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Reminders

* Homework 3: Applying and Adapting LLMs
— Out: Mon, Oct 7
— Due: Thu, Oct 24 at 11:59pm
* Quiz 4
— In-class: Mon, Oct 28
— Lectures 12 - 15

* Homework 4: Visual Language Models

— Out: Thu, Oct 24
— Due: Tue, Nov 5 at 11:59pm




SCALING LAWS



Timeline: Language Modeling




Timeline: Image Generation




How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion Question guiding
GPT-3 OpenAl 2020 300 billion 175 billion thiS section:

(cf. ChatGPT) How dld Meta

PaLM Google 2022 780 billion 540 billion .

o . o i choose this
Chinchilla DeepMind 2022 1.4 trillion 70 billion bi . £
LaMDA Google 2022 1.56 trillion 137 billion CO!’T]. Ination o
(cf. Bard) training tokens /
LLaMA Meta 2023 1.4 trillion 65 billion model
LLaMA-2 Meta 2023 2 trillion 70 billion parameters?
GPT-4 OpenAl 2023 g 2 (1.76 trillion)

Gemini (Ultra)  Google 2023 g ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion



How much did it cost to train LLaMa?

Llama-1 Llama-2

When training a 65B-parameter model, our code Time Power Carbor Emitted

processes around 380 tokens/sec/GPU on 2048 (GPU hours) Consumption (W) (tCOzeq)
AIQQ GPU with 80GB of RAM ms means that 7B 184320 400 3122
training over our dataset containing 1.4T tokens L ) 13B 368640 400 62.44

LAMA -

takes approximately 21 days. 34B 1038336 350 153.90
70B 1720320 400 291.42
Total 3311616 539.00

Llama-3

Compute. Llama 3 405B is trained on up to 16K H100 GPUs, each running at 700W TDP with 80GB HBM3,
using Meta’s Grand Teton AI server platform (Matt Bowman, 2022). Each server is equipped with eight GPUs
and two CPUs. Within a server, the eight GPUs are connected via NVLink. Training jobs are scheduled

Time (GPU hours) Power Consumption (W) Carbon Emitted(tCO2eq)
Llama3 8B 1.3M 700 390

Llama370B 6.4M 700 1900

Question: How much did Llama-3 70B cost to train?
GPU Costs

 modern GPUs cost around $15k

* the cost of a cloud GPU per hour ranges $1-$4 Answer: ﬁgﬁ'/DM N GV @Qel(, = §5D K
« 700W = 0.7 kWh = $0.084 per hour
P ﬁ/ﬁ/\’l clowd C ?Q ?eovlt



Power Law

* Most scaling laws for LLMs assume we are fitting a power
law function

* Definition: a power law function has the form

f(z) = ca™t N

* Example: =,
— Zipf’s law states the the n-th most common word in a corpus
appears twice as frequently as the (n+1)-st most common word

— The Zipf-Mandelbrot law:
1
(rank + b)@

frequency

where a, b are fitted parameters, with a ~ 1, and b ~ 2.7.01

Equation from https://en.wikipedia.org/wiki/Zipf%27s law



Scaling Laws: Kaplan et al. (2020)

Experimental Design

* Varied a number LLM
hyperparams
{ = # parameters (768 - 1.5B)
— # tokens (22M - 23B)
— # FLOPS

— model (depth, width, # heads,

CImodel)
— context length (1024 or less)

— batch size (2" or less)

 Evaluated test loss of each
model

Figure from http://arxiv.org/abs/2001.08361
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Scaling Laws: Kaplan et al. (2020)

* Given the experimental results, the parameters of each power law were fit
empirically

* This yielded one powere law for each of the most notable variables: #
parameters, # tokens, # FLOPS (compute budget)

1.2 Summary of Scaling Laws

The test loss of a Transformer trained to autoregressively model language can be predicted using a power-law
when performance is limited by only either the number of non-embedding parameters NV, the dataset size D,
or the optimally allocated compute budget C.,i,, (see Figure[l): ‘ — -

1. For models with a limited number of parameters, trained to convergence on sufficiently large
datasets:

L(N) = (N./N)*™: an ~0.076, N, ~ 8.8 x 10'? (non-embedding parameters)  (1.1)

2. For large models trained with a limited dataset with early stopping:
L(D) = (D./D)*?; ap ~0.095, D~ 5.4 x 10" (tokens) (1.2)
3. When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized

model, and a sufficiently small batch size (making optimaﬂ use of compute):

min

L(Cuin) = (C™/Cin) "¢ 5 a™ ~ 0.050, O™ ~ 3.1 x 10° (PF-days) (1.3)

Figure from http://arxiv.org/abs/2001.08361

11



Scaling Laws: Kaplan et al. (2020)

Key takeaways: ; S EN L D54 101200
1. three quantities dominate: Y 5 Ny
D = # parameters, N = # tokens,C= 3, N
# FLOPS g >
2. model shape doesn’t matter very *
mUCh L = (Cmin/2.3 - 108)~0050 5 | |
. fo° 107 105 10 10-' 1o 10° 107
3. performance improves as long as Gompiie Dataset Size
we |ncrease both N and D PF-days, non-embedding tokens
4. training loss curves follow 56 — L=(vB8: 10100
predictable power laws .8
4.0
5. larger models are more sample
efficient >
6. convergence is not critical for good 24
performance — — =
7. best batch size follows a power law Parameters

non-embedding

(and is huge: 1-2M tokens)



Scaling Laws: Kaplan et al. (2020)

Key takeaways:

1.

three quantities dominate:
D=#p
LOPS

model shape doesn’t matter very
much

performance improves as long as
we increase both Nand D

training loss curves follow
predictable power laws

larger models are more sample
efficient

convergence is not critical for good
performance

best batch size follows a power law
(and is huge: 1-2M tokens)

ers, N = # tokens, C = #

Loss Increase
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Scaling Laws: Kaplan et al. (2020)

Key takeaways:

1.

three quantities dominate:

D = # parameters, N = # tokens, C = #

FLOPS

model shape doesn’t matter very
much

performance improves as long as
we increase both Nand D

training loss [ test loss curves
follow predictable power laws

larger models are more sample
efficient

convergence is not critical for good
performance

best batch size follows a power law
(and is huge: 1-2M tokens)
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Scaling Laws: Kaplan et al. (2020)

Key takeaways:

1 three quantities dominate: Larger models require fewer samples
D = # param eters. N = # tokens. C = # to reach the same performance
’ ’
FLOPS —
2. model shape doesn’t matter very Test Loss 10 N

much W\
3. performance improves as long as : S \\
we increase both N and D PEC—— A\
4. training loss [ test loss curves follow *
predictable power laws ToPRaraime — AN
5. larger models are more sample 4
efficient =
6. convergence is not critical for good | | |
performance 10° 109 10"
. Tokens Processed
7. best batch size follows a power law 8 N

(and is huge: 1-2M tokens)
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Scaling Laws: Kaplan et al. (2020)

Key takeaways:

1. three quantities dominate:
D=# parameters, N =# tOkenS, C=# The optimal model size grows smoothly

FLOPS with the loss target and compute budget
2. model shape doesn’t matter very T
mUCh 10 number of parameters
[
100 106 109

3. performance improves as long as
we increase both Nand D

4. training loss [ test loss curves follow
predictable power laws

5. larger models are more sample

Compute-efficient
training stops far
short of convergence

efficient
6. convergence is not critical for good 1 : , 1
102 106 10 100
performance Compute (PF-days)

7. best batch size follows a power law
(and is huge: 1-2M tokens)



Scaling Laws: Kaplan et al. (2020)

Key takeaways:

1.

three quantities domi
D = # parameters, N =
FLOPS

model shape doesn’t |
much

performance improve
we increase both N ar

training loss / test loss
predictable power lav

larger models are moi
efficient

convergence is not cri
performance

Critical Batch Size vs. Performance

108 -

10° ;

g **#" —e— Empirical B, N = 3M
Empirical B¢y, N =85M
‘:.&,_/ Berit = 2.1 x 108 tokens - L 48
E - Noise Scale Measurement

Critical Batch Size (Tokens)

10! "6 x 100 4%x10° 3x10°
WebText2 Train Loss

Figure 10 The critical batch size B.,i; follows a power law in the loss as performance increase, and does
not depend directly on the model size. We find that the critical batch size approximately doubles for every
13% decrease in loss. Bt is measured empirically from the data shown in Figure [18, but it is also roughly
predicted by the gradient noise scale, as in [MKATI1E].

best batch size follows a power law
(and is huge: 1-2M tokensg



Scaling Laws: Kaplan et al. (2020)

Key takeaways:

1.

three quantities dominate:

D = # parameters, N = # tokens, C = #

FLOPS

model shape doesn’t matter very
much

performance improves as long as
we increase both Nand D

training loss curves follow
predictable power laws

larger models are more sample
efficient

convergence is not critical for good
performance

best batch size follows a power law
(and is huge: 1-2M tokens)

“every time we increase the model size
8X, we only need to increase the data by
roughly 5x to avoid a penalty.”

\ &N D ap

J:.' | (,\D

L(N,D) = | =< + =

Parameter | oy ap N, D,
Value 0.076 | 0.103 | 6.4 x 10'3 | 1.8 x 10'3

Table 2 Fits to L(N, D)

But Hoffman et al. (2022)
tell a very different story!




Improved Scaling Laws: Hoffman et al. (2022)

e Data:
— Fixed: C = # FLOPS =— 1008

— Experiments varied:
* N=#tokens €«
* D = # parameters

— Measured: L(N, D)

* Learned a model to predict
L(N,D) for any N and D

* Used this model to predict
optimal model size

IsoLoss contours

Model size

_ Eftc ent frontler
e Empirical data :
Is FLOPs slice =

o22 L 1022 Gopher
budget

020 021

Training FLOPs



Improved Scaling Laws: Hoffman et al. (2022)

* The big shift ﬁaélgq Chinchilla was a dramatic increase in the
number of tokens

» Kaplan et al. (2020) said 8x increase in # parameters should
have a 5x increase in # tokens

* But Chinchilla found you should increase both proportionally
(2x # parameters + 2x # tokens)

Model Size (# Parameters) Training Tokens

LaMDA (Thoppilan et al., 2022) 137 Billion

168 Billion

GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion

Chinchilla 70 Billion

1.4 Trillion

20



Improved Scaling Laws: Hoffman et al. (2022)

The key finding is that
everyone had been
using way too little
data

And by increasing the
amount of data and
decreasing the model
Size, you can retain
the same
computational
budget but get much
better performance!

1T
—— Approach 1
1008 —— Approach 2
" —— Approach 3
% 10B --- Kaplan et al (2020)
g Y¢ Chinchilla (70B)
& 1.08 Y Gopher (2808)
% GPT-3(175B)
% Megatron-Turing NLG (530B)
100M
7/
10M .~ : »
101/ 1019 1021 1023 102,,
FLOPs

Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).
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Improved Scaling Laws: Hoffman et al. (2022)

The key finding is that

Chinchilla Gopher GPT-3 MT-NLG 530B Supervised SOTA

everyone had been HlaSWAG  80.8%  79.2% 789%  80.2% %3 9%
: : PIQA 81.8%  81.8% 81.0% 82.0% 90.1%
USIng Way too Ilttle Winogrande 74.9% 70.1% 70.2% 73.0% 91.3%
data SIQA 51.3%  50.6% - 2 83.2%
BoolQ 83.7%  79.3% 60.5% 78.2% 91.4%

Table 8 | Zero-shot comparison on Common Sense benchmarks. We show a comparison between

1 1 Chinchilla, Gopher, and MT-NLG 530B on various Common Sense benchmarks. We see that Chinchilla
An d by Increasl ng th € matches or outperforms Gopher and GPT-3 on all tasks. On all but one Chinchilla outperforms the

amount Of data and much larger MT-NLG 530B model.
decreasing the model

Size, you can retain Chinchilla Gopher GPT-3 MT-NLG 530B
LAMBADA Zero-Shot 77.4 74.5 76.2 76.6

th e Sa m e . RACE-m Few-Shot 86.8 75.1 58.1 =

com putatlonal RACE-h Few-Shot 82.3 71.6  46.8 47.9

b u d gEt b Ut get muc h Table 7 | Reading comprehension. On RACE-h and RACE-m (Lai et al., 2017), Chinchilla considerably

| improves performance over Gopher. Note that GPT-3 and MT-NLG 530B use a different prompt format
bEtte r perfo rmance. than we do on RACE-h/m, so results are not comparable to Gopher and Chinchilla. On LAMBADA

(Paperno et al., 2016), Chinchilla outperforms both Gopher and MT-NLG 530B.



How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion Question guiding
GPT-3 OpenAl 2020 300 billion 175 billion thiS section:

(cf. ChatGPT) How dld Meta

PaLM Google 2022 780 billion 540 billion .

o . o i choose this
Chinchilla DeepMind 2022 1.4 trillion 70 billion bi . £
LaMDA Google 2022 1.56 trillion 137 billion CO!’T]. Ination o
(cf. Bard) training tokens /
LLaMA Meta 2023 1.4 trillion 65 billion model
LLaMA-2 Meta 2023 2 trillion 70 billion parameters?
GPT-4 OpenAl 2023 g 2 (1.76 trillion)

Gemini (Ultra)  Google 2023 g ? (1.5 trillion)

LLaMA-3 Meta 2024 i 405 billion .



Improved Scaling Laws: Hoffman et al. (2022)

The key finding is that
everyone had been

using way too little Parameters FLOPs FLOPs (in Gopher unit) Io@
data illion) 1.92e+19<— 1/29,968 \G.O\Bi;}i@
1 Billion 1.21e+20 1/4,761 20.2 Billion
. . 10 Billion 1.23e+22 1/46 f205.1 Billion
And by increasing the %7 sillion 5.76e+23 1 [ 1.5 Trillion
amount of data and 175 Billion 3.85e+24 6.7 3.7 Trillion
d.e(_reasmg the model 280 Billion 9.e+24 | 17.2 5.9 Trillion
the ,s 2me 1 Trillion ~1.27e+26 221.3  21.2 Trillion
. 10 Trillion 1.30e+28 22515.9 216.2 Trillion
computational
budget but get much

better performance!
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Phi Family of (small) LLMs

* Keyidea: Instead of

increasing the size of
the model [ data,
increase the quality of
your data

Paper Title:
“Textbooks Are All
You Need”

Results from Phi-1
show performance
commensurate with
much larger coding
models

Figure from http://arxiv.org/abs/2306.11644

Date Model Model size Dataset size HumanEval MBPP
(Parameters) (Tokens) (Pass@1) (Pass@1)
2021 Jul  Codex-300M JCTJ*21] 300M 100B 13.2% -
2021 Jul  Codex-12B [CTJ*21] 12B 100B 28.8% -
2022 Mar  CodeGen-Mono-350M [NPH23]  350M 5778 12.8% -
2022 Mar  CodeGen-Mono-16.1B [NPH*23] 16.1B 5778 29.3% 35.3%
2022 Apr  PaLM-Coder [CND*23] 540B 780B 35.9% 47.0%
2022 Sep  CodeGeeX [ZXZ*23] 13B 850B 22.9% 24.4%
2022 Nov  GPT-3.5 [Ope23] 1758B N.A. 47% -
2022 Dec  SantaCoder [ALK*23] 1.1B 2368 14.0% 35.0%
2023 Mar  GPT-4 [Ope23] N.A. N.A. 67% -
2023 Apr  Replit [Rep23] 2.7B 5258 21.9% -
2023 Apr  Replit-Finetuned [Rep23] 2.7B 525B 30.5% -
2023 May CodeGen2-1B [NHX*2J] 1B N.A. 10.3% -
2023 May CodeGen2-7B [NHX*23] 7B N.A. 19.1% -
2023 May  StarCoder [LAZZ23] 15.5B 1T 33.6% 52.7%
2023 May StarCoder-Prompted [LAZT23] 15.5B 1T 40.8% 49.5%
2023 May PaLM 2-S [ADET23] N.A. N.A. 37.6% 50.0%
2023 May CodeT5+ [WLG 23] 2B 52B 24.2% -
2023 May CodeT5+ [WLG23] 16B 52B 30.9% -
2023 May InstructCodeT5+ [WLG*23] 16B 52B 35.0% -
2023 Jun  WizardCoder [LXZ%23] 16B 1T 57.3% 51.8%
2023 Jun  phi-1 1.3B B 50.6% 55.5%
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Phi Family of (small) LLMs

o Key idea: Instead Of fililti-Siep Beasaring 100 Common Sense Reasoning
. . . W Vicuna-13B
increasing the size of B Lama 278 “
M Llama-7B
the model / data, B FelconRW135
phi-1.5 (1.3B) 60

phi-1.5-web (1.3B)

increase the quality of

your data N
* Paper Title: - 0
‘¢ S8 0
Textbooks Are All aE
R NS
You Need” & &

e Results from Phi-1.5
model show
performance
commensurate with
much larger LLMs

Figure from http://arxiv.org/abs/2309.05463



Scaling Laws for Data Filtering

* Recent trend towards
emphasizing data quality and
not just data quantity

* But difficult to predict how to

tradeoff between data
quantity and quality and
compute

* Scaling laws for data quality
and data size (Goyal et al.
2024 ) suggest that as your
amount of compute goes up,
you can get away with less
filtering

Figure from http://arxiv.org/abs/2404.07177
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Lower Quality Data Pools

\4

Web Data is Non-
Homogenous

Scaling Laws for Data Filtering

\

Lower Quality Data Pools

Lower Utility of Repeated Data
et >
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Quality-Quantity Tradeoff
(QQT) for Data Filtering

Figure from http://arxiv.org/abs/2404.07177
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