10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Efficient Attention (FlashAttention)

Matt Gormley & Henry Chai
Lecture 18

Nov. 4, 2024

Reminders

* Homework 4: Visual Language Models
— Out: Fri, Oct 25
— Due: Tue, Nov 5 at 11:59pm

FLASHATTENTION

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

* One of the most impactful ideas in ML recently

* Even though many people probably don’t even know they are using it!

* Introduced at HAET Workshop @ ICML July 2022
* Published @ NeurlPS Dec 2022

FlashAttention: Fast and Memory-Efficient
Exact Attention with 10-Awareness

Tri Dao, Dan Fu ({trid, danfu}@cs.stanford.edu)
7/23/22 HAET Workshop @ ICML 2022

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Ruda, Christopher Ré. Flash Attention: Fast and
Memory-Efficient Exact Attention with |0-Awareness. arXiv preprint arXiv:2205.14135.
https://github.com/HazyResearch/flash-attention.

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

* One of the most impactful ideas in ML recently

* Even though many people probably don’t even know they are using it!
* Introduced at HAET Workshop @ ICML July 2022

* Published @ NeurlPS Dec 2022

Massive adoption (4 months)

O PyTorch
@OpenAI

¥ OO Meta

HUGGING FACE

t. |
A stabiltv.o \

~=+/ [N mosaic™

Figure from https://awaisrauf.github.io/deepCuriosity/Attending-NeurlPS2023 Figure from https://neurips.cc/virtual/2022/poster/54008

GPU Memory

Memory is arranged
hierarchicaly

 GPU SRAM is small, and
supports the fastest access

* GPU HBM is larger but with
much slower access

* CPU DRAM is huge, but the T
slowest of all Bandwidth & Memory Size

S\ SRAM: 19TB/s (20 MB)
SRAM

GPU
HBM

HBM: 1.5 TB/s (40 GB)

WETLE Y TSV DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Figure from https://arxiv.org/pdf/2205.14135

GPU Memory and Transformers

Transformer training is Table 1. Proportions for operator classes in PyTorch.
usually memory-bound ;
Y a)’;rix multiypli cation Operator class % flop % Runtime
E?_IBESSUP 99% of the A Tensor contraction 99.80 61.0
. But onlv takes ub 61% Stat. normalization 0.17 235
of the runtire D00 O Element-wise 003 135
* Lots of time is wasted
moving data around Attention on GPT-2
on the GPU I Matmul
* Instead of doing s
computation R Dropout
£104 .
E Softmax
= 5. 7 Fused
Mask Kernel
- —
Matmul
0. 1 -
PyTorch FlashAttention

Figure from https://arxiv.org/pdf/2007.00072 Figure from https://arxiv.org/pdf/2205.14135

Operator Fusion

Version A: Usually, we compute a neural Version B: Operator fusion instead moves
network one layer one at a time by moving the original input to GPU SRAM (fast/small),
the layer input to GPU SRAM (fast/small), does a whole sequence of layer

doing some computation, then returning computations without ever touching HBM,
the output to GPU HBM (slow/large) and then returns the final layer output to

GPU HBM (slow/large)

N\e,mory Compite V\e,mw“y Compate

nhoan U nnnan] \¢

E— { P
AN A A)4

AN AN b i
QOO o’j % 0
00 OO0 ? l’
10 101 /jD TR dﬂ

1
Figure from https://horace.io/brrr_intro.html

Operator Fusion

Version A: Usually, we compute a neural Version B: Operator fusion instead moves
network one layer one at a time by moving the original input to GPU SRAM (fast/small),
the layer input to GPU SRAM (fast/small), does a whole sequence of layer

doing some computation, then returning computations without ever touching HBM,
the output to GPU HBM (slow/large) and then returns the final layer output to

GPU HBM (slow/large)

Version A is exactly how standard attention is implemented

S=QK" e RV*N P =softmax(S) e RV, 0 =PV e RV*9,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

12
Figure from https://arxiv.org/pdf/2205.14135

Standard Attention

\"% K Q S P O

Version A is exactly how standard attention is implemented

S=QK" e RVN = P =softmax(S) e RV, 0 =PV e RV*9,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Figure from https://arxiv.org/pdf/2205.14135

13

FlashAttention

* Two key ideas are combined to obtain FlashAttention

* Both are well-established ideas, so the interesting part is
how they are put together for attention

1. Tiling: compute the attention weights block by block so that we
don’t have to load everything into SRAM at once

2. Recomputation: don’t ever store the full attention matrix, but
just recompute the parts of it you need during the backward pass

Figure from https://arxiv.org/pdf/2205.14135

FlashAttention: Tiling

Outer Loop

K:dxN

Copy Block to SRAM

Outer Loop

Q:Nxd . > V:NXd
T T R e e =3
: |
e T
o o 2 @
S Compute Block I g %
T on SRAM - =
o | -
c E o
£ 1k <
re
15
O
Nk
 J \J
- e em o o
Output to HEM

sm(QK")V: Nxd

Inner Loop

FlashAttention

15

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V € RV*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

11:

12:
13:
14:
15:
16:

Set block sizes B, = [M] B, = min ([££].4).
Initialize O = (0)yxq € RY*4 £ = (0)y € RNV, m = (-0)y € RN in HBM.
Divide Q into 7, = [Bﬁ} blocks Qq,...,Qr of size B, X d each, and divide K,V in to T, = [Biw blocks

Ki,....,Ky. and Vy,..., V., of size B, X d each.
Divide O into 7, blocks Oy,...,Or. of size B, X d each, divide ¢ into 7, blocks ¢;,...,{r, of size B, each,
divide m into T, blocks m,...,mr,. of size B, each.

for 1 <j<T.do
Load K, V; from HBM to on-chip SRAM.
for1<i<T, do
Load Q;, O;, ¢;,m; from HBM to on-chip SRAM.
On chip, compute S;; = Q,,-K? € RBrxBe,
On chip, compute 7m;; = rowmax(S;;) € R, f’,-j = exp(S;; — m;j) € RE*Be (pointwise), f,, =
rowsum(P; ;) € RBr,
On chip, compute m*" = max(m;,m;;) € RBr v = eMiTM Y g i m Y f,, € RB.
Write O; « diag(¢€2<%)~! (diag(¢;)e™ """ 0, + e™i~""""P; V) to HBM.
Write €; « £V, m; < m?*¥ to HBM.
end for
end for
Return O.

16

Stored in HBM

Computed in SRAM

(not materialized in HBM)

Figure from http://arxiv.org/abs/2307.08691

FlashAttention: Tiling

(K(l))T

[= Zexp(su’)i (@ =1 + Z exp(S"z")i

L

(K(ZZ)T

i

v

V(.z.] A(Z}

Rescaling to
correct
denominator

17

FlashAttention: Tiling

One of the key challenges is how to compute the softmax since it is inherently going to
require working with multiple blocks

For numerical stability, the softmax of vector x € R? is computed as:

J(x)

m(x) :=max x;, f(x):= [e‘“_"”(“‘) e"'B_’"(x)] , L(x):= Zf(x),, softmax(x) := g(3

For vectors x'V), x(? € R®, we can decompose the softmax of the concatenated x = [x(l) x(z)] e R?? as:

m(x) = m([x(” x(z)]) = max(m(x),m(x?)), f(x)= [e’"("‘(1'))_”"("‘)f(x(l)) e""(“'m)_’"("")f(x(z))‘ :

J(x)
£(x)

Therefore if we keep track of some extra statistics (m(x), €(x)), we can compute softmax one block at a timeH

C(x) ={([x(” x(z)]) = em(x'V)-m(e(xWVy 4 M (x)~ M) p(x2) softmax(x) =

18
Figure from https://arxiv.org/pdf/2205.14135

Reconstruction for a Feed-Forward MLP

FlashAttention: Reconstruction

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V € RV*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

11:

12:
13:
14:
15:
16:

Set block sizes B, = [M] B, = min ([££].4).
Initialize O = (0)yxq € RY*4 £ = (0)y € RNV, m = (-0)y € RN in HBM.
Divide Q into 7, = [Bﬁ} blocks Qq,...,Qr of size B, X d each, and divide K,V in to T, = [Biw blocks

Ki,....,Ky. and Vy,..., V., of size B, X d each.
Divide O into 7, blocks Oy,...,Or. of size B, X d each, divide ¢ into 7, blocks ¢;,...,{r, of size B, each,
divide m into T, blocks m,...,mr,. of size B, each.

for 1 <j<T.do
Load K, V; from HBM to on-chip SRAM.
for1<i<T, do
Load Q;, O;, ¢;,m; from HBM to on-chip SRAM.
On chip, compute S;; = Q,,-K? € RBrxBe,
On chip, compute 7m;; = rowmax(S;;) € R, f’,-j = exp(S;; — m;j) € RE*Be (pointwise), f,, =
rowsum(P; ;) € RBr,
On chip, compute m*" = max(m;,m;;) € RBr v = eMiTM Y g i m Y f,, € RB.
Write O; « diag(¢€2<%)~! (diag(¢;)e™ """ 0, + e™i~""""P; V) to HBM.
Write €; « £V, m; < m?*¥ to HBM.
end for
end for
Return O.

21

FlashAttention: Results

* The algorithm is
performing exact
attention, so we see no
reduction in perplexity
or quality of the model

* The key metricis
runtime

Attention Standard FLASHATTENTION
GFLOPs 66.6 5.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 (.3
" Effect of Block Size
I« N 2
: jm "':"Tr-. a
4_‘ ‘b‘t‘f'_\ll - (:) -
?;Q 1 R =
U Runtime —
2 24 4. 781> | =
N 4(5(@;. ' 2 ®
;’Z: 'S@»S —
T 64 128 256 512 &
Block Size

22

FlashAttention: Results

* The algorithm is
performing exact
attention, so we see no
reduction in perplexity
or quality of the model

* The key metricis
runtime

Model implementations

OpenWebText (ppl)

Training time (speedup)

GPT-2 small - Huggingface |8%] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5x%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)

GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

23

