifier

TransformerLM with
GQA and RoPE

Diffusion model
GPT-2 + LORA

text-to-image editing
model

read [ analyze a recent
research paper

vision +
language

text gen

image gen

instruction fine-
tuning

vision +
language

genAl

written +
programmlng

written +
programming
written +
programming

written +
programming
written +
programming

video
presentation
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Project

Goals:

— Explore a generative modeling
technique of your choosing

— Deeper understanding of
methods in real-world
application

wifd

— Report back to the class
during a poster session
to be held sometime over
finals period

""""

o, ¥

. Prompt to ChatGPT-40: Create an image of
— WOl’k In teams Of 3 StUdentS three Scottish terriers in traditional Scottish

outfits working collaboratively on a project for

a generative Al course
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Textbooks

...do not exist for this course.

Instead, we will be directing
your reading time to current
research papers.



Where can | find...?

10-423 + 10-623,

BEOHG G i Al School of Computer Science
FAQ e n e rat Ive Carnegie Mellon University
Syllabus

People

4 Jump to Latest (Lecture 1)  4* Open Latest Poll
Schedule

ofice tours Jo IMportant Notes

: ) This schedule is tentative and subject to change. Please check back often.
oursewor

Tentative Schedule

Links~

Date Lecture Readings Announcements

Generative models of text

Wed, 17-Jan Lecture 1: RNN LMs / Autodiff
HWO out
Fri, 19-Jan Recitation: HWO
Mon, 22-Jan Lecture 2 : Transformer LMs
Wed, 24-Jan Lecture 3 : Pre-training, fine-tuning, evaluation, decoding HWO due

HW1 out (L1-L3)

Fri, 26-Jan Recitation: HW1




Where can | find...?

10-423 +10-623, !

Home i
G t Al School of Computer Science
e n e ra IVe Carnegie Mellon University
FAQ
Syllabus
People
10-423/10-623 Office Hours
Schedule 0 0 van 14 -20,2024 ~ Week Month Agenda
Sun 1/14 Mon 1/15 Tue 1/16 Wed 1/17 Thu 1/18 Fri 1/19 Sat 1/20
11am
Coursework
12pm
Links~
1pm
2pm
3pm
4 :30p - 4:50p 3:30p - 4:50p
10-423/10-623 10-423/10-623
4pm GenAl
GHC 4401
S5pm
6pm
7pm
8pm




Home
FAQ
Syllabus
People
Schedule

Office Hours

Where can | find...?

10-423 + 10-623, !
School of Computer Science

G e n e ratlve Al Carnegie Mellon University

Assignments

There will be 5 homework assignments (and a special extra assignment for 10-623 only). The assignments will consist of both
theoretical and programming problems. Homework assignments will be released via a Piazza announcement explaining where to find

the handout, LaTeX template, etc.

Links~

* Homework 0: PyTorch Primer

Homework 1: Large Language Models
Homework 2: Image Generation

Homework 3: Adapters for LLMs

Homework 4: Multimodal Foundation Models
» Homework 623: (10-623 only)

Tentative release dates and due dates are listed on the Schedule page.

S Quizzes

There will be 5 quizzes.

e Quiz 1 (Lectures 1 -3)
Quiz 2 (Lectures 4 - 7)
Quiz 3 (Lectures 8- 11)
Quiz 4 (Lectures 12-15)
Quiz 5 (Lectures 16 - 20)
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Reminders

* Homework 0: PyTorch + Weights & Biases
— Out: Wed, Jan 17
— Due: Mon, Jan 27 at 11:59pm

— Two parts:
1. written part to Gradescope
2. programming part to Gradescope

— unique policy for this assignment: we will grant (essentially) any
and all extension requests
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Learning Objectives

You should be able to...

1.

00

Differentiate between different mechanisms of learning such as parameter tuning and
in-context learning.

Implement the foundational models underlying modern approaches to generative
modeling, such as transformers and diffusion models.

Apply existing models to real-world generation problems for text, code, images, audio,
and video.

Employ techniques for adapting foundation models to tasks such as fine-tuning,
adapters, and in-context learning.

Enable methods for generative modeling to scale-up to large datasets of text, code, or
images.

Use existing generative models to solve real-world discriminative problems and for
other everyday use cases.

Analyze the theoretical properties of foundation models at scale.

|dentify potential pitfalls of generative modeling for different modalities.

Describe societal impacts of large-scale generative Al systems.
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Q&A



BACKGROUND:
N-GRAM LANGUAGE MODELS



n-Gram Language Mode]

* Godal: Generate realistic looking sentences in a human
language

* Key Idea: condition on the last n-1 words to sample
the nt" word

P
-—\ Q/
Z N2
N D 2 9 D
/—\\ /\\ ] o Q Yo
<& s 0 <& bqj X o,qj‘
Y & < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q Q




The Chain Rule of Probability

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) (oo

p(Wv W, W37 cee W6) =

The p(W1)
[ The J[ bat | p(w, [ w,)
[ The ] [ bat ][ made ] p(W W,, W1)
[ The ] [ bat ][ made ][ noise ] p(W W y W5 W1)
[ The ] [ bat ][ made ][ noise ][ at ] p(W W W y W, W1)
[ The ][ bat ][ made |( noise ][ at ][ night | p(W6 We, W,, W, W, W1)




The Chain Rule of Probability

Question: How can we define a probability distribution over a

sequence of length T2

e ) o e ) (e ) (oo

W, W, W3 W, W5 We
T
Chain rule of probability: p(wi,wa,...,wr) = | [ p(ws | wi_y,...,w)
t=1
p(w,, \/2@\/3, ey Wg) =
p(w,)
e I amr— YAV FVVA
e Note: This is called the chain rule because
(me] it is always true for every probability
The distribution KJ
The P\VVe I VVS, VV4’ VV3,

2) W1)
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n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) (oo

W, W, W; W, Wi We
T

n-Gram Model (n=2) p(wy,wa, ..., wr) = | [ p(ws | we—1)
t=1

p(Wv W, W37 cee W6) =
The p(W1)
[ The J( bat ] p(w, [ w,)
[ bat ][ made ] p(W3 Wz)
[ made ][ noise J p(W4 W3)
[ noise ][ at ] p(W5 W4)
o) (@) p(wg | we)
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n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) (oo

W, W, W; W, W Wi
T

n-Gram Model (n=3) p(wy,wa, ..., wr) = [ [ plwe | we—1,we—2)
t=1

p(Wv W, W37 cee W6) =

The p(W1)
[ The J( bat ] p(w, [ w,)
[ The ] [ bat ][ made ] p(W3 W,, W1)
[ bat ][ made ][ noise ] p(W4 W3’ WZ)
[ made ][ noise ][ at ] P(W5 W4, W3)
[ noise ][ at ][ night ] p(W6 WS’ W4)




n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) (oo

Wi W, W3 Wy Ws We
T
n-Gram Model (n=3) p(wi,wa, ..., wr) = | [ pwe | we—1, i)
=1
p(w,, 3o We) =
The p(W1)

The (=l YAYVEE RVVA
— Note: This is called a model because we

made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)




Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

P(w¢ | Wi, = The, p(W¢ | we, = made, P(W¢ | Wy, = cows,
0 Wi, = bat) 0 Wi, = NOIse) O Wy, = eat)
Wi p(- [+ ) Wi p(-[+>) Wi p(- [+
ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000

86



Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

p(w; | Wy, = cows,

O Wi, = eat)
.the cows eat grass...

...our cows eat hay daily... Wt p(-[+-)
... factory-farm cows eat corn...

corn 411

...on an organic farm, cows eat hay and...
...do your cows eat grass or corn?...
...what do cows eat if they have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
...if cows eat grass...

...when cows eat corn their stomachs...
...should we let cows eat corn?...

grass 3/11

if 111

which 1/11
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Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~
P > N 2
N ) ¥ o %)
QN AN © S N °
< oy N § ¥ B

g g < > Y S
) 6 N Q S <

O O o O O O

Q Q Q Q Q Q




Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4.

Repeat

Training Data (Shakespeaere)

5-Gram Model

| tell you, friends, most charitable care
ave the patricians of you. For your
wants, Your suffering in this dearth,
you may as well Strike at the heaven
with your staves as lift them Against
the Roman state, whose course will on
The way it takes, cracking ten thousand
curbs Of more strong link asunder than
can ever Appear in your impediment.
For the dearth, The gods, not the
patricians, make it, and Your knees to
them, not arms, must help.

Approacheth, denay. dungy
Thither! Julius think: grant,—-0
Yead linens, sheep's Ancient,
Agreed: Petrarch plaguy Resolved
pear! observingly honourest
adulteries wherever scabbard
guess; affirmation--his monsieur;
died. jealousy, chequins me.
Daphne building. weakness: sun-
rise, cannot stays carry't,
unpurposed. prophet-like drink;
back-return 'gainst surmise
Bridget ships? wane; interim?
She's striving wet;




RECURRENT NEURAL NETWORK (RNN)
LANGUAGE MODELS



Recurrent Neural Networks (RNNs)

inputs: x = (x1,29,...,27),2; € R
hidden units: h = (hy, ho,...,h7),hi € R’

outputs: y = (y1,2,---,yr), ¥ € R"
nonlinearity: H

Definition of the RNN:
he = H(Wenxy + Whphi—1 + bp)
Yt — Whyht =+ by

o1



The Chain Rule of Probabilitm

Question: How can we define a probability distribution over a

sequence of length T2

e ) o e ) (e ) (oo

W, W, W3 W, W5 We
T
Chain rule of probability: p(wi,wa,...,wr) = | [ p(ws | wi_y,...,w)
t=1
p(w,, vﬁo@, ey Wg) =
p(w,)
e I amr— YAV FVVA
e Note: This is called the chain rule because
(me|] itis always true for every probability
The distribution w)
The PAYVe [ VW5 YWy VV3y VVo) W1)
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RNN Language Model

T
RNN Language Model: p(w1,ws, ..., wr) = | [ p(w: | fo(we-1,...,w1))
t=1

p(W1, W, W3) cee W6) =
The p(W1)

(The ) (Toat ) p(W, | fo(wi))

[ The ] [ bat ][ made ] p(W3 fe(wz, W1))

[ The ][ bat ][ made | [ noise ] p(W fG(W3) W,, W1))

[ The ][ bat ][ made |( noise |[ at | p(W fe(w W , W, W1))

[ The ][ bat ][ made |[ noise |[ at ][ night | p(W6 fe(W W,, W3, W, W1))

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector




RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]

I A T R

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
. > | > > > > >

) L

h, h, h, h, hs he h,
IT—lITF—IT >l > IT T I+l

A /A N A

[STARTJ [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

The

T

p(wilh,)

h,
T
/

START

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

bat

T
o[p(wzlhz)

h, h,
CITF—t 1 1]

o

(START ] [ The |

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

made

T
/[ p(wshs)

h, h, hy
I e B e

L1

(START] [ The | [ bat |

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

noise

T
/[p(w4lh4)

h, h, h, h,
CITH+—lIITr+—lITr—=t11]

I

(START ] [ The ] [ bat ) [ made |

7z

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

T
'[P(Wslhs)

h, h, h, h, hs
(ITThF—l Il >l {11

[ 1 1 1

(START] | The | [ bat | [ made | [ noise ]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

Question: How can we create a distribution

5
Answer: T
[P(W6|h6)
h, h, h; h, hs he

(ITF—lI T Il > 11

L 1t 1 1 1

[STARTJ [ The ] [ bat ][made] [noise][ at ]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

END

T
Ip(w7lh7)

h, h, h, h, hs he h,
IT—lITF—IT >l > IT T I+l

r -t t 1 1 °

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]

T

T

T

T

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
' > | > > > > > >
h, h, h; h, hs he h,
(TTF—lITTFTT > I T I T > TIT 111

A

A

N

A

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

P(W1, Wy W3y ooy WT) = p(W1 l h1) p(Wz | hz) p(Wz | hT)



Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~ . .@Q/\
N ) ¥ S )
QN AN © S N °
< <& N § ¥ B
g g < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q
— — —
) @ The same approach to

[ e || bt | sampling we used for an n-

Gram Language Model also
works here for an RNN
Language Model




Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

Shakespeare’s As You Like It

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

RNN-LM Sample

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

Shakespeare’s As You Like It

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

MODULE-BASED AUTOMATIC
DIFFERENTIATION



Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direclzgc)i acyclic graph, where each variable is a node (i.e. the “computation
grap

2.  Visit each node in topological order.

For variable u; with inputs v,,..., vy
a. Compute u; = g{(Vy.-., Vn)
b. Store the result at the node

Backward Computation (Version A)
1.  Initialize dy/dy = 1.
2. Visit each node v;in reverse topological order.
Let u,,..., uy denote all the nodes with v;as an input
Assuming thaty = h(u? = h(u,y..., Upw)
and u = g(v) or equivalently u; = gi(v,..., vj,..., vy) for all i
a. Wealready know dy/du; for all i
b. Compute dy/dv-sas below (Choice of algorithm ensures computing

(du/dv)) is easy g M du,

%j B i1 duz d’Uj

Return partial derivatives dy/du;for all variables



Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcﬁ,e’t)i acyclic graph, where each variable is a node (i.e. the “computation
grap

2. Visit each node in topological order.

For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)
b. Store the result at the node

Return partial derivatives dy/du;for all variables
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Backpropagation:
Procedural Method

Algorithm 1 Forward Computation Drawbacks of

1: procedure NNFORWARD(Training example (x, y), Params «, 3) Procedural Method

2 a=ox 1. Hardtoreuse/

3 z=o(a) adapt for other

4 b=pz models

A S‘_OftTrqzx(})) 2. (Possibly) harder to
. :Ob“y_ectg(;’a 2 b.9.J) make individual

’ e e ) steps more efficient

8 return intermediate quantities o

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you
only that there is an

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Params «, (3,
Intermediates o)
Place intermediate quantities x,a,z, b, y, J in o in scope

8y =-Yy=Y :
S s error somewhere in

5= 8y (g'ag(y> vy’ those 17 lines of

86 = Bp? code)

g. =0 g}

ga:gz®z®(1_z)
a = gaXT
return parameter gradients g, g3

E




Module-based AutoDiff

* Key ldea:
— componentize the computation of the neural-network into layers
— each layer consolidates multiple in the

computation graph (a subset of them) into one vector-valued node
(aka. a module)

* Each module is capable of two actions:

1. Forward computation of output b = [b1,...,bp]| given input
b b a = |ay,...,aa] via some differentiable function f. That is
T l b = f(a).
2. Backward computation of the gradient of the input
[ module } g = VaJ = [5L,..., 52L] given the gradient of output
T l g = Vo = [§5,..., 5Z], where J is the final real-valued
output of the entire computation graph. This is done via the
a Ja . oJ J oJ db; .
chainrule 5= = > %, ot qa. foralli {1,..., A}.



Module-based AutoDiff

Dimensions: input a € R4, output b € R7, gradient

of output g, = V,J € R4, and gradient of input g, = Linear Module The linear layer has two inputs: a vec-

ViJ € RB. tor a and parameters w € RB*4, The output b
is not used by LINEARBACKWARD, but we pass it in

Sigmoid Module The sigmoid layer has only one input for consistency of form.

vector a. Below o is the sigmoid applied element- 1: procedure LINEARFORWARD(a, w)
wise, and @ is element-wise multiplication s.t. u® 2 b =wa
vV = [u1v1, .. ., UprUN]- 3 return b
1: procedure SIGMOIDFORWARD(a) 4: procedure LINEARBACKWARD(a, w, b, gp)
»  b=oc(a) 5 8w =gpa
3 return b 6 ga = wlgp
4: procedure SIGMOIDBACKWARD(a, b, gp,) 7 return g, ga
5 ga=gbObO(1-b)
6 return g, Cross-Entropy Module The cross-entropy layer hastwoin-
puts: a gold one-hot vector a and a predicted proba-
Softmax Module The softmax layer has only one input bility distribution a. It’s output b € R is a scalar. Be-
vector a. For any vector v € R”, we have that low = is element-wise division. The output b is not
diag(v) returns a D x D diagonal matrix whose used by CROSSENTROPYBACKWARD, but we pass it in
diagonal entriesare vy, v, . . ., vp and whose non- for consistency of form.

diagonal entries are zero. procedure CROSSENTROPYFORWARD(a, a)

1:
1: procedure SOFTMAXFORWARD(a) 2: b= —alloga

2 b = softmax(a) 3: return b

3 return b 4: procedure CROSSENTROPYBACKWARD(a, a, b, g5)
4: procedure SOFTMAXBACKWARD(a, b, gp,) 5: ga=—g(a+a)

5 ga = g, (diag(b) — bb™) 6:  returng,

6 return g,



Module-based AutoDiff

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters «,

B)

2 s e W o W

a = LINEARFORWARD(X, )

Z = SIGMOIDFORWARD(a)

b = LINEARFORWARD(z, 3)

y = SOFTMAXFORWARD(Db)

J = CROSSENTROPYFORWARD(y, ¥)
o = object(x,a,z,b,y,J)
return intermediate quantities o

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters
a, 3, Intermediates o)

2w 2o W

Place intermediate quantities x,a,z, b, y, J in o in scope
gr =% =1 > Base case
gy = CROSSENTROPYBACKWARD(Y, ¥, J, 9.7)
gh = SOFTMAXBACKWARD(b, ¥, g5 )

g3, 8z = LINEARBACKWARD(z, b, gp)

ga = SIGMOIDBACKWARD(a, z, g5)

8, 8x = LINEARBACKWARD(X, a, )

return parameter gradients g, g3

> We discard gy

Advantages of

Module-based

AutoDiff

1. Easytoreuse/
adapt for other
models

2. Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

3. Easierto find

bugs because we
can run a finite-
difference check
on each layer
separately



Module-based AutoDiff (oop version)

Object-Oriented Implementation:

— Let each module be an object

— Then allow the control flow dictate the creation of the computation graph
— No longer need to implement NNBackward(-), just follow the computation

graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
g.=8bOb® (1 —-Db)
return g,

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = 8, (diag(b) —bb")
return g,

[0 RN [0 ) NNV B S V) N -

class Linear (Module)

method forward(a, w)
b =wa
return b

method backward(a, w, b, gp)

8w = gbaT

8a — ngb
return g., g,

class CrossEntropy (Module)

method forward(a, a)
b= —alloga
return b
method backward(a, a, b, gp)
ga = —gr(a+a)
return g,
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Module-based AutoDiff (oop version)

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig layer = Sigmoid ()
lin2_ layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor a, Tensor 3)
a =linl_ layer.apply_fwd(x, )
z =sig_ layer.apply_ fwd(a)
b =lin2_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b)
J =ce_layer.apply_ fwd(y,y)
return .J.out tensor

method backward (Tensor x, Tensor y, Tensor o, Tensor (3)
tape__bwd ()
return linl layer.in gradients[1] , lin2 layer.in gradients[1]
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Module-based AutoDiff (oop version)

global tape = stack()

)
class NeuralNetwork (Module) : 2
3 class Module:
method init () 4 o
linl_layer = Linear () g method init()
sig_layer = Sigmoid () 6 out_tensc?r = null
lin2 layer = Linear() / out_gradient = 1
soft_ layer = Softmax() 8 o
ce_layer = CrossEntropy () 9 met.hod apply fwd(List in_modules)
10 in tensors = [x.out tensor for x in in modules]
method forward(Tensor x, Tensor y, Tensor " out_tensor = forward (in_tensors)
a =linl_ layer.apply_ fwd(x, ) 2 tape. push (self)
z =sig_layer.apply_ fwd(a) 3 return self
b =lin2_layer.apply_ fwd(z, 3) .
y =soft_layer.apply_ fwd(b) 5 met'hod aPPly—de() : _ _
J =ce_layer.apply fwd(y, ) 16 m_g.rajdlents = back.ward(m_tensors , out_tensor , out_ gradient)
return J.out tensor 17 for i in 1,..., len(in_modules) :
o 18 in__modules[i] .out_gradient += in_ gradients/[i]

method backward (Tensor x, Tensor y, Tensc ™ return self

tape bwd () =

return linl layer.in gradients[1] , lin2 l¢ * functio.n tape_bwd () :
22 while len(tape) > 0

23 m = tape.pop()
24 m.apply bwd()
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Module-based AutoDiff (oop version)

global tape = stack()

)
class NeuralNetwork (Module) : 2
3 class Module:
method init () 4 o
linl_layer = Linear () g method init()
sig_layer = Sigmoid () 6 out_tensc?r = null
lin2 layer = Linear() / out_gradient = 1
soft_ layer = Softmax() 8 o
ce_layer = CrossEntropy () 9 met.hod apply fwd(List in_modules)
10 in tensors = [x.out tensor for x in in modules]
method forward(Tensor x, Tensor y, Tensor " out_tensor = forward (in_tensors)
a =linl_ layer.apply_ fwd(x, ) 2 tape. push (self)
z =sig_layer.apply_ fwd(a) 3 return self
b =lin2_layer.apply_ fwd(z, 3) .
y =soft_layer.apply_ fwd(b) 5 met'hod aPPly—de() : _ _
J =ce_layer.apply fwd(y, ) 16 m_g.rajdlents = back.ward(m_tensors , out_tensor , out_ gradient)
return J.out tensor 17 for i in 1,..., len(in_modules) :
o 18 in__modules[i] .out_gradient += in_ gradients/[i]

method backward (Tensor x, Tensor y, Tensc ™ return self

tape bwd () =

return linl layer.in gradients[1] , lin2 l¢ * functio.n tape_bwd () :
22 while len(tape) > 0

23 m = tape.pop()
24 m.apply bwd()



PyTorch

1 # Define model
2 class NeuralNetwork(nn.Module):

The same simple

3 def __ init__ (self):
l I( 4 super (NeuralNetwork, self). init ()
neura networ 5 self.flatten = nn.Flatten()
. . 6 self.linearl = nn.Linear(28+*28, 512)

we deflned n 7 self.sigmoid = nn.Sigmoid()

8 self.linear2 = nn.Linear(512,512)
pseudocode can

H 10 def forward(self, x):

aISO be deflned 11 x = gself.flatten(x)
: 12 a = gself.linearl(x)
In PyTorCh' 13 z = self.sigmoid(a)

14 b = self.linear2(z)

15 return b

16

17 # Take one step of SGD
18 def one_step_of_sgd(X, y):

19 loss_fn = nn.CrossEntropyloss()
20 optimizer = torch.optim.SGD(model.parameters(), lr=le-3)
21

22 # Compute prediction error

23 pred = model(X)

24 loss = loss_fn(pred, y)

25

26 # Backpropagation

27 optimizer.zero_grad()

28 loss.backward()

29 optimizer.step()

123
Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html



https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

PyTorch

Why don’t we call linear.forward() in PyTorch?

This is just syntactic sugar. There’s a special method in Python
__call__ thatallows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
linear(x)

is equivalent to running:
linear.__call__(x)

which in PyTorch is (nearly) the same as running:
linear. forward(x)

This is because PyTorch defines every Module’s __call__ method

to be something like this:
def __call__(self):
self.forward()
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PyTorch

A: This just makes your code cleaner.

Q: Why don’t we pass in the parameters to a PyTorch Module?

In PyTorch, you store the parameters inside the Module and “mark”
them as parameters that should contribute to the eventual gradient

used by an optimizer

method forward(Tensor x, Tensor y, Tensor a, Tensor (3) 10
a =linl_ layer.apply_ fwd(x, a) 11
z =sig_layer.apply fwd(a)
b =linl_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b) 15

def forward(self, x):
X self.flatten
a self.linearl
z self.sigmoid
b self.linear?

return b

(
(
(
(

X
X
a
2

)
)
)
)

J =ce_layer.apply_ fwd(y, y)
return J.out tensor




