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Front Matter

 Announcements: 

 HW4 released 10/25, due 11/5 at 11:59 PM

 Please be mindful of your grace day usage!

 HW623 to be released on 11/4, due 12/2 at 11:59 PM

 Only students enrolled in 10-623 should complete 

HW623; please do not submit HW623 if you are 

enrolled in 10-423
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Recall: How much did it cost to train LLaMa?

10/21/24 3Source: https://arxiv.org/pdf/1711.00937 

Llama-1 Llama-2

Llama-3

https://arxiv.org/pdf/1711.00937


Recall: How much did it cost to train LLaMa?

10/21/24 4Source: https://www.datacenterdynamics.com/en/news/meta-reveals-details-of-two-new-24k-gpu-ai-clusters/ 

 “the newly announced 

clusters both contain 24,576 

Nvidia Tensor Core H100 

GPUs. This is a significant 

increase over the original 

clusters, which contained 

16,000 Nvidia A100 GPUs.”

https://www.datacenterdynamics.com/en/news/meta-reveals-details-of-two-new-24k-gpu-ai-clusters/


GPU 
Comparison 

NVIDIA H100 NVIDIA A100

Memory size 80 GB 80 GB

Peak memory 
bandwidth

2.0 TB / second 1.6 TB / second

Inter-GPU 
bandwidth

~ 0.9 TB / second ~ 0.6 TB / second

Price ~ $35K ~ $15K 

10/30/24 5Source: https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/data-center/h100/PB-11133-001_v01.pdf/ 
Source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf 

 Key takeaway: inter-GPU communication is the primary 

bottleneck in distributed systems (and speeding it up is 

worth a lot of money!)

https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/data-center/h100/PB-11133-001_v01.pdf/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf


Parallelism in 
LLM Training

 Goal: divide the work of training an LLM across multiple 

GPUs such that inter-GPU communication is minimized

 Good news: Transformer-based LLM architectures are 

highly parallelizable!

 Easily exploitable parallelism in LLM training includes:

 Data parallelism

 Model or tensor parallelism

 Pipeline parallelism

 Optimizer-based parallelism 

 Token parallelism

 Expert parallelism
10/30/24 6



Data 
Parallelism

 Approach: during training, split each minibatch of data points 

evenly across multiple GPUs and have each GPU compute the 

forward and backward pass for its data points.

 The simplest, most effective form of parallelism if attainable

 Only one inter-GPU communication per iteration

 Issue: each GPU needs to store a copy of the entire model10/30/24 7

GPU 1 GPU 2 GPU 3 GPU 4

Sum and broadcast gradients 



Recall: How big is LLaMa-3?

10/21/24 8Source: https://arxiv.org/pdf/1711.00937 

Llama-3

 If parameters are stored in FP16, each parameter takes 16 bits = 2 bytes …

 … which means 405 billion parameters requires 810 billion bytes = 810 GB!

 But our GPUs only have 80 GB of RAM

 Idea: split the model up across multiple GPUs!

https://arxiv.org/pdf/1711.00937


Model 
Parallelism

 Approach: for a batch of data points, partition the 

forward and backward computations within a layer 

across multiple GPUs

 Also called tensor parallelism 

 Transformer based architectures have two primary 

modules that can be parallelized

1. MLP blocks

2. Attention blocks
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Model 
Parallelism: 
MLP 
Blocks

 Given a batch of training data points 𝑋 ∈ ℝ𝑁 × 𝐷, 

the operations to parallelize in MLP blocks are 

 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊  in the forward pass and 

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑌𝑊𝑇  in the backward pass 

for weight matrix 𝑊 ∈ ℝ𝐷 × 𝑀, downstream gradient 

𝐺 =
𝜕ℓ

𝜕𝑌
, and activation function 𝜃

 Two ways of partitioning 𝑊 across multiple GPUs

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Row-parallel: 𝑊 =

𝑟1
𝑟2

⋮
𝑟𝐷
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 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊  in the forward pass and 

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑊𝑇  in the backward pass 

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Row-parallel: 𝑊 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇



Model 
Parallelism: 
MLP 
Blocks
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 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊  in the forward pass and 

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑊𝑇  in the backward pass 

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Forward pass: 𝜃 𝑋𝑊 = 𝜃 𝑋𝑐1 , … , 𝜃 𝑋𝑐𝑀  

 Backward pass: 𝑔1, 𝑔2, … , 𝑔𝑀

𝑐1
𝑇

𝑐2
𝑇

⋮
𝑐𝑀

𝑇

= σ𝑚=1
𝑀 𝑔𝑚𝑐𝑚

𝑇

 Forward pass: 𝜃 𝑥1, 𝑥2, … , 𝑥𝐷

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

= σ𝑑=1
𝐷 𝑥𝑑𝑟𝑑

𝑇

 Backward pass: 𝐺𝑌𝑊𝑇 = 𝐺𝑦𝑟1, … , 𝐺𝑦𝑟𝐷

 Row-parallel: 𝑊 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇



Two key observations: 
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 𝑓 𝑋 = 𝜃 𝑌 = 𝑋𝑊  in the forward pass and 

 ∇𝑋ℓ 𝑓 𝑋 = 𝐺𝑊𝑇  in the backward pass 

 Column-parallel: 𝑊 = 𝑐1, 𝑐2, … , 𝑐𝑀

 Forward pass: 𝜃 𝑋𝑊 = 𝜃 𝑋𝑐1 , … , 𝜃 𝑋𝑐𝑀  

 Backward pass: 𝑔1, 𝑔2, … , 𝑔𝑀

𝑐1
𝑇

𝑐2
𝑇

⋮
𝑐𝑀

𝑇

= σ𝑚=1
𝑀 𝑔𝑚𝑐𝑚

𝑇

 Forward pass: 𝜃 𝑥1, 𝑥2, … , 𝑥𝐷

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

= σ𝑑=1
𝐷 𝑥𝑑𝑟𝑑

𝑇

 Backward pass: 𝐺𝑌𝑊𝑇 = 𝐺𝑦𝑟1, … , 𝐺𝑦𝑟𝐷

 Row-parallel: 𝑊 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝐷

𝑇

1. The column-parallel 
and row-parallel 
forward and backward 
computations are 
identical, just reversed

2. Consecutive MLPs can 
alternate between 
column-parallel and 
row-parallel 
implementations to 
minimize the sums 
across GPUs!



Model 
Parallelism: 
MLP 
Blocks
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𝜃

Source: https://arxiv.org/pdf/1909.08053 

𝑌 = 𝜃 𝑋𝐴

𝜃

https://arxiv.org/pdf/1909.08053


Model 
Parallelism: 
Attention
Blocks

 Multi-headed attention blocks trivially parallelize across 

attention heads

 Assuming attention heads are concatenated horizontally, 

the output can be passed to a row-parallel MLP directly

10/30/24 14Source: https://arxiv.org/pdf/1909.08053 

https://arxiv.org/pdf/1909.08053


Model 
Parallelism: 
Attention
Blocks

10/30/24 15Source: https://arxiv.org/pdf/1909.08053 

𝜃

https://arxiv.org/pdf/1909.08053


Pipeline 
Parallelism 

 The previous examples of tensor parallelism also 

implicitly leverage pipeline parallelism, where different 

layers or modules are put on different GPUs

 Issue: the computation across layers is inherently 

sequential, not parallel!

 Naïve implementation has 

a ton of idle GPU time!
10/30/24 16Source: https://arxiv.org/pdf/1806.03377 

https://arxiv.org/pdf/1806.03377


Pipeline 
Parallelism 

 The previous examples of tensor parallelism also 

implicitly leverage pipeline parallelism, where different 

layers or modules are put on different GPUs

 Issue: the computation across layers is inherently 

sequential, not parallel!

 Idea: work on multiple 

microbatches concurrently!
10/30/24 17Source: https://arxiv.org/pdf/1806.03377 

https://arxiv.org/pdf/1806.03377


Pipeline 
Parallelism 

 The previous examples of tensor parallelism also 

implicitly leverage pipeline parallelism, where different 

layers or modules are put on different GPUs

 Issue: the computation across layers is inherently 

sequential, not parallel!

 Idea: work on multiple 

microbatches concurrently!
10/30/24 18Source: https://arxiv.org/pdf/1806.03377 

https://arxiv.org/pdf/1806.03377


Pipeline 
Parallelism 

10/30/24 19Source: https://arxiv.org/pdf/1806.03377 

 The schedule above is the one-forward-one-backward (1F1B) 

mechanism: in the steady state, each GPU alternates between 

one forward pass and one backward pass

https://arxiv.org/pdf/1806.03377


Pipeline 
Parallelism 

 Issue: if weights are updated in every backward pass, the weights 

used to compute the forward pass for a microbatch can be 

different from the weights used to compute the backward pass

 The divergence is worse for earlier GPUs in the pipeline

 Can lead to poor model convergence/optimization

 Solution: weight stashing – after every forward pass, store the 

weights and reload them for the corresponding backward pass
10/30/24 20Source: https://arxiv.org/pdf/1806.03377 

https://arxiv.org/pdf/1806.03377


Pipeline 
Parallelism 

 The 1F1B is still highly efficient even when forward and backward 

passes take different amounts of compute (as is typically the case) 

10/30/24 21Source: https://arxiv.org/pdf/2104.04473 

 Indicates a pipeline flush between 

minibatches; the sync is required 

to compute the parameters for the 

next minibatch’s forward pass

https://arxiv.org/pdf/2104.04473


Pipeline 
Parallelism 

 Another interesting question that arises with pipeline 

parallelism: how should we partition the layers across GPUs?

 Solution: profile the code and apply dynamic programming!

10/30/24 22Source: https://arxiv.org/pdf/1806.03377 

https://arxiv.org/pdf/1806.03377


Pipeline 
Parallelism 

 Another interesting question that arises with pipeline 

parallelism: how should we partition the layers across GPUs?

 Solution: profile the code and apply dynamic programming!

10/30/24 23Source: https://arxiv.org/pdf/1806.03377 

https://arxiv.org/pdf/1806.03377


Ultimately, data 

parallelism is still king 

and tensor / pipeline 

parallelism are used 

to support pushing 

more data through 

the forward and 

backward passes

10/30/24 24Figure courtesy of Yuanzhi Li

The story so far:



Optimizer 
Parallelism

 If we only need to compute/store the parameters and 

gradients, then data + model + pipeline parallelism 

(typically) suffices

 E.g., for mini-batch SGD, the update only requires 

the gradients and the current weights:

𝑊 𝑡+1 ← 𝑊 𝑡 − 𝛾∇ℓ 𝐵 𝑊 𝑡

 However, many advanced optimization algorithms 

require storing additional intermediate or state 

variables to perform the parameter update

10/30/24 25



Adam 
(Adaptive 
Moment 
Estimation)

10/30/24 26

 High-level intuition: Adam combines SGD with 

momentum (memory of previous gradient steps) and 

RMSProp (scaled step sizes based on previous gradients)

𝑊 𝑡+1 ← 𝑊 𝑡 −
𝛾

Τ𝑆𝑡 1 − 𝛽2
𝑡

⊙
𝑀𝑡

1 − 𝛽1
𝑡

where

 𝑀𝑡 = 𝛽1𝑀𝑡−1 + 1 − 𝛽1 ∇ℓ 𝐵 𝑊 𝑡

 𝑆𝑡 = 𝛽2𝑆𝑡−1 + 1 − 𝛽2 ∇ℓ 𝐵 𝑊 𝑡 ⊙ ∇ℓ 𝐵 𝑊 𝑡

 𝛽1 and 𝛽2 are decay parameters that dictate how much 

𝑀𝑡  and 𝑆𝑡  are defined by previous time steps

 𝑀−1 and 𝑆−1 are initialized to matrices of all zeros



Adam 
(Adaptive 
Moment 
Estimation)

 High-level intuition: Adam combines SGD with 

momentum (memory of previous gradient steps) and 

RMSProp (scaled step sizes based on previous gradients)

𝑊 𝑡+1 ← 𝑊 𝑡 −
𝛾

Τ𝑆𝑡 1 − 𝛽2
𝑡

⊙
𝑀𝑡

1 − 𝛽1
𝑡

where

 𝑀𝑡 = 𝛽1𝑀𝑡−1 + 1 − 𝛽1 ∇ℓ 𝐵 𝑊 𝑡

 𝑆𝑡 = 𝛽2𝑆𝑡−1 + 1 − 𝛽2 ∇ℓ 𝐵 𝑊 𝑡 ⊙ ∇ℓ 𝐵 𝑊 𝑡

 Mixed-precision training: 𝑀𝑡 and 𝑆𝑡  are the same 

dimensionality as 𝑊 𝑡  and are typically stored in FP32 

(instead of FP16) because of the squared term in 𝑆𝑡
10/30/24 27



Optimizer 
Parallelism

10/30/24 28Source: https://arxiv.org/pdf/1910.02054 

 For Adam, 𝐾 = 12 = 3 ∗ 4 because each parameter in

𝑊 𝑡 , 𝑀𝑡, and 𝑆𝑡 is stored in FP32 = 4 bytes/parameter

https://arxiv.org/pdf/1910.02054


Optimizer 
Parallelism

(ZeRO-DP = Zero redundancy optimizer powered data parallelism) 

10/30/24 29Source: https://arxiv.org/pdf/1910.02054 

https://arxiv.org/pdf/1910.02054


Optimizer 
Parallelism

10/30/24 30Source: https://arxiv.org/pdf/1910.02054 

https://arxiv.org/pdf/1910.02054


Optimizer 
Parallelism

10/30/24 31Source: https://arxiv.org/pdf/1910.02054 

https://arxiv.org/pdf/1910.02054


Recall: 
How large are 
LLMs?

10/30/24 32

Model Creators Year of 
release

Training Data 
(# tokens)

Model Size 
(# parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion



Parallelism in 
LLM Training

 Goal: divide the work of training an LLM across multiple 

GPUs such that inter-GPU communication is minimized

 Good news: Transformer-based LLM architectures are 

highly parallelizable!

 Easily exploitable parallelism in LLM training includes:

 Data parallelism

 Model or tensor parallelism

 Pipeline parallelism

 Optimizer-based parallelism 

 Token parallelism

 Expert parallelism
10/30/24 33



Token 
Parallelism

 Insight: in a transformer LM with causal attention, the 

computation for each token in some transformer block 

only depends on the previous tokens at that layer

 Idea: instead of waiting for the entire previous layer to 

finish, start working on token 𝑡 in layer 𝑙 as soon as 

tokens 1 through 𝑡 − 1 in layer 𝑙 − 1 are done

10/30/24 34Source: https://arxiv.org/pdf/2102.07988 

https://arxiv.org/pdf/2102.07988


Token 
Parallelism
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 Insight: in a transformer LM, the computation for each 

token in some transformer block only depends on the 

previous tokens at that layer

 Idea: instead of waiting for the entire previous layer to 

finish, start working on token 𝑡 in layer 𝑙 as soon as 

tokens 1 through 𝑡 − 1 in layer 𝑙 − 1 are done

 Intuition: increasing pipeline granularity reduces idle 

time in the pipeline!

 Efficiency gains scale with sequence lengths and 

models have been moving towards longer contexts 



Token 
Parallelism

10/30/24 36

 Insight: in a transformer LM, the computation for each 

token in some transformer block only depends on the 

previous tokens at that layer

 Idea: instead of waiting for the entire previous layer to 

finish, start working on token 𝑡 in layer 𝑙 as soon as 

tokens 1 through 𝑡 − 1 in layer 𝑙 − 1 are done

 Intuition: increasing pipeline granularity reduces idle 

time in the pipeline!

 Efficiency gains scale with sequence lengths and 

models have been moving towards longer contexts 

 Note: this figures 

shows an all-forward-

all-backward 

mechanism, which 

eliminates the need 

for weight stashing 

but introduces more 

idle time 



Expert 
Parallelism

 Approach: just put each expert on a different GPU!

 Key considerations

10/30/24 37

 Key consideration: to 

enforce a balanced load 

across GPUs, each expert 

is assigned a capacity 

 If an expert is 

assigned more 

tokens than its 

capacity, those 

tokens are just 

passed directly to 

the next layer via 

residual connections
Source: https://arxiv.org/pdf/2006.16668 

https://arxiv.org/pdf/2006.16668


Expert 
Parallelism

 Approach: just put each expert on a different GPU!
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 Key consideration: to 

enforce a balanced load 

across GPUs, each expert 

is assigned a capacity 

 If an expert is 

assigned more 

tokens than its 

capacity, those 

tokens are just 

passed directly to 

the next layer via 

residual connections
Source: https://arxiv.org/pdf/2101.03961 

 If the capacity factor is too 

small, overallocation is likely

 If the capacity factor is too large, 

some GPUs will likely be underutilized

https://arxiv.org/pdf/2101.03961
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