
Henry Chai & Matt Gormley

10/21/24

10-423/623: Generative AI
Lecture 14 –
Visual-Language Models

Front Matter

 Announcements:

 HW3 released 10/7, due 10/24 at 11:59 PM

 Please be mindful of your grace day usage!

 Project team formation due 10/25 at 11:59 PM

 Each team should only submit one PDF; see

handout for instructions on how to make group

submissions in Gradescope

 Reminder: you may not take grace days on any

project deliverables

 Quiz 4 on 10/28 (Monday)

 Will cover Lectures 12 – 15

10/21/24 2

https://www.cs.cmu.edu/~mgormley/courses/10423/homework/project.pdf

Multimodal
Models

 Previously: Text-to-image models – adapt generative

models for vision in order to guide their output toward

some desired target using natural language

 Output is still an image

 Today: visual language models (VLMs) – adapt

generative models for text in order to allow them to

interact with images (as well as text) as input

 Output is (typically) still text

10/21/24 3

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 4

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 5Source: https://aclanthology.org/P19-1644.pdf

https://aclanthology.org/P19-1644.pdf

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 6Source: https://arxiv.org/pdf/1608.00272

https://arxiv.org/pdf/1608.00272

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 7Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

VLM:
Tasks

 Common benchmarks for VLMs include

 Visual reasoning: given an image (or a pair of

images) determine if some natural language

statement about the image(s) is true or false

 Visual grounding: locate an object in some image

given a natural language description

 Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

 Caption generation: create natural language

descriptions of content of some image

10/21/24 8Source: https://dl.acm.org/doi/pdf/10.1145/3295748

https://dl.acm.org/doi/pdf/10.1145/3295748

VLM:
Architecture

 High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed

by an embedding layer that

converts the discrete

tokens into dense

numerical vectors

CLIP encoder, that directly

learns an embedding

vector using a contrastive

pre-training objective
10/21/24 9Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

VLM:
Architecture

 High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed

by an embedding layer that

converts the discrete

tokens into dense

numerical vectors

CLIP encoder, that directly

learns an embedding

vector using a contrastive

pre-training objective
10/21/24 10Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

Recall: Parti

10/21/24 11Source: https://arxiv.org/pdf/2206.10789

https://arxiv.org/pdf/2206.10789

Recall: Image
Tokenization

10/21/24 12Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

How can we
(pre-)train
these models
given the non-
differentiable
quantization
operation?

10/21/24 13Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

Vector-Quantized VAEs
10/21/24 14Source: https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 15Source: https://arxiv.org/pdf/1711.00937

 Embedding space consists of 𝐾 𝐷-dimensional latent

vectors {𝑒1, … , 𝑒𝐾} which are learned during training

 The indices 1, … , 𝐾 of each latent vector correspond

to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 16Source: https://arxiv.org/pdf/1711.00937

 The encoder (e.g., a ResNet-like CNN) maps images

to 𝑁 𝐷-dimensional vectors

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 17Source: https://arxiv.org/pdf/1711.00937

 Each output vector

from the encoder is

mapped to the nearest

latent vector to get the

discretized encoding

𝑧𝑞 𝑥 = argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
10/21/24 18Source: https://arxiv.org/pdf/1711.00937

 The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937

Wait, how would we take the gradient through the argmin?

10/21/24 19Source: https://arxiv.org/pdf/1711.00937

 Each output vector

from the encoder is

mapped to the nearest

latent vector to get the

discretized encoding

𝑧𝑞 𝑥 = argmin
𝑒 ∈ 𝑒1,…,𝑒𝐾

𝑧𝑒 𝑥 − 𝑒 2
2

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
10/21/24 20Source: https://arxiv.org/pdf/1711.00937

 Treat the gradient w.r.t. 𝑧𝑞 𝑥 as an estimate of the gradient w.r.t. 𝑧𝑒 𝑥

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
10/21/24 21Source: https://arxiv.org/pdf/1711.00937

 Intuition: the closer 𝑧𝑞 𝑥 and 𝑧𝑒 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

where sg is the stop-gradient operator which fixes the

argument to be non-updated constant
10/21/24 22

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

 The first term is the typical reconstruction error objective

10/21/24 23

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

 The second term drives the latent vector to be closer to the

encoder output vector that was mapped to it
10/21/24 24

VQ-VAE
Objective
Function

 Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

 However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

 Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 sg 𝑧𝑒 𝑥 − 𝑧𝑞 𝑥
2

2

log 𝑝𝜃 𝑥 𝑧𝑞 𝑥 + 𝛽 𝑧𝑒 𝑥 − sg 𝑧𝑞 𝑥
2

2

 The third term drives the encoder to output vectors closer to

the latent vectors
10/21/24 25

VLM:
Architecture

 High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

 Two common encoders:

VQ-VAE encoder followed

by an embedding layer that

converts the discrete

tokens into dense

numerical vectors

CLIP encoder, that directly

learns an embedding

vector using a contrastive

pre-training objective
10/21/24 26Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

CLIP

10/21/24 27Source: https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

CLIP

10/21/24 28Source: https://arxiv.org/pdf/2103.00020

 The text encoder (e.g., an

encoder-only transformer) and

the image encoder (e.g., a

ResNet-like CNN or ViT) are both

linearly projected into same-

dimensional vectors i.e., the

multi-modal embedding space

https://arxiv.org/pdf/2103.00020

CLIP

10/21/24 29

 Given a mini-batch of 𝑁 (image, caption) pairs, both

encoders are simultaneously pre-trained to maximize the

cosine similarity of corresponding image-caption embedding

vectors and minimize all other pairwise cosine similarities

CLIP: Zero-shot
classification

10/21/24 30Source: https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

CLIP vs. VQ-VAEs

 VLMs with VQ-VAE encoders (or any vector quantized

image model) can also generate images in addition to

text by defining a loss over the image codebook tokens

 CLIP does not discretize its image embedding so VLMs

with CLIP-based encoders cannot (naturally) define a

loss over images and thus, can only output text

 However, CLIP embeddings are more expressive than

the discrete VQ-VAE encodings so can lead to improved

performance in some settings

10/21/24 31

	Slide 1: 10-423/623: Generative AI Lecture 14 – Visual-Language Models
	Slide 2: Front Matter
	Slide 3: Multimodal Models
	Slide 4: VLM: Tasks
	Slide 5: VLM: Tasks
	Slide 6: VLM: Tasks
	Slide 7: VLM: Tasks
	Slide 8: VLM: Tasks
	Slide 9: VLM: Architecture
	Slide 10: VLM: Architecture
	Slide 11: Recall: Parti
	Slide 12: Recall: Image Tokenization
	Slide 13: How can we (pre-)train these models given the non-differentiable quantization operation?
	Slide 14: Vector-Quantized VAEs
	Slide 15: Vector-Quantized VAEs
	Slide 16: Vector-Quantized VAEs
	Slide 17: Vector-Quantized VAEs
	Slide 18: Vector-Quantized VAEs
	Slide 19: Wait, how would we take the gradient through the argmin?
	Slide 20: Straight-through Estimator
	Slide 21: Straight-through Estimator
	Slide 22: VQ-VAE Objective Function
	Slide 23: VQ-VAE Objective Function
	Slide 24: VQ-VAE Objective Function
	Slide 25: VQ-VAE Objective Function
	Slide 26: VLM: Architecture
	Slide 27: CLIP
	Slide 28: CLIP
	Slide 29: CLIP
	Slide 30: CLIP: Zero-shot classification
	Slide 31: CLIP vs. VQ-VAEs

