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Front Matter
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* Announcements:

* HW3 released 10/7, due 10/24 at 11:59 PM
* Please be mindful of your grace day usage!
* Project team formation due 10/25 at 11:59 PM

* Each team should only submit one PDF; see

handout for instructions on how to make group

submissions in Gradescope

* Reminder: you may not take grace days on any

project deliverables
* Quiz 4 on 10/28 (Monday)

* Will cover Lectures 12 — 15


https://www.cs.cmu.edu/~mgormley/courses/10423/homework/project.pdf

* Previously: Text-to-image models — adapt generative
models for vision in order to guide their output toward

some desired target using natural language

* OQutput is still an image

Multimodal

Models

* Today: visual language models (VLMs) — adapt
generative models for text in order to allow them to

interact with images (as well as text) as input

* Qutput is (typically) still text

10/21/24



* Common benchmarks for VLMs include

* Visual reasoning: given an image (or a pair of
images) determine if some natural language

statement about the image(s) is true or false

* Visual grounding: locate an object in some image

given a natural language description

* Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

- Caption generation: create natural language

descriptions of content of some image

10/21/24



- Common benchmarks for VLMs include
* Visual reasoning: given an image (or a pair of
images) determine if some natural language

statement about the image(s) is true or false

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

10/21/24 Source: https://aclanthology.org/P19-1644.pdf


https://aclanthology.org/P19-1644.pdf

* Common benchmarks for VLMs include

* Visual reasoning: given an image (or a pair of
images) determine if some natural language

statement about the image(s) is true or false

* Visual grounding: locate an object in some image

given a natural language description

RefCOCO:
1. giraffe on left
2. firstgiraffe on left

RefCOCO+:
1. giraffe with lowered head
2. giraffe head down

RefCOCOg:

1. an adult giraffe scratchingits
% back with its horn

“ 2. giraffe hugging another giraffe

10/21/24


https://arxiv.org/pdf/1608.00272

* Common benchmarks for VLMs include

Who is wearing glasses? Where is the child sitting?

man woman arms

Is the umbrella upside down? How many children are in the bed?
yes no

* Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

10/21/24 Source: https://ieee



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

* Common benchmarks for VLMs include

-

=3 ~ —  GroundTruth Caption: A little boy runs away from the
’ approaching waves of the ocean.

M

- Generated Caption: A young boy is running on the beach.

Ground Truth Caption: A brunette girl wearing sunglasses
and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses
smiles.

- Caption generation: create natural language

descriptions of content of some image

10/21/24 Source: https://dl.acm.org/doi/pdf/10.1145/3295748


https://dl.acm.org/doi/pdf/10.1145/3295748

VLM:

Architecture

10/21/24

Source:

* High-level idea: convert both the image and the text inputs
into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

lextDeceder - Two common encoders:

I *VQ-VAE encoder followed

Projected visual tokens concatenated to text embedding tokens

by an embedding layer that

I I converts the discrete
Multimodal .
Text Embedd .
Projector e Fmheddings tokens into dense
I numerical vectors
Image Encoder .
I * CLIP encoder, that directly

learns an embedding

da

vector using a contrastive

pre-training objective


https://huggingface.co/blog/vlms

* High-level idea: convert both the image and the text inputs
into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

diextiBecdaet - Two common encoders:
I *VQ-VAE encoder followed
Projected visual tokens concatenated to text embedding tokens
by an embedding layer that
VL|V| ]» I y & 1ay
. converts the discrete
Architecture Wtmodal
. gs .
Projector tokens into dense
I numerical vectors
Image Encoder .
I * CLIP encoder, that directly

learns an embedding

da

vector using a contrastive

pre-training objective

10/21/24 Source:
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https://huggingface.co/blog/vlms
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Two dogs running in a field

10/21/24 Source: https://arxiv.org/pdf/2206.10789


https://arxiv.org/pdf/2206.10789
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https://arxiv.org/pdf/2110.04627

How can we
(pre-)train

t h e S e m O d e I S \iiT;::;Agetokenizer i
given the non— : I g (Trans;ormer)
d |ffe e nt | d b I e : o . k lm?%:n'sl'glr(’igri)zer J

guantization
operation?

10/21/24 Source


https://arxiv.org/pdf/2110.04627
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https://arxiv.org/pdf/1711.00937
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[ e,ee,
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Embedding
Space

/

Embedding space consists of K D-dimensional latent

vectors {ey, ..., ex } which are learned during training

The indices [1, ..., K] of each latent vector correspond

to the “image tokens” in some fixed-length codebook

Vector-Quantized VAEs

Source: https://arxiv.org/pdf/1711.00937

15


https://arxiv.org/pdf/1711.00937
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D///////’ * The encoder (e.g., a ResNet-like CNN) maps images

to N D-dimensional vectors

CNN
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\ /
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Vector-Quantized VAEs



https://arxiv.org/pdf/1711.00937
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10/21/24 Source: https://arxiv.org/pdf/1711.00937


https://arxiv.org/pdf/1711.00937
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* The decoder takes the discretized representation and recreates the original image

Vector-Quantized VAEs

10/21/24 Source: https://arxiv.org/pdf/1711.00937 18



https://arxiv.org/pdf/1711.00937
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CNN
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Wait, how would we take the gradient through the argmin?

10/21/24 Source: https://arxiv.org/pdf/1711.00937


https://arxiv.org/pdf/1711.00937
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* Treat the gradient w.r.t. z,(x) as an estimate of the gradient w.r.t. z,(x)

Straight-through Estimator

Source:



https://arxiv.org/pdf/1711.00937
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* Intuition: the closer z,(x) and z,(x), the better the estimate (under certain assumptions)

Straight-through Estimator

10/21/24 Source:
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https://arxiv.org/pdf/1711.00937

* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

VQ-VAE
Objective * Idea: augment the standard VAE objective with some

Function regularizing terms that drive the two closer to each other
log pg (x|zq(x)) + ||sglze(x)] — 24 (x)

+ B|ze (x) — sg|z4 ()]

N DN NN

where sg is the stop-gradient operator which fixes the

argument to be non-updated constant

10/21/24
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* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset
\Y[ORV/A\=

Objective * Idea: augment the standard VAE objective with some
Function regularizing terms that drive the two closer to each other

logpg (x|2(x)) + [lselz. ()] — 7, (x)

+ 8|20 (0) — sg[zg ()]

2
2
2
2

* The first term is the typical reconstruction error objective

10/21/24
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* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

VQ-VAE
Objective * Idea: augment the standard VAE objective with some

Function regularizing terms that drive the two closer to each other
logpolx|z,00)) + |[sglze ()] = z4 (x)

+ 8|20 (0) — sg[zg ()]

2
2
2
2

* The second term drives the latent vector to be closer to the

encoder output vector that was mapped to it

10/21/24
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* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

VQ-VAE
Objective * Idea: augment the standard VAE objective with some

Function regularizing terms that drive the two closer to each other
= logpe(x|z,(x)) + |[|sglze(x)] — 24 (x)

+ B|ze(x) — sg|z ()]

I e

2
2
2
2

* The third term drives the encoder to output vectors closer to

the latent vectors

10/21/24
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* High-level idea: convert both the image and the text inputs
into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

liextBecedsr - Two common encoders:
I *VQ-VAE encoder followed
Projected visual tokens concatenated to text embedding tokens
by an embedding layer that
VL|V| ]» I Y & 1ay
. converts the discrete
Architecture Wtmodal
. gs .
Projector tokens into dense
I numerical vectors
Image Encoder .
I * CLIP encoder, that directly

learns an embedding

da

vector using a contrastive

pre-training objective

10/21/24 Source:
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https://huggingface.co/blog/vlms

Pepper the
aussie pup

/

Text

Encoder

10/21/24 Source:

|

!

|

/ T, | T, | T3 I
> I LTy | Ty | I T3 ' Ty

T > L || LT | LT, LTy 1L Ty
Image I 3T, | 3Ty | 13T 13T
Encoder » I3 3h | I3l | I3 3 IN
> In INTy | INTy | INT3 InTn

I'T:& - ZZ I"\

L=\

JF-C

T

\

27


https://arxiv.org/pdf/2103.00020

10/21/24

Source: https://arxiv.org/pdf/2103.00020
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* The text encoder (e.g., an
encoder-only transformer) and
the image encoder (e.g., a
ResNet-like CNN or ViT) are both
linearly projected into same-
dimensional vectors i.e., the

multi-modal embedding space

28


https://arxiv.org/pdf/2103.00020
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* Given a mini-batch of N (image, caption) pairs, both

encoders are simultaneously pre-trained to maximize the

cosine similarity of corresponding image-caption embedding

10/21/24 vectors and minimize all other pairwise cosine similarities 29



CLIP: Zero-shot

classification

10/21/24

plane

car

A photo of ) Text
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a {object}. Encoder

bird

/
\

Source: https://arxiv.org/pdf/2103.00020

A4 Y Y Y
| T [ Ts Tn
Eage . > L | LT LTy [T 1Ty
/ A photo of
a dog.

30


https://arxiv.org/pdf/2103.00020

CLIP vs. VQ-VAEs

10/21/24

* VLMs with VQ-VAE encoders (or any vector quantized

image model) can also generate images in addition to

text by defining a loss over the image codebook tokens

* CLIP does not discretize its image embedding so VLMs

with CLIP-based encoders cannot (naturally) define a

loss over images and thus, can only output text

* However, CLIP embeddings are more expressive than

the discrete VQ-VAE encodings so can lead to improved

performance in some settings

31
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