10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Efficient Attention (FlashAttention)

Matt Gormley & Henry Chai
Lecture 18

Nov. 4, 2024

Reminders

* Homework 4: Visual Language Models
— Out: Fri, Oct 25
— Due: Tue, Nov 5 at 11:59pm

FLASHATTENTION

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

* One of the most impactful ideas in ML recently

* Even though many people probably don’t even know they are using it!

* Introduced at HAET Workshop @ ICML July 2022
* Published @ NeurlPS Dec 2022

FlashAttention: Fast and Memory-Efficient
Exact Attention with 10-Awareness

Tri Dao, Dan Fu ({trid, danfu}@cs.stanford.edu)
7/23/22 HAET Workshop @ ICML 2022

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Ruda, Christopher Ré. Flash Attention: Fast and
Memory-Efficient Exact Attention with |0-Awareness. arXiv preprint arXiv:2205.14135.
https://github.com/HazyResearch/flash-attention.

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

* One of the most impactful ideas in ML recently

* Even though many people probably don’t even know they are using it!
* Introduced at HAET Workshop @ ICML July 2022

* Published @ NeurlPS Dec 2022

Massive adoption (4 months)

O PyTorch
@OpenAI

¥ OO Meta

HUGGING FACE

t. |
A stabiltv.o \

~=+/ [N mosaic™

Figure from https://awaisrauf.github.io/deepCuriosity/Attending-NeurlPS2023 Figure from https://neurips.cc/virtual/2022/poster/54008

GPU Memory

Memory is arranged
hierarchicaly

 GPU SRAM is small, and
supports the fastest access

GPU HBM is larger but with Main Memory DRAM%
much slower access (CPUDRAM) (>1TE

* CPU DRAM is huge, but the T
slowest of all Bandwidth & Memory Size

Figure from https://arxiv.org/pdf/2205.14135

GPU Memory and Transformers

Transformer training is
usually memory-bound

* Matrix multiplication&
takes up 99% of the
FLOPS

* But only takes up 61%
of the runtime

e Lots of time is wasted
moving data around
on the GPU

* Instead of doing
computation

Figure from https://arxiv.org/pdf/2007.00072

Table 1. Proportions for operator classes in PyTorch.

Operator class % flop % Runtime

\&ﬁ:ensorc\mtﬁéﬁbﬂ 99.80

Stat. normalization (.17
O Element-wise 0.03

61.0
255

13.5

—

Attention on GPT-2

] Matmul
154 -
Dropout
) -
£10+ y
Py Softmax
£ -
= 5 Fused
Mask Kernel
4 —
T Matmul -_
0 - -
PyTorch FlashAttention

Figure from https://arxiv.org/pdf/2205.14135

10

Version A: Usually, we compute a neural
network one layer one at a time by moving
the layer input to GPU SRAM (fast/small),
doing some computation, then returning
the output to GPU HBM (slow/large)

Operator Fusion

X, = §(v) | ey Compite
| nnon 0
Xz 23, () Sl &
XZ :%(X% _7_/\9/\ j b
QO O QF %
Ky = 30) Gob¢
10 00fF7
HOM SRAM

Figure from https://horace.io/brrr_intro.html

GPU HBM (slow/large)

X4:¥q<

Mevmor y

o o O A

Version B: Operator fusion instead moves
the original input to GPU SRAM (fast/small),
does a whole sequence of layer
computations without ever touching HBM,
and then returns the final layer output to

Compile
2

SO Tt

SRAM

11

Operator Fusion

Version A: Usually, we compute a neural Version B: Operator fusion instead moves
network one layer one at a time by moving the original input to GPU SRAM (fast/small),
the layer input to GPU SRAM (fast/small), does a whole sequence of layer

doing some computation, then returning computations without ever touching HBM,
the output to GPU HBM (slow/large) and then returns the final layer output to

GPU HBM (slow/large)

Version A is exactly how standard attention is implemented

S=QK" e RV*N P =softmax(S) e RV, 0 =PV e RV*9,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

12
Figure from https://arxiv.org/pdf/2205.14135

ﬁ l Standard Attention on,— outpot

is exactlow standard attention is implemented <

S=QK" e RV*N P =softmax(S) e RVN, 0=PV eRV¥,

V

Version

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Figure from https://arxiv.org/pdf/2205.14135

13

FlashAttention

* Two key ideas are combined to obtain FlashAttention

* Both are well-established ideas, so the interesting part is
how they are put together for attention

1. Tiling: compute the attention weights block by block so that we
don’t have to load everything into SRAM at once

2. Recomputation: don’t ever store the full attention matrix, but
just recompute the parts of it you need during the backward pass

FlashAttention: Tiling ookt

Outer Loop . S QL\/AQA \‘/A"O
E(Z \p\oo)&S

Copy Block to SRAM
Outer Loop

— — w— w— w— — —

Output to HEM

Inner\Lo\op - @L} = :"\QA\‘{?*SD%'\X (QL) k;r>\/1

FlashAttention

sm(QK")V: Nxd

Figure from https://arxiv.org/pdf/2205.14135

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V € RV*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

11:

12:
13:
14:
15:
16:

Set block sizes B, = [M] B, = min ([££].4).
Initialize O = (0)yxq € RY*4 £ = (0)y € RNV, m = (-0)y € RN in HBM.
Divide Q into 7, = [Bﬁ} blocks Qq,...,Qr of size B, X d each, and divide K,V in to T, = [Bi-‘ blocks

Ki,....,Ky. and Vy,..., V., of size B, X d each.
Divide O into 7, blocks Oy,...,Or. of size B, X d each, divide ¢ into 7, blocks ¢;,...,{r, of size B, each,
divide m into T, blocks m,...,mr,. of size B, each.

for 1 <j<T.do
Load K, V; from HBM to on-chip SRAM.
for 1 <i<T, do
Load Q;, O,, t;,m; from HBM to OIl-Chlp SRAM.
On chip, compute S;; i Q,KT RBr*Be
On chip, compute m;; = 1owmax(S,-_,-) e RBr, f’,-j = exp(S;; — m;j) € RE*Be (pointwise), f,, =
rowsum(P; ;) € RBr,
On chip, compute m*" = max(m;,m;;) € RBr eV = eMiTM Y g i m Y f,, € RB.
Write O — diag (L)~ (diag(£)e™ ™ 0; + e’;"'»"_m;ww1~)i.jvj) to HBM.
Write 7, « €2V, m; — mPV to HBM. — —
end for
end for
Return O.

16

d

Stored in HBM

Computed in SRAM

(not materialized in HBM)

Figure from http://arxiv.org/abs/2307.08691

FlashAttention: Tiling

v
A% = exp(5?®) . =
V(Z,)

) = Z exp(S‘»”)i 1@ =) 4 Z exp(S"“)i

i i

Output

(1)
@ 2 .y

TEY)

@D, w

2) = — o
0 1@ 0
A®
B W . @)

Rescaling to
correct
denominator

17

exp(x)
! FlashAttention: Tiling

——x sofme) = Jex U920 exl0/ma | expl2y T
One of the key challenges is how to compute the softmax since it is inherently going to
require working with multiple blocks

“l23, 11 w3 500=|eq(e), wpl0), e - ap(E

or numerical stability, the softmax of vector x € R? is computed as:

X (-2)
m(x) := max X, f(x) = [e"l__ﬂ(_") e@‘)] , C(x):= Zf(x),-, softmax(x) := jg((j:))

D v QCv\ngowMQxx

For vectors x(*, x?) € RB, we can decompose the softmax of the concatenated x = [x(»l) x(z)] € R?B as:
Viscie 1 (D) =i (x10)
. (’ ‘ = T
m(x) = m([x(l) x(z)]) =max(m(x"Y),m(x?)), f(x)= [em(x‘”)—m(x)f(x(l)) err'z(xu’)—r'n(-r)f(x(2))] ,
1 2" (x) —v\(xﬂ‘(
. . - 1y 1 v - ; W ! .
[(x) — f([x(l) x(Z)]) — em(x(1))—m(x_)_£(x(l)) +'fm(x‘2))—m(x)€(x(2)) SOftlll&X(x) — f(X)
’ | £(x)

LTherefore if we keep track of some extra statistics (m(x),€(x)), we can compute softmax one block at a time

18
Figure from https://arxiv.org/pdf/2205.14135

Reconstruction for a Feed-Forward MLP

'\7 © 0)
s X T
N /
X) o O
E vl o
zZ = Q—(lm;(ﬂo) z = cr(b\\.x+ L\\> U\SS?(U(}W
= sh (0,7 +by) y = So¥pmex (102 +b,) e
\’ del 2 ‘:[—//_/
BG\C‘LLJ a\ré &MJ
YA T——[?3‘27 - __—
W= 354 == Sl
>3/éx = X%z‘ ;%x Vax =

TN Qb Sz 2(-D b

19

FlashAttention: Reconstruction

K’V
I —
] v
o — 7
\%\—% ZZAj[jj QmjK)
sl
— [
)ECG@- . o

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V € RV*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

11:

12:
13:
14:
15:
16:

Set block sizes B, = [M] B, = min ([££].4).
Initialize O = (0)yxq € RY*4 £ = (0)y € RNV, m = (-0)y € RN in HBM.
Divide Q into 7, = [Bﬁ} blocks Qq,...,Qr of size B, X d each, and divide K,V in to T, = [Biw blocks

Ki,....,Ky. and Vy,..., V., of size B, X d each.
Divide O into 7, blocks Oy,...,Or. of size B, X d each, divide ¢ into 7, blocks ¢;,...,{r, of size B, each,
divide m into T, blocks m,...,mr,. of size B, each.

for 1 <j<T.do
Load K, V; from HBM to on-chip SRAM.
for1<i<T, do
Load Q;, O;, ¢;,m; from HBM to on-chip SRAM.
On chip, compute S;; = Q,,-K? € RBrxBe,
On chip, compute 7m;; = rowmax(S;;) € R, f’,-j = exp(S;; — m;j) € RE*Be (pointwise), f,, =
rowsum(P; ;) € RBr,
On chip, compute m*" = max(m;,m;;) € RBr v = eMiTM Y g i m Y f,, € RB.
Write O; « diag(¢€2<%)~! (diag(¢;)e™ """ 0, + e™i~""""P; V) to HBM.
Write €; « £V, m; < m?*¥ to HBM.
end for
end for
Return O.

21

FlashAttention: Results

* The algorithm is
performing exact
attention, so we see no
reduction in perplexity
or quality of the model

* The key metricis
runtime

Attention Standard FLASHATTENTION
GFLOPs 66.6 5.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 1.3
" Effect of Block Size
‘:,% - -1\"» 2
*‘ - 6 5
O P untime =
<C 1 ’4(_‘(_ “ 5 -
- Sse, = ,(_D\
T 64 128 256 512 &
Block Size

22

FlashAttention: Results

* The algorithm is
performing exact
attention, so we see no
reduction in perplexity
or quality of the model

* The key metricis
runtime

Model implementations

OpenWebText (ppl)

Training time (speedup)

GPT-2 small - Huggingface |8%] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5x%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)

GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

23

