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Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Mon, Oct 7
– Due: Thu, Oct 24 at 11:59pm

• Quiz 4
– In-class: Mon, Oct 28
– Lectures 12 - 15

• Homework 4: Visual Language Models
– Out: Thu, Oct 24
– Due: Tue, Nov 5 at 11:59pm
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SCALING LAWS
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Timeline: Language Modeling
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1. Transformers 
appeared in 2017 

2. They immediately 
took over NLP

3. Vision Transformers 
appeared in 2021

Question: Why did it take 
so long for transformers 
to become popular in 
computer vision?



Timeline: Image Generation
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1. Transformers 
appeared in 2017 

2. They immediately 
took over NLP

3. Vision Transformers 
appeared in 2021

Question: Why did it take 
so long for transformers 
to become popular in 
computer vision?



How large are LLMs?
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Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion

Comparison of some recent large language models (LLMs)

Question guiding 
this section: 

How did Meta 
choose this 

combination of 
training tokens / 

model 
parameters?



How much did it cost to train LLaMa?
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Llama-1 Llama-2

Llama-3

GPU Costs
• modern GPUs cost around $15k
• the cost of a cloud GPU per hour ranges $1-$4
• 700W = 0.7 kWh è $0.084 per hour

Question: How much did Llama-3 70B cost to train?

Answer:



Power Law

• Most scaling laws for LLMs assume we are fitting a power 
law function

• Definition: a power law function has the form

• Example: 
– Zipf’s law states the the n-th most common word in a corpus 

appears twice as frequently as the (n+1)-st most common word
– The Zipf-Mandelbrot law:

9

f(x) = cx−k

Equation from https://en.wikipedia.org/wiki/Zipf%27s_law 



Scaling Laws: Kaplan et al. (2020)
Experimental Design
• Varied a number LLM 

hyperparams
– # parameters (768 – 1.5B)
– # tokens (22M – 23B)
– # FLOPS
– model (depth, width, # heads, 

dmodel)
– context length (1024 or less)
– batch size (219 or less)

• Evaluated test loss of each 
model

10
Figure from http://arxiv.org/abs/2001.08361 

These plots assume that 
as we increase each 
quantity, the 
performance is not 
bottlenecked by one of 
the other two



Scaling Laws: Kaplan et al. (2020)

11
Figure from http://arxiv.org/abs/2001.08361 

• Given the experimental results, the parameters of each power law were fit 
empirically

• This yielded one powere law for each of the most notable variables: # 
parameters, # tokens, # FLOPS (compute budget)



Scaling Laws: Kaplan et al. (2020)
Key takeaways:
1. three quantities dominate: 

D = # parameters, N = # tokens, C = 
# FLOPS

2. model shape doesn’t matter very 
much

3. performance improves as long as 
we increase both N and D

4. training loss curves follow 
predictable power laws

5. larger models are more sample 
efficient

6. convergence is not critical for good 
performance

7. best batch size follows a power law 
(and is huge: 1-2M tokens)
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Scaling Laws: Kaplan et al. (2020)
Key takeaways:
1. three quantities dominate: 

D = # parameters, N = # tokens, C = # 
FLOPS

2. model shape doesn’t matter very 
much

3. performance improves as long as 
we increase both N and D

4. training loss curves follow 
predictable power laws

5. larger models are more sample 
efficient

6. convergence is not critical for good 
performance

7. best batch size follows a power law 
(and is huge: 1-2M tokens)

“every time we increase the model size 
8x, we only need to increase the data by 
roughly 5x to avoid a penalty.”
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But Hoffman et al. (2022) 
tell a very different story!



Improved Scaling Laws: Hoffman et al. (2022)
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• Data:
– Fixed: C = # FLOPS
– Experiments varied:
• N = # tokens
• D = # parameters

– Measured: L(N, D)
• Learned a model to predict 

L(N,D) for any N and D
• Used this model to predict 

optimal model size



Improved Scaling Laws: Hoffman et al. (2022)
• The big shift from Chinchilla was a dramatic increase in the 

number of tokens
• Kaplan et al. (2020) said 8x increase in # parameters should 

have a 5x increase in # tokens
• But Chinchilla found you should increase both proportionally 

(2x # parameters + 2x # tokens)

20



Improved Scaling Laws: Hoffman et al. (2022)
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The key finding is that 
everyone had been 
using way too little 
data

And by increasing the 
amount of data and 
decreasing the model 
size, you can retain 
the same 
computational 
budget but get much 
better performance!
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How large are LLMs?
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Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion
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(cf. Bard)

Google 2022 1.56 trillion 137 billion
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Comparison of some recent large language models (LLMs)

Question guiding 
this section: 
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choose this 

combination of 
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Improved Scaling Laws: Hoffman et al. (2022)
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The key finding is that 
everyone had been 
using way too little 
data

And by increasing the 
amount of data and 
decreasing the model 
size, you can retain 
the same 
computational 
budget but get much 
better performance!



Phi Family of (small) LLMs
• Key idea: Instead of 

increasing the size of 
the model / data, 
increase the quality of 
your data

• Paper Title: 
“Textbooks Are All 
You Need”

• Results from Phi-1 
show performance 
commensurate with 
much larger coding 
models

25
Figure from http://arxiv.org/abs/2306.11644 



Phi Family of (small) LLMs
• Key idea: Instead of 

increasing the size of 
the model / data, 
increase the quality of 
your data

• Paper Title: 
“Textbooks Are All 
You Need”

• Results from Phi-1.5 
model show 
performance 
commensurate with 
much larger LLMs

26
Figure from http://arxiv.org/abs/2309.05463



Scaling Laws for Data Filtering
• Recent trend towards 

emphasizing data quality and 
not just data quantity

• But difficult to predict how to 
tradeoff between data 
quantity and quality and 
compute

• Scaling laws for data quality 
and data size (Goyal et al. 
2024) suggest that as your 
amount of compute goes up, 
you can get away with less 
filtering

27
Figure from http://arxiv.org/abs/2404.07177



Scaling Laws for Data Filtering
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Figure from http://arxiv.org/abs/2404.07177


