

10-423/10-623 Generative AI

Machine Learning Department School of Computer Science Carnegie Mellon University

Efficient Attention (FlashAttention)

Matt Gormley & Henry Chai Lecture 18 Nov. 4, 2024

Reminders

- Homework 4: Visual Language Models
 - Out: Fri, Oct 25
 - Due: Tue, Nov 5 at 11:59pm

FLASHATTENTION

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

- One of the most impactful ideas in ML recently
- Even though many people probably don't even know they are using it!
- Introduced at HAET Workshop @ ICML July 2022
- Published @ NeurIPS Dec 2022

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao, Dan Fu ({trid, danfu}@cs.stanford.edu) 7/23/22 HAET Workshop @ ICML 2022

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Ruda, Christopher Ré. Flash Attention: Fast and Memory-Efficient Exact Attention with IO-Awareness. *arXiv preprint arXiv:2205.14135.* <u>https://github.com/HazyResearch/flash-attention</u>.

 $\langle \rangle$

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

- One of the most impactful ideas in ML recently
- Even though many people probably don't even know they are using it!
- Introduced at HAET Workshop @ ICML July 2022
- Published @ NeurIPS Dec 2022

Figure from https://awaisrauf.github.io/deepCuriosity/Attending-NeurIPS2023

Figure from https://neurips.cc/virtual/2022/poster/54008

GPU Memory

Memory is arranged hierarchicaly

- GPU SRAM is small, and supports the fastest access
- GPU HBM is larger but with much slower access
- CPU DRAM is huge, but the slowest of all

Memory Hierarchy with Bandwidth & Memory Size

GPU Memory and Transformers

Transformer training is usually memory-bound

- Matrix multiplication takes up 99% of the FLOPS
- But only takes up 61% of the runtime
- Lots of time is wasted moving data around on the GPU
- Instead of doing computation

Table 1. Proportions	s for	operator	classes	in P	yTorch.
----------------------	-------	----------	---------	------	---------

Operator class	% flop	% Runtime
△ Tensor contraction	99.80	61.0
□ Stat. normalization	0.17	25.5
 Element-wise 	0.03	13.5

Figure from https://arxiv.org/pdf/2007.00072

Operator Fusion

Version A: Usually, we compute a neural network one layer one at a time by moving the layer input to GPU SRAM (fast/small), doing some computation, then returning the output to GPU HBM (slow/large)

Version B: Operator fusion instead moves the original input to GPU SRAM (fast/small), does a whole sequence of layer computations without ever touching HBM, and then returns the final layer output to GPU HBM (slow/large)

Figure from https://horace.io/brrr intro.html

Operator Fusion

Version A: Usually, we compute a neural network one layer one at a time by moving the layer input to GPU SRAM (fast/small), doing some computation, then returning the output to GPU HBM (slow/large) **Version B: Operator fusion** instead moves the original input to GPU SRAM (fast/small), does a whole sequence of layer computations without ever touching HBM, and then returns the final layer output to GPU HBM (slow/large)

Version A is exactly how standard attention is implemented

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute $\mathbf{P} = \text{softmax}(\mathbf{S})$, write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return \mathbf{O} .

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute $\mathbf{P} = \text{softmax}(\mathbf{S})$, write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return \mathbf{O} .

FlashAttention

- Two key ideas are combined to obtain FlashAttention
- Both are well-established ideas, so the interesting part is how they are put together for attention
 - 1. Tiling: compute the attention weights block by block so that we don't have to load everything into SRAM at once
 - 2. Recomputation: don't ever store the full attention matrix, but just recompute the parts of it you need during the backward pass

FlashAttention: Tiling

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M .
1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right).$
2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
3: Divide Q into $T_r = \left \frac{N}{B_r} \right $ blocks $\mathbf{Q}_1, \ldots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left \frac{N}{B_c} \right $ blocks
$\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
4: Divide O into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each,
divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
5: for $1 \leq j \leq T_c$ do
6: Load $\mathbf{K}_j, \mathbf{V}_j$ from HBM to on-chip SRAM.
7: for $1 \le i \le T_r$ do
8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
10: On chip, compute \tilde{m}_{ij} = rowmax $(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} =$
$\operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}.$
11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}, \ \ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}.$
12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\operatorname{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i - m_i^{\operatorname{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} - m_i^{\operatorname{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
13: Write $\overline{\ell_i} \leftarrow \ell_i^{\text{new}}, m_i \leftarrow m_i^{\text{new}}$ to HBM.
14: end for
15: end for
16: Return O .

exp(x)

 $FlashAttention: Tiling_{Softmax}(x) = \int exp(-S)/l(x) exp(0)/l(x) exp(-2)/l(x)$ One of the key challenges is how to compute the softmax since it is inherently going to require working with multiple blocks

$$\begin{aligned} & \begin{array}{l} & \begin{array}{l} \times = \left[-2, 3, 1\right] & \begin{array}{l} m(x) \in \mathcal{J} & \begin{array}{l} f(x) = \left[exp\left(-5\right), exp\left(0\right), exp\left(-2\right)\right] & \begin{array}{l} l(x) = exp\left(-5\right) + exp\left(-2\right) & \begin{array}{l} l(x) = exp\left(-5\right) + exp\left(-5\right) & \begin{array}{l} l(x) = exp\left(-5\right) + exp\left(-5\right)$$

Therefore if we keep track of some extra statistics $(m(x), \ell(x))$, we can compute softmax one block at a time.

Figure from https://arxiv.org/pdf/2205.14135

Reconstruction for a Feed-Forward MLP

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right).$
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \begin{bmatrix} \frac{N}{B_r} \end{bmatrix}$ blocks $\mathbf{Q}_1, \ldots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \begin{bmatrix} \frac{N}{B_c} \end{bmatrix}$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \leq j \leq T_c$ do
- 6: Load $\mathbf{K}_j, \mathbf{V}_j$ from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute \tilde{m}_{ij} = rowmax $(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}, \ \ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}.$
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\operatorname{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\operatorname{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\operatorname{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}, m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: **end for**
- 15: end for
- 16: Return **O**.

FlashAttention: Results

- The algorithm is performing exact attention, so we see no reduction in perplexity or quality of the model
- The key metric is runtime

FlashAttention: Results

- The algorithm is performing exact attention, so we see no reduction in perplexity or quality of the model
- The key metric is runtime

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	9.5 days $(1.0\times)$
GPT-2 small - Megatron-LM $[77]$	18.2	4.7 days $(2.0\times)$
GPT-2 small - FlashAttention	18.2	$2.7 ext{ days } (3.5 \times)$
GPT-2 medium - Huggingface [87]	14.2	$21.0 \text{ days } (1.0 \times)$
GPT-2 medium - Megatron-LM [77]	14.3	$11.5 \text{ days } (1.8 \times)$
GPT-2 medium - FLASHATTENTION	14.3	$6.9 \text{ days } (3.0 \times)$