
Henry Chai & Matt Gormley

10/21/24

10-423/623: Generative AI
Lecture 14 –
Visual-Language Models

Front Matter

 Announcements:

 HW3 released 10/7, due 10/24 at 11:59 PM

 Please be mindful of your grace day usage!

 Project team formation due 10/25 at 11:59 PM

 Each team should only submit one PDF; see

handout for instructions on how to make group

submissions in Gradescope

 Reminder: you may not take grace days on any

project deliverables

 Quiz 4 on 10/28 (Monday)

 Will cover Lectures 12 – 15

10/21/24 2

https://www.cs.cmu.edu/~mgormley/courses/10423/homework/project.pdf

Multimodal
Models

 Previously: Text-to-image models – adapt generative

models for vision in order to guide their output toward

some desired target using natural language

 Output is still an image

 Today: visual language models (VLMs) – adapt

generative models for text in order to allow them to

interact with images (as well as text) as input

 Output is (typically) still text

10/21/24 3

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 4

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 5Source: https://aclanthology.org/P19-1644.pdf

https://aclanthology.org/P19-1644.pdf

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 6Source: https://arxiv.org/pdf/1608.00272

https://arxiv.org/pdf/1608.00272

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 7Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 8Source: https://dl.acm.org/doi/pdf/10.1145/3295748

https://dl.acm.org/doi/pdf/10.1145/3295748

VLM:
Architecture

 High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed

by an embedding layer that

converts the discrete

tokens into dense

numerical vectors

CLIP encoder, that directly

learns an embedding

vector using a contrastive

pre-training objective
10/21/24 9Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

VLM:
Architecture

 High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed

by an embedding layer that

converts the discrete

tokens into dense

numerical vectors

CLIP encoder, that directly

learns an embedding

vector using a contrastive

pre-training objective
10/21/24 10Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

Recall: Parti

10/21/24 11Source: https://arxiv.org/pdf/2206.10789

https://arxiv.org/pdf/2206.10789

Recall: Image
Tokenization

10/21/24 12Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

How can we
(pre-)train
these models
given the non-
differentiable
quantization
operation?

10/21/24 13Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

Vector-Quantized VAEs
10/21/24 14Source: https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 15Source: https://arxiv.org/pdf/1711.00937

 Embedding space consists of 𝐾 𝐷-dimensional latent

vectors {𝑒1, … , 𝑒𝐾} which are learned during training

 The indices 1, … , 𝐾 of each latent vector correspond

to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 16Source: https://arxiv.org/pdf/1711.00937

 The encoder (e.g., a ResNet-like CNN) maps images

to 𝑁 𝐷-dimensional vectors

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 17Source: https://arxiv.org/pdf/1711.00937

 Each output vector

from the encoder is

mapped to the nearest

latent vector to get the

discretized encoding

𝑧𝑞 𝑥 = argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 18Source: https://arxiv.org/pdf/1711.00937

 The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937

Wait, how would we take the gradient through the argmin?

10/21/24 19Source: https://arxiv.org/pdf/1711.00937

 Each output vector

from the encoder is

mapped to the nearest

latent vector to get the

discretized encoding

𝑧𝑞 𝑥 = argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
10/21/24 20Source: https://arxiv.org/pdf/1711.00937

 Treat the gradient w.r.t. 𝑧𝑞 𝑥 as an estimate of the gradient w.r.t. 𝑧𝑒 𝑥

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
10/21/24 21Source: https://arxiv.org/pdf/1711.00937

 Intuition: the closer 𝑧𝑞 𝑥 and 𝑧𝑒 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

where sg is the stop-gradient operator which fixes the

argument to be non-updated constant
10/21/24 22

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

 The first term is the typical reconstruction error objective

10/21/24 23

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

 The second term drives the latent vector to be closer to the

encoder output vector that was mapped to it
10/21/24 24

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

 The third term drives the encoder to output vectors closer to

the latent vectors
10/21/24 25

VLM:
Architecture

 High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed

by an embedding layer that

converts the discrete

tokens into dense

numerical vectors

CLIP encoder, that directly

learns an embedding

vector using a contrastive

pre-training objective
10/21/24 26Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

CLIP

10/21/24 27Source: https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

CLIP

10/21/24 28Source: https://arxiv.org/pdf/2103.00020

 The text encoder (e.g., an

encoder-only transformer) and

the image encoder (e.g., a

ResNet-like CNN or ViT) are both

linearly projected into same-

dimensional vectors i.e., the

multi-modal embedding space

https://arxiv.org/pdf/2103.00020

CLIP

10/21/24 29

 Given a mini-batch of 𝑁 (image, caption) pairs, both

encoders are simultaneously pre-trained to maximize the

cosine similarity of corresponding image-caption embedding

vectors and minimize all other pairwise cosine similarities

CLIP: Zero-shot
classification

10/21/24 30Source: https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

CLIP vs. VQ-VAEs

 VLMs with VQ-VAE encoders (or any vector quantized

image model) can also generate images in addition to

text by defining a loss over the image codebook tokens

 CLIP does not discretize its image embedding so VLMs

with CLIP-based encoders cannot (naturally) define a

loss over images and thus, can only output text

 However, CLIP embeddings are more expressive than

the discrete VQ-VAE encodings so can lead to improved

performance in some settings

10/21/24 31

	Slide 1: 10-423/623: Generative AI Lecture 14 – Visual-Language Models
	Slide 2: Front Matter
	Slide 3: Multimodal Models
	Slide 4: VLM: Tasks
	Slide 5: VLM: Tasks
	Slide 6: VLM: Tasks
	Slide 7: VLM: Tasks
	Slide 8: VLM: Tasks
	Slide 9: VLM: Architecture
	Slide 10: VLM: Architecture
	Slide 11: Recall: Parti
	Slide 12: Recall: Image Tokenization
	Slide 13: How can we (pre-)train these models given the non-differentiable quantization operation?
	Slide 14: Vector-Quantized VAEs
	Slide 15: Vector-Quantized VAEs
	Slide 16: Vector-Quantized VAEs
	Slide 17: Vector-Quantized VAEs
	Slide 18: Vector-Quantized VAEs
	Slide 19: Wait, how would we take the gradient through the argmin?
	Slide 20: Straight-through Estimator
	Slide 21: Straight-through Estimator
	Slide 22: VQ-VAE Objective Function
	Slide 23: VQ-VAE Objective Function
	Slide 24: VQ-VAE Objective Function
	Slide 25: VQ-VAE Objective Function
	Slide 26: VLM: Architecture
	Slide 27: CLIP
	Slide 28: CLIP
	Slide 29: CLIP
	Slide 30: CLIP: Zero-shot classification
	Slide 31: CLIP vs. VQ-VAEs

