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Front Matter

 Announcements: 

 HW3 released 10/7, due 10/24 at 11:59 PM

 Please be mindful of your grace day usage!

 Project team formation due 10/25 at 11:59 PM

 Each team should only submit one PDF; see 

handout for instructions on how to make group 

submissions in Gradescope

 Reminder: you may not take grace days on any 

project deliverables

 Quiz 4 on 10/28 (Monday)

 Will cover Lectures 12 – 15 
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https://www.cs.cmu.edu/~mgormley/courses/10423/homework/project.pdf


Multimodal 
Models

 Previously: Text-to-image models – adapt generative 

models for vision in order to guide their output toward 

some desired target using natural language 

 Output is still an image

 Today: visual language models (VLMs) – adapt 

generative models for text in order to allow them to 

interact with images (as well as text) as input

 Output is (typically) still text
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VLM: 
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of 

images) determine if some natural language 

statement about the image(s) is true or false

 Visual grounding: locate an object in some image 

given a natural language description

 Visual question answering: given an image (or 

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language 

descriptions of content of some image
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VLM: 
Architecture

 High-level idea: convert both the image and the text inputs 

into embedding vectors, then pass those vectors into a 

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed 

by an embedding layer that 

converts the discrete 

tokens into dense 

numerical vectors

CLIP encoder, that directly 

learns an embedding 

vector using a contrastive 

pre-training objective
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Recall: Parti
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Recall: Image 
Tokenization

10/21/24 12Source: https://arxiv.org/pdf/2110.04627 

https://arxiv.org/pdf/2110.04627


How can we 
(pre-)train 
these models 
given the non-
differentiable 
quantization 
operation? 
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Vector-Quantized VAEs
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Vector-Quantized VAEs
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 Embedding space consists of 𝐾 𝐷-dimensional latent 

vectors {𝑒1, … , 𝑒𝐾} which are learned during training

 The indices 1, … , 𝐾  of each latent vector correspond 

to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
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 The encoder (e.g., a ResNet-like CNN) maps images 

to 𝑁 𝐷-dimensional vectors 

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
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 Each output vector 

from the encoder is 

mapped to the nearest 

latent vector to get the 

discretized encoding

𝑧𝑞 𝑥 =  argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
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 The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937


Wait, how would we take the gradient through the argmin? 
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 Each output vector 
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𝑧𝑞 𝑥 =  argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2
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Straight-through Estimator 
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 Treat the gradient w.r.t. 𝑧𝑞 𝑥  as an estimate of the gradient w.r.t. 𝑧𝑒 𝑥  

https://arxiv.org/pdf/1711.00937


Straight-through Estimator 
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 Intuition: the closer 𝑧𝑞 𝑥  and 𝑧𝑒 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937


VQ-VAE 
Objective 
Function

 Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 

near the outputs of the encoder

 However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

where sg is the stop-gradient operator which fixes the 

argument to be non-updated constant 
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2

 The first term is the typical reconstruction error objective
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 The second term drives the latent vector to be closer to the 

encoder output vector that was mapped to it
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2

2

 The third term drives the encoder to output vectors closer to 

the latent vectors
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VLM: 
Architecture
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CLIP
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CLIP
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 The text encoder (e.g., an 

encoder-only transformer) and 

the image encoder (e.g., a 

ResNet-like CNN or ViT) are both 

linearly projected into same-

dimensional vectors i.e., the 

multi-modal embedding space

https://arxiv.org/pdf/2103.00020


CLIP
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 Given a mini-batch of 𝑁 (image, caption) pairs, both 

encoders are simultaneously pre-trained to maximize the 

cosine similarity of corresponding image-caption embedding 

vectors and minimize all other pairwise cosine similarities



CLIP: Zero-shot 
classification
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https://arxiv.org/pdf/2103.00020


CLIP vs. VQ-VAEs

 VLMs with VQ-VAE encoders (or any vector quantized 

image model) can also generate images in addition to 

text by defining a loss over the image codebook tokens

 CLIP does not discretize its image embedding so VLMs 

with CLIP-based encoders cannot (naturally) define a 

loss over images and thus, can only output text

 However, CLIP embeddings are more expressive than 

the discrete VQ-VAE encodings so can lead to improved 

performance in some settings
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