10-423/623: Generative Al
Lecture 17 — Distributed
Training

Henry Chai & Matt Gormley
10/30/24

Front Matter

10/30/24

* Announcements:

* HW4 released 10/25, due 11/5 at 11:59 PM
* Please be mindful of your grace day usage!
* HW623 to be released on 11/4, due 12/2 at 11:59 PM

* Only students enrolled in 10-623 should complete
HWG623; please do not submit HW623 if you are
enrolled in 10-423

Llama-1 Llama-2

When training a 65B-parameter model, our code Time Power Carbon Emitted
processes around 380 tokens/sec/GPU on 2048 (GPU hours) Consumption (W) (tCOzeq)
A100 GPU with 80GB of RAM. This means that 7B 184320 400 31.22

. s o 13B 368640 400 62.44
training over our dataset containing 1.4T tokens [pama-z2 3B 1038336 350 153.90
takes approximately 21 days. 70B 1720320 400 291.42

Total 3311616 539.00
Llama-3

Compute. Llama 3 405B is trained on up to 16K H100 GPUs, each running at 700W TDP with 80GB HBMS3,
using Meta’s Grand Teton Al server platform (Matt Bowman, 2022). Each server is equipped with eight GPUs
and two CPUs. Within a server, the eight GPUs are connected via NVLink. Training jobs are scheduled

Recall: How much did it cost to train LLaMa?

10/21/24 Source: https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/1711.00937

“the newly announced
clusters both contain 24,576
Nvidia Tensor Core H100
GPUs. This is a significant
increase over the original
clusters, which contained
16,000 Nvidia A100 GPUs.”

10/21/24 Source:

https://www.datacenterdynamics.com/en/news/meta-reveals-details-of-two-new-24k-gpu-ai-clusters/

\//\A
_ NVIDIA H100 NVIDIA A100

Memory size 80 GB 80 GB

Peak memory 1.6 TB / second 2.0 TB / second

bandwidth
GPU : :on;r?;-\/(\/;izl’jh ~0.6 TB /second ~ 0.9 TB /second
Comparison

Price ~$35K <« > ~S15K

- Key takeaway: inter-GPU communication is the primary

bottleneck in distributed systems (and speeding it up is

worth a lot of money!)

10/30/24

https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/data-center/h100/PB-11133-001_v01.pdf/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

* Goal: divide the work of training an LLM across multiple

GPUs such that inter-GPU communication is minimized

* Good news: Transformer-based LLM architectures are

highly parallelizable!

- Easily exploitable parallelism in LLM training includes:

Parallelism in
- Data parallelism

LLM Training

* Model or tensor parallelism
* Pipeline parallelism
* Optimizer-based parallelism

* Token parallelism

* Expert parallelism

10/30/24

* Approach: during training, split each minibatch of data points
evenly across multiple GPUs and have each GPU compute the

forward and backward pass for its data points.

DEI

Parallelism

* The simplest, most effective form of parallelism if attainable

* Only one inter-GPU communication per iteration

10/30/24

Suﬂb%- @UG\N\U'\?/V ~T S"(’O%A W0\ ??\6 2> Gac\’\ ?orar%’{‘;c_r
Lk, \Q,Lan:ZL/ .

05 prancken = 710 Ly = $10CB

| TO6B Ff FTAM

oN
Llama-3 /7 /

Compute. Llama 3 4058 is trained on up to 16K H100 GPUs, each running at 700W TDP with 80GB HBM3,
using Meta’s Grand Teton Al server platform (Matt Bowman, 2022). Each server is equipped with eight GPUs
and two CPUs. Within a server, the eight GPUs are connected via NVLink. Training jobs are scheduled

How big is LLaMa-37?

10/21/24 Source: https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/1711.00937

* Approach: for a batch of data points, partition the
forward and backward computations within a layer

Model across multiple GPUs
Parallelism Also called tensor parallelism

* Transformer based architectures have two primary

modules that can be parallelized

1. MLP blocks

2. Attention blocks

10/30/24

» Given a batch of training data points X € RN %D,

the operations to parallelize in MLP blocks are

« f(X) = 0(Y = XW) in the forward pass and
* Vx€(f(X)) = GWT in the backward pass

Model | | |
: for weight matrix W € RP? * M downstream gradient
Parallelism: Ny
MLP G = P and activation function 6
Blocks * Two ways of partitioning W across multiple GPUs
* Column-parallel: W = [cq, ¢y, ..., Cy]
T‘]’-I"
T
* Row-parallel: W =|"2
10/30/24 —rg— 10

* f(X) = 6(Y = XW) in the forward pass and

Two key observations: . in’(f(X)) = GW? in the backward pass

1. The column-parallel * Column-parallel: W = [cq, o, ..., Cy]

and row-parallel * Forward pass: e(X\,J> - [@(Xcl\ /G(XCFD/",/%@
" _

forward and backward

N Waptions are CV |
identjcal, just reversed - Backward : E WEE Mj : =

Parallelism: AEeArE peRss Tj)] . ;jmcm

r o
2MéRecutive MLPs can 1T M —

Bﬂ}eﬂ]@e between * Row-parallel: W = r2
column-parallel and T
row-parallel b - \\/
implementations to o E T
minimize the sums > < Forward pass: @ (EX X)2 2SN

717D - dd

across GPUs! Myl =8

oo * Backward pass: G\/\/T = [C?F, / erz £ GrD] N

Model
Parallelism:

MLP
Blocks

10/30/24

(a) MLP

Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.

Source: https://arxiv.org/pdf/1909.08053

13

https://arxiv.org/pdf/1909.08053

Model
Parallelism:

Attention
Blocks

10/30/24

* Multi-headed attention blocks trivially parallelize across

attention heads

- Assuming attention heads are concatenated horizontally,

the output can be passed to a row-parallel MLP directly

r)

=l v | i

Q=[(Q1.Q :ﬁ %
&f)ﬁt attention heads — ¢ K = [K,, K>) j
.- V = [\, V) s

(b) Self-Attention

Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.

—

[moqu]
g
&
13

Y2B, [=|Zs

4
inodoig

Source: https://arxiv.org/pdf/1909.08053

14

https://arxiv.org/pdf/1909.08053

Model
Parallelism:

Attention
Blocks

10/30/24

wionJekeq \

(I .12 |ol0]o|g |=»ea»|

. Model i § Model
\.Parallel __ Parallel
2 All-Reduce 2 All-Reduce
(forward + backward) (forward + backward)

Figure 4. Communication operations in a transformer layer. There
are 4 total communication operations in the forward and backward
pass of a single model parallel transformer layer.

Source: https://arxiv.org/pdf/1909.08053

15

https://arxiv.org/pdf/1909.08053

Pipeline

Parallelism

10/30/24

* The previous examples of tensor parallelism also
implicitly leverage pipeline parallelism, where different

layers or modules are put on different GPUs

* Issue: the computation across layers is inherently

sequential, not parallel!

Mach. 1 Mach. 2 Mach.3 Mach. 4

: 1 NN
< 4 1 2&&

v

Time

B rForwardwWork [| Backward Work N Idle

N/ N/ N _J N [/

Output stage * Naive implementation has
a ton of idle GPU time!

16

https://arxiv.org/pdf/1806.03377

* The previous examples of tensor parallelism also
implicitly leverage pipeline parallelism, where different

layers or modules are put on different GPUs

* Issue: the computation across layers is inherently

sequential, not parallel!

Pipeline

Mach. 1 Mach. 2 Mach.3 Mach. 4

—h

Parallelism
N

5

7
/;’/%%

7
Vi 7

77

%
1

DN

Time

B rForwardwWork [| Backward Work N Idle

Machines
= (7] N -

o

N/ N/ N _J N [/

Output stage * ldea: work on multiple

microbatches concurrently!
10/30/24 Source: https://arxiv.org/pdf/1806.03377 17

https://arxiv.org/pdf/1806.03377

* The previous examples of tensor parallelism also
implicitly leverage pipeline parallelism, where different

layers or modules are put on different GPUs

* Issue: the computation across layers is inherently

sequential, not parallel!

Pipeline

Mach. 1 Mach. 2 Mach.3 Mach. 4

Parallelism

Machines

Startup State Steady State

Time

B rorwardWork | | BackwardWork NN ldle

Output stage * ldea: work on multiple

microbatches concurrently!
10/30/24 Source: https://arxiv.org/pdf/1806.03377 18

https://arxiv.org/pdf/1806.03377

Pipeline

Parallelism

10/30/24

M R
55 NN AN
4 NN 2 N

>

Time

B rorwardwWork [| Backward Work Ry Idle

Time

I rorwardWork || Backward Work Idle
* The schedule above is the one-forward-one-backward (1F1B)

mechanism: in the steady state, each GPU alternates between

one forward pass and one backward pass

Source: https://arxiv.org/pdf/1806.03377

19

https://arxiv.org/pdf/1806.03377

>
>

ﬁ

N

77
ﬁ

X
N
N

Machines
-9 [#1] N —h

7
77

N\
NN

Time

B rorwardwWork [| Backward Work Ry Idle

.

Y

Time

I rorwardwork [| Backward Work Idle
Pipeline * Issue: if weights are updated in every backward pass, the weights

Parallelism used to compute the forward pass for a microbatch can be

different from the weights used to compute the backward pass

* The divergence is worse for earlier GPUs in the pipeline

* Can lead to poor model convergence/optimization

* Solution: weight stashing — after every forward pass, store the

weights and reload them for the corresponding backward pass
10/30/24 Source: https://arxiv.org/pdf/1806.03377 20

https://arxiv.org/pdf/1806.03377

9 101112
9 101112

9 101112 13

AW DN =

9 10 11 12

Time B rovardwork [| BackwardWork NN Idle

Pipeline * Indicates a pipeline flush between
Parallelism minibatches; the syncis required
to compute the parameters for the

next minibatch’s forward pass

* The 1F1B is still highly efficient even when forward and backward

passes take different amounts of compute (as is typically the case)

10/30/24 Source: https://arxiv.org/pdf/2104.04473 21

https://arxiv.org/pdf/2104.04473

- Another interesting question that arises with pipeline

parallelism: how should we partition the layers across GPUs?

* Solution: profile the code and apply dynamic programming!

Pipeline

Mach. 1 Mach. 2 Mach.3 Mach. 4

Parallelism Q-

N/ N/ N _J N [/

Input \./
stage

10/30/24 Source: https://arxiv.org/pdf/1806.03377

Output stage

https://arxiv.org/pdf/1806.03377

Pipeline

Parallelism

10/30/24

- Another interesting question that arises with pipeline

parallelism: how should we partition the layers across GPUs?

* Solution: profile the code and apply dynamic programming!

Leenote the time taken by the slowest stage
in the Optisaal pipeline between layers 1 and justay
machines. The goal of our algorithm is to t@

and the corresponding partitioning. Let 7T(i =T
denote the time taken by a single stage spanning layers i
through j, replicated over m machines.

T@i — j,m) = nlzmax(i Tg,iW{")

I=i I=i

where the left term inside the max is the total computation
time for all the layers in the stage, and the right term is the
total communication time for all the layers in the stage.
The optimal pipeline consisting of layers from 1
through j using m machines could either be a single stage
replicated m times, or be composed of multiple stages.

Source: https://arxiv.org/pdf/1806.03377

Case 1: The optimal pipeline contains only one stage,
replicated m times. In this case,

A(j,m)=T(— j,m)

Case 2: The optimal pipeline contains more than one
stage. In this case, it can be broken into an optimal sub-
pipeline consisting of layers from 1 through i with m —m’
machines followed by a single stage with layers i + 1
through j replicated over m’ machines. Then, using the
optimal sub-problem property, we have

A(i,m —m’)

(j,m) = min min max{2-C;
1<i<jl<m’'<m

Ti+1—> j,m)

23

https://arxiv.org/pdf/1806.03377

Model (Horizontal)
The story so far: Parallelism

Ultimately, data

parallelism is still king

and tensor / pipeline

parallelism are used

to support pushing

more data through

-

Pipeline Parallelism

the forward and

backward passes

Data Parallelism

10/30/24 Figure courtesy of Yuanzhi Li 24

Optimizer

Parallelism

10/30/24

* If we only need to compute/store the parameters and

gradients, then data + model + pipeline parallelism
(typically) suffices
* E.g., for mini-batch SGD, the update only requires

the gradients and the current weights:

w @+) — yvg(B)(W(t))

o —

- However, many advanced optimization algorithms

require storing additional intermediate or state

variables to perform the parameter update

25

Adam
(Adaptive

Moment
Estimation)

10/30/24

* High-level intuition: Adam combines SGD with
momentum (memory of previous gradient steps) and

RMSProp (scaled step sizes based on previous gradients)

WD Cp® _ @) 0 (M)

1—p;

= pPiM;_q + (1 — .31)V€(B)(W(t))

= BoSeos + (1=) (V 3(3)(W“)) O ve®(w®))

- [; and 5, are decay parameters that dictate how much

M, and S; are defined by previous time steps

M_, and S_; are initialized to matrices of all zeros
26

* High-level intuition: Adam combines SGD with
momentum (memory of previous gradient steps) and

RMSProp (scaled step sizes based on previous gradients)

WD ® _ Y (My)
Adam JS:/(1 - ,BZ)G 1-p;
(Adaptive here
Moment
e M. — _ (B) (1 (6)
Estimation) Me = fiMey + (1= pVER (W)

= B,S-1 + (1= B) (VEP(W®) @ ve®) (w®))

Mixed-precision training: M; and S; are the same

dimensionality as W® and are typically stored in FP32

(instead of FP16) because of the squared term in S;

10/30/24

27

Memory K=12
P=7.58

gpu, gPUpy_; Consumed N,=64

soeine T 0= 00 =T v

* For Adam, K = 12 = 3 * 4 because each parameter in

Optlmlzer W(t), M, and S; is stored in FP32 = 4 bytes per parameter

Parallelism

= Parameters " Gradients Optimizer States

Figure 1: Comparing the per-device memory consumption of model states, with three stages of
ZeRO-DP optimizations. ¥ denotes model size (number of parameters), K denotes the memory
multiplier of optimizer states, and Ny denotes DP degree. In the example, we assume a model
size of ¥ = 7.5B and DP of N; = 64 with K = 12 based on mixed-precision training with

Adam optimizer.

10/30/24 Source: https://arxiv.org/pdf/1910.02054, 28

https://arxiv.org/pdf/1910.02054

Optimizer

Parallelism

10/30/24

Memory K=12

Y=75B
gpu, gpu; gPUn.1 Consumed |\ ¢,
Baseline | L " Garenew e
P, r I I 2!11+2q1+";"’ 31.4GB
d
Pos+g # I I P4 (2+:')g p 16.6GB
- I I I (2+2+K)+ W 1.9GB
05+g+p Na

= Parameters " Gradients Optimizer States

Figure 1: Comparing the per-device memory consumption of model states, with three stages of
ZeRO-DP optimizations. ¥ denotes model size (number of parameters), K denotes the memory
multiplier of optimizer states, and Ny denotes DP degree. In the example, we assume a model
size of ¥ = 7.5B and DP of N; = 64 with K = 12 based on mixed-precision training with
Adam optimizer.

(ZeRO-DP = Zero redundancy optimizer powered data parallelism)

Source: https://arxiv.org/pdf/1910.02054,

29

https://arxiv.org/pdf/1910.02054

DP 7.5B Model (GB) 128B Model (GB) 1T Model (GB)
Pos Pos+g Pos+g+p Pos Pos+9 Pos+g+p Pos Pos+g Pos+g+10

1 120 120 120 2048 | 2048 2048 16000 | 16000 16000
4 52.5 | 41.3 30 896 704 512 7000 5500 4000
16 35.6 | 21.6 7.5 608 368 128 4750 2875 1000
64 31.4 | 16.6 1.88 536 284 32 4187 2218 250

256 30.4 154 0.47 518 263 8 4046 2054 62.5

1024 || 30.1 15.1 0.12 513 257 2 4011 2013 15.6

Table 1: Per-device memory consumption of different optimizations in ZeRO-DP as a function
of DP degree . Bold-faced text are the combinations for which the model can fit into a cluster
of 32GB V100 GPUs.

Optimizer

Parallelism

5.4 Implication on Model Size

The three phases of partitioning P,s, Pys44, and FP,s4g4p reduces the memory consumption
of each data parallel process on model states by up to 4x, 8x, and N; respectively. Table
1 analyzes model-state memory consumption of a few example models under the 3 stages of
ZeRO-DP optimizations for varying DP degree. Without ZeRO, the memory consumption is
equal to the first row in the table, regardless of the DP degree. Note that, with N; = 64,
ZeRO can train models with up to 7.5B, 14B, and 128B parameters using P,s, P,s4+4, and
Pystg+p, respectively. When Ny = 1024, ZeRO with all of its optimizations enabled (Pps+g4p)
could train models with 1 TRILLION parameters! Or potentially, models with ARBITRARY size!
Without ZeRO, the largest model DP alone can run has less than 1.5 Billion parameters.

10/30/24 Source: https://arxiv.org/pdf/1910.02054,

https://arxiv.org/pdf/1910.02054

Optimizer
Parallelism

10/30/24

IIN)PAIIAMEI’EIIS!
‘ “$ -

The three phases of partitioning P,s, Pys44, and FP,s4g4p reduces the memory consumption
of each data parallel process on model states by up to 4x, 8x, and N; respectively. Table
1 analyzes model-state memory consumption of a few example models under the 3 stages of
ZeRO-DP optimizations for varying DP degree. Without ZeRO, the memory consumption is
equal to the first row in the table, regardless of the DP degree. Note that, with N; = 64,
ZeRO can train models with up to 7.5B, 14B, and 128B parameters using P,s, P,s4+4, and
Pystg+p, respectively. When Ny = 1024, ZeRO with all of its optimizations enabled (Pps+g4p)

could train models with 1 TRILLION parameters! Or potentially, models with ARBITRARY size!
Without ZeRO, the largest model DP alone can run has less than 1.5 Billion parameters.

Source: https://arxiv.org/pdf/1910.02054,

https://arxiv.org/pdf/1910.02054

Recall:

How large are
LLMSs?

10/30/24

Creators | Yearof | Training Data Model Size
release | (# tokens) (# parameters)

GPT-2

GPT-3
(cf. ChatGPT)

PaLM
Chinchilla

LaMDA
(cf. Bard)

LLaMA
LLaMA-2
GPT-4

Gemini (Ultra)
LLaMA-3

OpenAl
OpenAl

Google
DeepMind
Google

Meta
Meta
OpenAl
Google
Meta

2019

2020

2022
2022

2022

2023
2023
2023
2023

2024

~10 billion (40GDb)

300 billion

780 billion
1.4 trillion

1.56 trillion

1.4 trillion
2 trillion
?

?

15 trillion

1.5 billion

175 billion

540 billion
70 billion

137 billion

65 billion

70 billion

? (2.76 trillion)
? (1.5 trillion)

405 billion

32

* Goal: divide the work of training an LLM across multiple

GPUs such that inter-GPU communication is minimized

* Good news: Transformer-based LLM architectures are

highly parallelizable!

- Easily exploitable parallelism in LLM training includes:

Parallelism in
- Data parallelism

LLM Training

* Model or tensor parallelism
* Pipeline parallelism
* Optimizer-based parallelism

* Token parallelism

* Expert parallelism

10/30/24 33

* Insight: in a transformer LM with causal attention, the
computation for each token in some transformer block

only depends on the previous tokens at that layer

* ldea: instead of waiting for the entire previous layer to

finish, start working on token t in layer [as soon as

Token tokens 1 throught — 1 in layer [— 1 are done
s Cate are the bet <eoc> —__D_e‘;c;}__”l {r__l;e;i;e_Z__q I

Parallelism T T S
Transformer layer NM :[Layer 3 part 1]: :[Layer 3 part 1]:
| L !
[Transformer layer N-1] |
i[Layer 2 part 1]i i[Layer 2 part 1]E
i[Layer 1 part 1]E i[Layer 1 part 1]i

<cor> Cats are the best

(a) Transformer-based LM (b) Operation partitioning (c) Microbatch-based pipeline (d) Token-based pipeline
(Megatron-LM) parallelism (GPipe) parallelism (TeraPipe)

10/30/24 Source: https://arxiv.org/pdf/2102.07988 34

https://arxiv.org/pdf/2102.07988

* Insight: in a transformer LM, the computation for each
token in some transformer block only depends on the

previous tokens at that layer

* Idea: instead of waiting for the entire previous layer to
finish, start working on token t in layer [as soon as

Token tokens 1 throught — 1inlayer [— 1 are done

Parallelism

* Intuition: increasing pipeline granularity reduces idle

time in the pipeline!

- Efficiency gains scale with sequence lengths and

10/30/24 models have been moving towards longer contexts 35

GPU 4
GPU 3
GPU 2
GPU 1

GPU 4
GPU 3
GPU 2
GPU 1

Forward Backward

- gy _"-1

N -~
Time

(a) Microbatch-based pipeline parallelism

Forward Backward

e

N

Time

TO ke n (b) Microbatch-based pipeline parallelism with small batch size

GPU 4

Parallelism oPus

GPU 1

10/30/24

Forward Backward Forward

L

Se—"

Time

(c) TeraPipe

time in the pipeline!

* Note: this figures

shows an all-forward-
all-backward
mechanism, which
liminates the need
for weight stashing
but introduces more

idle time

* Intuition: increasing pipeline granularity reduces idle

- Efficiency gains scale with sequence lengths and

models have been moving towards longer contexts

36

- Approach: just put each expert on a different GPU!

Encoder Encoder
output (shard 1) output (shard E)

)
ﬂp[Add & Norn]\ F’{ Add & Norm]}\ enforce a balanced Ioad

Feed Forward Feed Forwa rd
FFN
—

. . across GPUs, each expert

| S—

* Key consideration: to

[[—r—. is assigned a capacity

[} [5 } * If an expert is

A

| S——

Expert

(N/2)x (N/2)x

— Add & Norm | ‘C/wmrm] aSSigHEd more

< o
 ATi-to-All Combine

) T .
[FENy Hodel-parallel [FrNE]] tokens than its
e e — g capacity, those

I ——

— Add & Norm] « o . —»[Add & Norm] .
() () tokens are just

Parallelism

Multi-Head Devices Multi-Head
Attention 1...E Attention
\. J 4 J d d . |
\— Device 1/ \— Device y passe Irect y to
Input embeddings + | [Input embeddings + | .
Posiptional embedgdings Positional embeddings th e n eXt Iaye r Vla
(shard 1) L (shard E))

residual connections
10/30/24 Source: https://arxiv.org/pdf/2006.16668 37

https://arxiv.org/pdf/2006.16668

- Approach: just put each expert on a different GPU!
* Key consideration: to

(Capacity Factor: 1.0) ; (Capacity Factor: 1.5)
et Bpmz e | mpent epemz mpens €NTOrce a balanced load

H [ﬂj H} { } across GPUs, each expert
L) (8 is assigned a capacity

/ * If an expert is
Expert ‘M i |
. assigned more
Parallelism |
tokens than its

Tokens

capacity, those

* If the capacity factor is too tokens are just

small, overallocation is likely passed directly to

* If the capacity factor is too large, the next layer via

some GPUs will likely be underutilized residual connections
10/30/24 Source: https://arxiv.org/pdf/2101.03961

https://arxiv.org/pdf/2101.03961

	Slide 1: 10-423/623: Generative AI Lecture 17 – Distributed Training
	Slide 2: Front Matter
	Slide 3: Recall: How much did it cost to train LLaMa?
	Slide 4: Recall: How much did it cost to train LLaMa?
	Slide 5: GPU Comparison
	Slide 6: Parallelism in LLM Training
	Slide 7: Data Parallelism
	Slide 8: Recall: How big is LLaMa-3?
	Slide 9: Model Parallelism
	Slide 10: Model Parallelism: MLP Blocks
	Slide 12: Model Parallelism: MLP Blocks
	Slide 13: Model Parallelism: MLP Blocks
	Slide 14: Model Parallelism: Attention Blocks
	Slide 15: Model Parallelism: Attention Blocks
	Slide 16: Pipeline Parallelism
	Slide 17: Pipeline Parallelism
	Slide 18: Pipeline Parallelism
	Slide 19: Pipeline Parallelism
	Slide 20: Pipeline Parallelism
	Slide 21: Pipeline Parallelism
	Slide 22: Pipeline Parallelism
	Slide 23: Pipeline Parallelism
	Slide 24: Ultimately, data parallelism is still king and tensor / pipeline parallelism are used to support pushing more data through the forward and backward passes
	Slide 25: Optimizer Parallelism
	Slide 26: Adam (Adaptive Moment Estimation)
	Slide 27: Adam (Adaptive Moment Estimation)
	Slide 28: Optimizer Parallelism
	Slide 29: Optimizer Parallelism
	Slide 30: Optimizer Parallelism
	Slide 31: Optimizer Parallelism
	Slide 32: Recall: How large are LLMs?
	Slide 33: Parallelism in LLM Training
	Slide 34: Token Parallelism
	Slide 35: Token Parallelism
	Slide 36: Token Parallelism
	Slide 37: Expert Parallelism
	Slide 38: Expert Parallelism

