
Henry Chai & Matt Gormley

10/30/24

10-423/623: Generative AI
Lecture 17 – Distributed
Training

Front Matter

 Announcements:

 HW4 released 10/25, due 11/5 at 11:59 PM

 Please be mindful of your grace day usage!

 HW623 to be released on 11/4, due 12/2 at 11:59 PM

 Only students enrolled in 10-623 should complete

HW623; please do not submit HW623 if you are

enrolled in 10-423

10/30/24 2

Recall: How much did it cost to train LLaMa?

10/21/24 3Source: https://arxiv.org/pdf/1711.00937

Llama-1 Llama-2

Llama-3

https://arxiv.org/pdf/1711.00937

Recall: How much did it cost to train LLaMa?

10/21/24 4Source: https://www.datacenterdynamics.com/en/news/meta-reveals-details-of-two-new-24k-gpu-ai-clusters/

 “the newly announced

clusters both contain 24,576

Nvidia Tensor Core H100

GPUs. This is a significant

increase over the original

clusters, which contained

16,000 Nvidia A100 GPUs.”

https://www.datacenterdynamics.com/en/news/meta-reveals-details-of-two-new-24k-gpu-ai-clusters/

GPU
Comparison

NVIDIA H100 NVIDIA A100

Memory size 80 GB 80 GB

Peak memory
bandwidth

2.0 TB / second 1.6 TB / second

Inter-GPU
bandwidth

~ 0.9 TB / second ~ 0.6 TB / second

Price ~ $35K ~ $15K

10/30/24 5Source: https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/data-center/h100/PB-11133-001_v01.pdf/
Source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

 Key takeaway: inter-GPU communication is the primary

bottleneck in distributed systems (and speeding it up is

worth a lot of money!)

https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/data-center/h100/PB-11133-001_v01.pdf/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

Parallelism in
LLM Training

 Goal: divide the work of training an LLM across multiple

GPUs such that inter-GPU communication is minimized

 Good news: Transformer-based LLM architectures are

highly parallelizable!

 Easily exploitable parallelism in LLM training includes:

 Data parallelism

 Model or tensor parallelism

 Pipeline parallelism

 Optimizer-based parallelism

 Token parallelism

 Expert parallelism
10/30/24 6

Data
Parallelism

 Approach: during training, split each minibatch of data points

evenly across multiple GPUs and have each GPU compute the

forward and backward pass for its data points.

 The simplest, most effective form of parallelism if attainable

 Only one inter-GPU communication per iteration

 Issue: each GPU needs to store a copy of the entire model10/30/24 7

GPU 1 GPU 2 GPU 3 GPU 4

Sum and broadcast gradients

Recall: How big is LLaMa-3?

10/21/24 8Source: https://arxiv.org/pdf/1711.00937

Llama-3

 If parameters are stored in FP16, each parameter takes 16 bits = 2 bytes …

 … which means 405 billion parameters requires 810 billion bytes = 810 GB!

 But our GPUs only have 80 GB of RAM

 Idea: split the model up across multiple GPUs!

https://arxiv.org/pdf/1711.00937

Model
Parallelism

 Approach: for a batch of data points, partition the

forward and backward computations within a layer

across multiple GPUs

 Also called tensor parallelism

 Transformer based architectures have two primary

modules that can be parallelized

1. MLP blocks

2. Attention blocks

10/30/24 9

Model
Parallelism:
MLP
Blocks

 Given a batch of training data points 𝑋 ∈ ℝ𝑁 × 𝐷,

the operations to parallelize in MLP blocks are

 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊 in the forward pass and

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑌𝑊𝑇 in the backward pass

for weight matrix 𝑊 ∈ ℝ𝐷 × 𝑀, downstream gradient

𝐺 =
𝜕ℓ

𝜕𝑌
, and activation function 𝜃

 Two ways of partitioning 𝑊 across multiple GPUs

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Row-parallel: 𝑊 =

𝑟1
𝑟2

⋮
𝑟𝐷

10/30/24 10

 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊 in the forward pass and

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑊𝑇 in the backward pass

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Row-parallel: 𝑊 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

Model
Parallelism:
MLP
Blocks

10/30/24 11

 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊 in the forward pass and

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑊𝑇 in the backward pass

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Forward pass: 𝜃 𝑋𝑊 = 𝜃 𝑋𝑐1 , … , 𝜃 𝑋𝑐𝑀

 Backward pass: 𝑔1, 𝑔2, … , 𝑔𝑀

𝑐1
𝑇

𝑐2
𝑇

⋮
𝑐𝑀

𝑇

= σ𝑚=1
𝑀 𝑔𝑚𝑐𝑚

𝑇

 Forward pass: 𝜃 𝑥1, 𝑥2, … , 𝑥𝐷

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

= σ𝑑=1
𝐷 𝑥𝑑𝑟𝑑

𝑇

 Backward pass: 𝐺𝑌𝑊𝑇 = 𝐺𝑦𝑟1, … , 𝐺𝑦𝑟𝐷

 Row-parallel: 𝑊 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

Two key observations:

10/30/24 12

 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊 in the forward pass and

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑊𝑇 in the backward pass

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Forward pass: 𝜃 𝑋𝑊 = 𝜃 𝑋𝑐1 , … , 𝜃 𝑋𝑐𝑀

 Backward pass: 𝑔1, 𝑔2, … , 𝑔𝑀

𝑐1
𝑇

𝑐2
𝑇

⋮
𝑐𝑀

𝑇

= σ𝑚=1
𝑀 𝑔𝑚𝑐𝑚

𝑇

 Forward pass: 𝜃 𝑥1, 𝑥2, … , 𝑥𝐷

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

= σ𝑑=1
𝐷 𝑥𝑑𝑟𝑑

𝑇

 Backward pass: 𝐺𝑌𝑊𝑇 = 𝐺𝑦𝑟1, … , 𝐺𝑦𝑟𝐷

 Row-parallel: 𝑊 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

1. The column-parallel
and row-parallel
forward and backward
computations are
identical, just reversed

2. Consecutive MLPs can
alternate between
column-parallel and
row-parallel
implementations to
minimize the sums
across GPUs!

Model
Parallelism:
MLP
Blocks

10/30/24 13

𝜃

Source: https://arxiv.org/pdf/1909.08053

𝑌 = 𝜃 𝑋𝐴

𝜃

https://arxiv.org/pdf/1909.08053

Model
Parallelism:
Attention
Blocks

 Multi-headed attention blocks trivially parallelize across

attention heads

 Assuming attention heads are concatenated horizontally,

the output can be passed to a row-parallel MLP directly

10/30/24 14Source: https://arxiv.org/pdf/1909.08053

https://arxiv.org/pdf/1909.08053

Model
Parallelism:
Attention
Blocks

10/30/24 15Source: https://arxiv.org/pdf/1909.08053

𝜃

https://arxiv.org/pdf/1909.08053

Pipeline
Parallelism

 The previous examples of tensor parallelism also

implicitly leverage pipeline parallelism, where different

layers or modules are put on different GPUs

 Issue: the computation across layers is inherently

sequential, not parallel!

 Naïve implementation has

a ton of idle GPU time!
10/30/24 16Source: https://arxiv.org/pdf/1806.03377

https://arxiv.org/pdf/1806.03377

Pipeline
Parallelism

 The previous examples of tensor parallelism also

implicitly leverage pipeline parallelism, where different

layers or modules are put on different GPUs

 Issue: the computation across layers is inherently

sequential, not parallel!

 Idea: work on multiple

microbatches concurrently!
10/30/24 17Source: https://arxiv.org/pdf/1806.03377

https://arxiv.org/pdf/1806.03377

Pipeline
Parallelism

 The previous examples of tensor parallelism also

implicitly leverage pipeline parallelism, where different

layers or modules are put on different GPUs

 Issue: the computation across layers is inherently

sequential, not parallel!

 Idea: work on multiple

microbatches concurrently!
10/30/24 18Source: https://arxiv.org/pdf/1806.03377

https://arxiv.org/pdf/1806.03377

Pipeline
Parallelism

10/30/24 19Source: https://arxiv.org/pdf/1806.03377

 The schedule above is the one-forward-one-backward (1F1B)

mechanism: in the steady state, each GPU alternates between

one forward pass and one backward pass

https://arxiv.org/pdf/1806.03377

Pipeline
Parallelism

 Issue: if weights are updated in every backward pass, the weights

used to compute the forward pass for a microbatch can be

different from the weights used to compute the backward pass

 The divergence is worse for earlier GPUs in the pipeline

 Can lead to poor model convergence/optimization

 Solution: weight stashing – after every forward pass, store the

weights and reload them for the corresponding backward pass
10/30/24 20Source: https://arxiv.org/pdf/1806.03377

https://arxiv.org/pdf/1806.03377

Pipeline
Parallelism

 The 1F1B is still highly efficient even when forward and backward

passes take different amounts of compute (as is typically the case)

10/30/24 21Source: https://arxiv.org/pdf/2104.04473

 Indicates a pipeline flush between

minibatches; the sync is required

to compute the parameters for the

next minibatch’s forward pass

https://arxiv.org/pdf/2104.04473

Pipeline
Parallelism

 Another interesting question that arises with pipeline

parallelism: how should we partition the layers across GPUs?

 Solution: profile the code and apply dynamic programming!

10/30/24 22Source: https://arxiv.org/pdf/1806.03377

https://arxiv.org/pdf/1806.03377

Pipeline
Parallelism

 Another interesting question that arises with pipeline

parallelism: how should we partition the layers across GPUs?

 Solution: profile the code and apply dynamic programming!

10/30/24 23Source: https://arxiv.org/pdf/1806.03377

https://arxiv.org/pdf/1806.03377

Ultimately, data

parallelism is still king

and tensor / pipeline

parallelism are used

to support pushing

more data through

the forward and

backward passes

10/30/24 24Figure courtesy of Yuanzhi Li

The story so far:

Optimizer
Parallelism

 If we only need to compute/store the parameters and

gradients, then data + model + pipeline parallelism

(typically) suffices

 E.g., for mini-batch SGD, the update only requires

the gradients and the current weights:

𝑊 𝑡+1 ← 𝑊 𝑡 − 𝛾∇ℓ 𝐵 𝑊 𝑡

 However, many advanced optimization algorithms

require storing additional intermediate or state

variables to perform the parameter update

10/30/24 25

Adam
(Adaptive
Moment
Estimation)

10/30/24 26

 High-level intuition: Adam combines SGD with

momentum (memory of previous gradient steps) and

RMSProp (scaled step sizes based on previous gradients)

𝑊 𝑡+1 ← 𝑊 𝑡 −
𝛾

Τ𝑆𝑡 1 − 𝛽2
𝑡

⊙
𝑀𝑡

1 − 𝛽1
𝑡

where

 𝑀𝑡 = 𝛽1𝑀𝑡−1 + 1 − 𝛽1 ∇ℓ 𝐵 𝑊 𝑡

 𝑆𝑡 = 𝛽2𝑆𝑡−1 + 1 − 𝛽2 ∇ℓ 𝐵 𝑊 𝑡 ⊙ ∇ℓ 𝐵 𝑊 𝑡

 𝛽1 and 𝛽2 are decay parameters that dictate how much

𝑀𝑡 and 𝑆𝑡 are defined by previous time steps

 𝑀−1 and 𝑆−1 are initialized to matrices of all zeros

Adam
(Adaptive
Moment
Estimation)

 High-level intuition: Adam combines SGD with

momentum (memory of previous gradient steps) and

RMSProp (scaled step sizes based on previous gradients)

𝑊 𝑡+1 ← 𝑊 𝑡 −
𝛾

Τ𝑆𝑡 1 − 𝛽2
𝑡

⊙
𝑀𝑡

1 − 𝛽1
𝑡

where

 𝑀𝑡 = 𝛽1𝑀𝑡−1 + 1 − 𝛽1 ∇ℓ 𝐵 𝑊 𝑡

 𝑆𝑡 = 𝛽2𝑆𝑡−1 + 1 − 𝛽2 ∇ℓ 𝐵 𝑊 𝑡 ⊙ ∇ℓ 𝐵 𝑊 𝑡

 Mixed-precision training: 𝑀𝑡 and 𝑆𝑡 are the same

dimensionality as 𝑊 𝑡 and are typically stored in FP32

(instead of FP16) because of the squared term in 𝑆𝑡
10/30/24 27

Optimizer
Parallelism

10/30/24 28Source: https://arxiv.org/pdf/1910.02054

 For Adam, 𝐾 = 12 = 3 ∗ 4 because each parameter in

𝑊 𝑡 , 𝑀𝑡, and 𝑆𝑡 is stored in FP32 = 4 bytes/parameter

https://arxiv.org/pdf/1910.02054

Optimizer
Parallelism

(ZeRO-DP = Zero redundancy optimizer powered data parallelism)

10/30/24 29Source: https://arxiv.org/pdf/1910.02054

https://arxiv.org/pdf/1910.02054

Optimizer
Parallelism

10/30/24 30Source: https://arxiv.org/pdf/1910.02054

https://arxiv.org/pdf/1910.02054

Optimizer
Parallelism

10/30/24 31Source: https://arxiv.org/pdf/1910.02054

https://arxiv.org/pdf/1910.02054

Recall:
How large are
LLMs?

10/30/24 32

Model Creators Year of
release

Training Data
(# tokens)

Model Size
(# parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion

Parallelism in
LLM Training

 Goal: divide the work of training an LLM across multiple

GPUs such that inter-GPU communication is minimized

 Good news: Transformer-based LLM architectures are

highly parallelizable!

 Easily exploitable parallelism in LLM training includes:

 Data parallelism

 Model or tensor parallelism

 Pipeline parallelism

 Optimizer-based parallelism

 Token parallelism

 Expert parallelism
10/30/24 33

Token
Parallelism

 Insight: in a transformer LM with causal attention, the

computation for each token in some transformer block

only depends on the previous tokens at that layer

 Idea: instead of waiting for the entire previous layer to

finish, start working on token 𝑡 in layer 𝑙 as soon as

tokens 1 through 𝑡 − 1 in layer 𝑙 − 1 are done

10/30/24 34Source: https://arxiv.org/pdf/2102.07988

https://arxiv.org/pdf/2102.07988

Token
Parallelism

10/30/24 35

 Insight: in a transformer LM, the computation for each

token in some transformer block only depends on the

previous tokens at that layer

 Idea: instead of waiting for the entire previous layer to

finish, start working on token 𝑡 in layer 𝑙 as soon as

tokens 1 through 𝑡 − 1 in layer 𝑙 − 1 are done

 Intuition: increasing pipeline granularity reduces idle

time in the pipeline!

 Efficiency gains scale with sequence lengths and

models have been moving towards longer contexts

Token
Parallelism

10/30/24 36

 Insight: in a transformer LM, the computation for each

token in some transformer block only depends on the

previous tokens at that layer

 Idea: instead of waiting for the entire previous layer to

finish, start working on token 𝑡 in layer 𝑙 as soon as

tokens 1 through 𝑡 − 1 in layer 𝑙 − 1 are done

 Intuition: increasing pipeline granularity reduces idle

time in the pipeline!

 Efficiency gains scale with sequence lengths and

models have been moving towards longer contexts

 Note: this figures

shows an all-forward-

all-backward

mechanism, which

eliminates the need

for weight stashing

but introduces more

idle time

Expert
Parallelism

 Approach: just put each expert on a different GPU!

 Key considerations

10/30/24 37

 Key consideration: to

enforce a balanced load

across GPUs, each expert

is assigned a capacity

 If an expert is

assigned more

tokens than its

capacity, those

tokens are just

passed directly to

the next layer via

residual connections
Source: https://arxiv.org/pdf/2006.16668

https://arxiv.org/pdf/2006.16668

Expert
Parallelism

 Approach: just put each expert on a different GPU!

10/30/24 38

 Key consideration: to

enforce a balanced load

across GPUs, each expert

is assigned a capacity

 If an expert is

assigned more

tokens than its

capacity, those

tokens are just

passed directly to

the next layer via

residual connections
Source: https://arxiv.org/pdf/2101.03961

 If the capacity factor is too

small, overallocation is likely

 If the capacity factor is too large,

some GPUs will likely be underutilized

https://arxiv.org/pdf/2101.03961

	Slide 1: 10-423/623: Generative AI Lecture 17 – Distributed Training
	Slide 2: Front Matter
	Slide 3: Recall: How much did it cost to train LLaMa?
	Slide 4: Recall: How much did it cost to train LLaMa?
	Slide 5: GPU Comparison
	Slide 6: Parallelism in LLM Training
	Slide 7: Data Parallelism
	Slide 8: Recall: How big is LLaMa-3?
	Slide 9: Model Parallelism
	Slide 10: Model Parallelism: MLP Blocks
	Slide 11: Model Parallelism: MLP Blocks
	Slide 12: Two key observations:
	Slide 13: Model Parallelism: MLP Blocks
	Slide 14: Model Parallelism: Attention Blocks
	Slide 15: Model Parallelism: Attention Blocks
	Slide 16: Pipeline Parallelism
	Slide 17: Pipeline Parallelism
	Slide 18: Pipeline Parallelism
	Slide 19: Pipeline Parallelism
	Slide 20: Pipeline Parallelism
	Slide 21: Pipeline Parallelism
	Slide 22: Pipeline Parallelism
	Slide 23: Pipeline Parallelism
	Slide 24: Ultimately, data parallelism is still king and tensor / pipeline parallelism are used to support pushing more data through the forward and backward passes
	Slide 25: Optimizer Parallelism
	Slide 26: Adam (Adaptive Moment Estimation)
	Slide 27: Adam (Adaptive Moment Estimation)
	Slide 28: Optimizer Parallelism
	Slide 29: Optimizer Parallelism
	Slide 30: Optimizer Parallelism
	Slide 31: Optimizer Parallelism
	Slide 32: Recall: How large are LLMs?
	Slide 33: Parallelism in LLM Training
	Slide 34: Token Parallelism
	Slide 35: Token Parallelism
	Slide 36: Token Parallelism
	Slide 37: Expert Parallelism
	Slide 38: Expert Parallelism

