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Front Matter

 Announcements: 

 HW3 released 10/7, due 10/24 at 11:59 PM

 Please be mindful of your grace day usage!

 Project team formation due 10/25 at 11:59 PM

 Each team should only submit one PDF; see 

handout for instructions on how to make group 

submissions in Gradescope

 Reminder: you may not take grace days on any 

project deliverables

 Quiz 4 on 10/28 (Monday)

 Will cover Lectures 12 – 15 
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https://www.cs.cmu.edu/~mgormley/courses/10423/homework/project.pdf


Multimodal 
Models

 Previously: Text-to-image models – adapt generative 

models for vision in order to guide their output toward 

some desired target using natural language 

 Output is still an image

 Today: visual language models (VLMs) – adapt 

generative models for text in order to allow them to 

interact with images (as well as text) as input

 Output is (typically) still text
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VLM: 
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of 

images) determine if some natural language 

statement about the image(s) is true or false

 Visual grounding: locate an object in some image 

given a natural language description

 Visual question answering: given an image (or 

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language 

descriptions of content of some image
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VLM: 
Architecture

 High-level idea: convert both the image and the text inputs 

into embedding vectors, then pass those vectors into a 

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed 

by an embedding layer that 

converts the discrete 

tokens into dense 

numerical vectors

CLIP encoder, that directly 

learns an embedding 

vector using a contrastive 

pre-training objective
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Recall: Parti
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Recall: Image 
Tokenization
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How can we 
(pre-)train 
these models 
given the non-
differentiable 
quantization 
operation? 
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Vector-Quantized VAEs
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Vector-Quantized VAEs
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 Embedding space consists of 𝐾 𝐷-dimensional latent 

vectors {𝑒1, … , 𝑒𝐾} which are learned during training

 The indices 1, … , 𝐾  of each latent vector correspond 

to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
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 The encoder (e.g., a ResNet-like CNN) maps images 

to 𝑁 𝐷-dimensional vectors 

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
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 Each output vector 

from the encoder is 

mapped to the nearest 

latent vector to get the 

discretized encoding

𝑧𝑞 𝑥 =  argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
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 The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937


Wait, how would we take the gradient through the argmin? 
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 Each output vector 

from the encoder is 

mapped to the nearest 

latent vector to get the 

discretized encoding

𝑧𝑞 𝑥 =  argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2
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Straight-through Estimator 
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 Treat the gradient w.r.t. 𝑧𝑞 𝑥  as an estimate of the gradient w.r.t. 𝑧𝑒 𝑥  

https://arxiv.org/pdf/1711.00937


Straight-through Estimator 
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 Intuition: the closer 𝑧𝑞 𝑥  and 𝑧𝑒 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937


VQ-VAE 
Objective 
Function

 Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 

near the outputs of the encoder

 However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

where sg is the stop-gradient operator which fixes the 

argument to be non-updated constant 
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2

2

 The first term is the typical reconstruction error objective
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2

2

 The second term drives the latent vector to be closer to the 

encoder output vector that was mapped to it
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2

2

 The third term drives the encoder to output vectors closer to 

the latent vectors
10/21/24 25



VLM: 
Architecture
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CLIP
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CLIP
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 The text encoder (e.g., an 

encoder-only transformer) and 

the image encoder (e.g., a 

ResNet-like CNN or ViT) are both 

linearly projected into same-

dimensional vectors i.e., the 

multi-modal embedding space

https://arxiv.org/pdf/2103.00020


CLIP
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 Given a mini-batch of 𝑁 (image, caption) pairs, both 

encoders are simultaneously pre-trained to maximize the 

cosine similarity of corresponding image-caption embedding 

vectors and minimize all other pairwise cosine similarities



CLIP: Zero-shot 
classification
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CLIP vs. VQ-VAEs

 VLMs with VQ-VAE encoders (or any vector quantized 

image model) can also generate images in addition to 

text by defining a loss over the image codebook tokens

 CLIP does not discretize its image embedding so VLMs 

with CLIP-based encoders cannot (naturally) define a 

loss over images and thus, can only output text

 However, CLIP embeddings are more expressive than 

the discrete VQ-VAE encodings so can lead to improved 

performance in some settings
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