

10-423/10-623 Generative AI

Machine Learning Department School of Computer Science Carnegie Mellon University

Efficient Attention (FlashAttention)

Matt Gormley & Henry Chai Lecture 18 Nov. 4, 2024

1

Reminders

- **Homework 4: Visual Language Models**
	- **Out: Fri, Oct 25**
	- **Due: Tue, Nov 5 at 11:59pm**

FLASHATTENTION

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

- One of the most impactful ideas in ML recently
- Even though many people probably don't even know they are using it!
- Introduced at HAET Workshop @ ICML July 2022
- Published @ NeurIPS Dec 2022

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao, Dan Fu ({trid, danfu}@cs.stanford.edu) 7/23/22 HAET Workshop @ ICML 2022

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Ruda, Christopher Ré. Flash Attention: Fast and Memory-Efficient Exact Attention with IO-Awareness. arXiv preprint arXiv:2205.14135. https://github.com/HazyResearch/flash-attention.

 \leftrightarrow

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

- One of the most impactful ideas in ML recently
- Even though many people probably don't even know they are using it!
- Introduced at HAET Workshop @ ICML July 2022
- Published @ NeurIPS Dec 2022

Figure from https://awaisrauf.github.io/deepCuriosity/Attending-NeurIPS2023 Figure from https://neurips.cc/virtual/2022/poster/54008

GPU Memory

Memory is arranged hierarchicaly

- GPU SRAM is small, and supports the fastest access
- GPU HBM is larger but with much slower access
- CPU DRAM is huge, but the slowest of all

Memory Hierarchy with Bandwidth & Memory Size

GPU Memory and Transformers

Transformer training is usually memory-bound

- Matrix multiplication takes up 99% of the FLOPS
- But only takes up 61% of the runtime
- Lots of time is wasted moving data around on the GPU
- Instead of doing computation

Operator Fusion

Version A: Usually, we compute a neural network one layer one at a time by moving the layer input to GPU SRAM (fast/small), doing some computation, then returning the output to GPU HBM (slow/large)

Version B: Operator fusion instead moves the original input to GPU SRAM (fast/small), does a whole sequence of layer computations without ever touching HBM, and then returns the final layer output to GPU HBM (slow/large)

Figure from https://horace.io/brrr_intro.html

Operator Fusion

Version A: Usually, we compute a neural network one layer one at a time by moving the layer input to GPU SRAM (fast/small), doing some computation, then returning the output to GPU HBM (slow/large)

Version B: Operator fusion instead moves the original input to GPU SRAM (fast/small), does a whole sequence of layer computations without ever touching HBM, and then returns the final layer output to GPU HBM (slow/large)

Version A is exactly how standard attention is implemented

$$
\mathbf{S} = \mathbf{Q} \mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \text{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P} \mathbf{V} \in \mathbb{R}^{N \times d},
$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load Q, K by blocks from HBM, compute $S = QK^{\top}$, write S to HBM.
- 2: Read S from HBM, compute $P = \text{softmax}(S)$, write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $O = PV$, write O to HBM.
- 4: Return $\mathbf{0}$.

$$
\mathbf{S} = \mathbf{Q} \mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \underline{\mathbf{P}} = \text{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P} \mathbf{V} \in \mathbb{R}^{N \times d},
$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load Q, K by blocks from HBM, compute $S = QK^{\top}$, write S to HBM.
- 2: Read S from HBM, compute $P = \text{softmax}(S)$, write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $O = PV$, write O to HBM.
- 4: Return $\mathbf{0}$.

FlashAttention

- Two key ideas are combined to obtain FlashAttention
- Both are well-established ideas, so the interesting part is how they are put together for attention
	- 1. Tiling: compute the attention weights block by block so that we don't have to load everything into SRAM at once
	- 2. Recomputation: don't ever store the full attention matrix, but just recompute the parts of it you need during the backward pass

FlashAttention: Tiling

FlashAttention

Algorithm 1 FLASHATTENTION

Figure from http://arxiv.org/abs/2307.08691

FlashAttention: Tiling

One of the key challenges is how to compute the softmax since it is inherently going to require working with multiple blocks

$$
\chi = \begin{bmatrix} -2, 3, 1 \end{bmatrix} \qquad \mu(x) = 3 \qquad \oint(x) = \begin{bmatrix} e^{-x} \rho(-5), e^{-x} \rho(0), e^{-x} \rho(-2) \end{bmatrix} \qquad \int(x) = \exp(-5) + \exp(-5) +
$$

Therefore if we keep track of some extra statistics $(m(x), \ell(x))$, we can compute softmax one block at a time.

Reconstruction for a Feed-Forward MLP

20

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left[\frac{M}{4d}\right], B_r = \min\left(\left[\frac{M}{4d}\right], d\right).$
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide Q into $T_r = \left[\frac{N}{B_r}\right]$ blocks $\mathbf{Q}_1, \ldots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide **K**, **V** in to $T_c = \left[\frac{N}{B_c}\right]$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide *m* into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \leq j \leq T_c$ do
- Load $\mathbf{K}_i, \mathbf{V}_i$ from HBM to on-chip SRAM. 6:
- for $1 \leq i \leq T_r$ do $7:$
- Load \mathbf{Q}_i , \mathbf{O}_i , ℓ_i , m_i from HBM to on-chip SRAM. 8:
- On chip, compute $S_{ij} = Q_i K_i^T \in \mathbb{R}^{B_r \times B_c}$. 9:
- On chip, compute \tilde{m}_{ij} = rowmax(S_{ij}) $\in \mathbb{R}^{B_r}$, \tilde{P}_{ij} = $\exp(S_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij}$ = $10:$ rowsum $(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r},$ $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$. $11:$
- Write $\mathbf{O}_i \leftarrow \text{diag}(\ell_i^{\text{new}})^{-1}(\text{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_i)$ to HBM. $12:$
- Write $\ell_i \leftarrow \ell_i^{\text{new}}, m_i \leftarrow m_i^{\text{new}}$ to HBM. 13:
- end for $14:$
- 15: end for
- 16: Return **O**.

FlashAttention: Results

- The algorithm is performing exact attention, so we see no reduction in perplexity or quality of the model
- The key metric is runtime

FlashAttention: Results

- The algorithm is performing exact attention, so we see no reduction in perplexity or quality of the model
- The key metric is runtime

