10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Long Context in LLMs

Matt Gormley & Henry Chai
Lecture 19
Nov. 6, 2024

Reminders

* Exam
— Date: In-class, Monday, Nov 11
— Time: 75 minutes, taking up the whole class time
— Covered Material: Lectures 1 - 15 (same as Quiz 1 - Quiz 4)
— You may bring one sheet of notes (front and back)

— Format of questions: Unlike the Quiz questions, which were all
multiple choice, Exam questions will include open-ended
questions as well

— Check Piazza for seat assighment

LONG-CONTEXT LLMS

Context GPT-2 OpenAl 2019 1.5 billion 1024
GPT-3 OpenAl 2020 175 billion 2048
I_e ngth Of PaLM Google 2022 540 billion 2048
LLaMA Meta 2023 65 billion 2048
TranSfO rmer LLaMA-2 Meta 2023 70 billion 4096
LM S Claude-2 Anthropic 2023 ? (130 billion) 100k
e Claude-2.1 Anthropic 2023 ? (130 billion)
g If &\,7\2‘)\\“ - GPT-4 OpenAl 2023 2 (1.76 trillion) 8192
AWW@; Mistral Mistral Al 2023 7 billion 8192 (32k)
Comparison of some recent Mixtral Mistral Al 2023 47 billion 8192 (128k)

large language models (LLMs)

Gemini (Ultra) 2023 ? (1.5 trillion) 32k

on their context size, i.e. how -
many tokens they can accept LWModel @ 7 billion @
Gemini-1.5 2024 ? (1.5 trillion) W
GPT-40 2024 Z 128k
é LLaMA-3 2024 405 billion 8192
——% LLaMA-3.1 Meta 2024 405 billion 128k

Au@ ™ .
Claude-3.5 Anthropic 2024 ? 200k

Pressure Testing Claude-2.1200K via “Needle In A HayStack”
Asking Claude 2.1 To Do Fact Retrieval Across Context Lengths & Document Depth

Top Of
Document 0% Doc Depth 100%
089% Accuracy Of
119% Retrieval
1.60%
213%
2.84% ~

378%
5.01% Claude 2.1 200K retrieval

661% accuracy progressively
B68% decreased as context
n31% lengths increased.
1462% -

1868%

2356%

20.26% ~

Placed Fact =~

4270%

Document oxoecoen

57.30%
Depth 64.20%
7073%
76.43% ~
81.31%
85.38%
88.68%-
91.31%
93.38%
9498%
96.21%
9715%
97.86% ~
98.39%
98.80%
9910%

Bottom Of 100% Doc Depth
Document 13C 19K 24K 30K 36K 42K 48K 54K 60K 65K 7K 77K 83K BOK 95K 1O 1OBK N2K 118K 124K

-— Context Length (# Tokens

Goal: Test Claude 2.1 Ability To Retrieve Information F

A fact was placed within a document. Claude 2.1 (200K) was then asked to retrieve i
This test was run at 35 different document depths (top > bottom) and 35

Document Depths followed a sigmoid g

Figure from https://github.com/gkamradt/LLMTest NeedlelnAHaystack

Pressure Testing Claude-2.1200K via “Needle In A HayStack”
Asking Claude 2.1 To Do Fact Retrieval Across Context Lengths & Document Depth

Top Of
Document 0% Doc Depth loo%
089%— Accuracy Of
A i Retrieval
Claude 2.1 200K retrieval
accuracy progressively
6 decreased as context
: lengths increased.
1462%
1868%
2356%
20.26%
35.70%
Placed Fact = =~ 50%
Document soxoecosn Accuracy Of
Depth o Retrieval
p 7073%
76.43%
85.38%
8868%
93.‘38%
9498%
96.21%
9715%
9786%
98.39%
v 98.80% 0%
9910% - Accuracy Qf
Bottom Of 100% Doc Depth — Retrieval
Document 42(48K S4K GOK 65K 7IK 77K 83K BOK 98K 101K 1OBK 12K N8K 124K 130K 136K 14K 147K 153K 159K 165K 170K 177K 182K 188K 194K 200K
=~
- Context Length (# Tokens) >

Goal: Test Claude 2.1 Ability To Retrieve Information From Large Context Windows
A fact was placed within a document. Claude 2.1 (200K) was then asked to retrieve it. The output was evaluated (with GPT-4) for accuracy.
This test was run at 35 different document depths (top > bottom) and 35 different context lengths (1K >200K tokens).
Document Depths followed a sigmoid distribution

Figure from https://github.com/gkamradt/LLMTest NeedlelnAHaystack

15

Extending Short-Context Models

Together Al LLaMA-2 7B 32K, acc 27.9

* There are two key ingredients for
extending a short context model

1. extensible positional embeddings

2. (Caretul selectiof of long data
* General recipe

— Pre-train a short cont model
(block size = 4k) on(1 trillion tokens]
of text Ours LLaMA 7B, post-trained on 80K, acc 88.0

— Adjust the hyperparameters of the
positional embeddings

— Continue pre-training but increase
the block size to support long-

ck size = 80k) on only

5 billion tokens of text

i 1K 32K 64K 96K 128K 16
Figure from http://arxiv.org/abs/2402.10171

asoe

Fine-Tuning vs. In-Context Learning

* Why would we ever bother with fine-tuning if it’s so inefficient?
* Because, even for very large LMs, fine-tuning often beats in-context learning
* In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT

outperforms ICL for most model sizes on RTE and MNLI

Table 1: Difference between average out-of-domain performance of ICL and FT on RTE (a) ar
model sizes. We use 16 examples and 10 random seeds for both approaches. For ICL, we use
For FT, we use pattern-based fine-tuning (PBFT) and select checkpoints according to in-do

We perform a Welch'’s t-test and color cells according to whether:

performs significantly better than ICL. For cells without color, there is no significant difference

Figure from https://aclanthology.org/2023.findings-acl.779.pdf

At least this was the
general wisdom in 2023.

FT FT

125 M 350M 1.3B 2.7B 6.7B 13B 30B 125M 350M 1.3B 2.7B 6.7B 13B 30B

125M —0.00 0.01 0.02 0.03 0.12 0.14 0.09 125M —0.00 0.00 0.02 0.01 0.10 0.11 0.07

350M —-0.00 0.01 0.02 0.03 0.12 0.14 0.09 350M —-0.00 0.00 0.02 0.01 0.10 0.11 0.07

. 13B —-0.00 0.01 0.02 0.03 0.12 0.14 0.09 1.3B —-0.01 —-0.00 0.01 0.01 0.10 0.11 0.07
o 27B —0.00 0.01 0.02 0.03 0.12 0.14 0.09 d 2.7B —0.01 —-0.00 0.01 0.01 0.09 0.10 0.07
= 67JB —0.00 0.01 0.02 0.03 0.12 0.14 0.09 =~ 6.7B —0.01 -0.01 0.01 0.00 0.09 0.10 0.06
13B —0.04 -0.02 -0.01 -0.00 0.09 0.11 0.05 13B —0.03 -—-0.03 —-0.02 -0.02 0.07 0.08 0.04

30B —0.11 -0.09 -0.08 -0.08 0.02 0.03 -—-0.02 30B —0.07 —=0.07 -=0.05 -=0.06 002 WAL L.00

L (a) RTE (b) MNLI

We might have a
different story to tell
now that it’s 2024.
(See Lecture 19)

ICL with Long Sequences

e Modern wisdom reveals that ICL can
sometimes outperform fine-tuning

* Allwe needis along context model that can
hold our in-context demonstrations

« Two multiclass classification datasets (Clinic-
150 with 151 labels, Trecfine with 50 labels)

e Base model: LLaMa2-7B - Q0
* Approaches:

— Finetuned: LORA

— Random ICL: randomly selects training examples
for ICL

— Retrieval ICL: selects training examples for ICL
most similar to test example based on BM25

Figure from http://arxiv.org/abs/2405.00200

accuracy

accuracy

100

80

60 1

401

20+

100

801

60 1

40-

201

Retrieval ICL
Random ICL
Finetuned

01— : : : :
109 10t 102 103 104

number of examples in-context

(a) Clinic-150

Retrieval ICL
Random ICL
Finetuned

10° 101 102 103 10°
number of examples in-context

(b) Trecfine

18

APPROXIMATE ATTENTION

Approximate Attention

 Standard attention requires O(N?) memory and computation

* While the computation requirement may be acceptable, the
memory requirement is usually not

* One solutionis to instead approximate the attention
computation

* Examples include:

— Sparse Attention (2019), O(N VN)
+« — Sliding Window Attention (2020), O(N)
— Dilated Attention (2023), O(N)

Figure from

Sparse Attention

4.2. Factorized self-attention

A self-attention layer maps a matrix of input embeddings

X to an output matrix and is parameterized by a connectiv-

ity pattern S = {S1, ..., S, }, where S; denotes the set of
indices ofil.'lﬁ Tput vectors to which the ith output vector

attends. The output vector is a weighted sum of transforma-

tions of the input vectors:

Attend(X, S) = (a(xi, S,-)) (2)

i€{l,....,n}
(xi,S;) = soft (Woxi) K, v 3)

a(x;,.5;) = softmax i

Va S
KS;‘ = (kaj)) V.S'i = (vaj>) (4)

JES: JES:

Here W, Wy, and W, represent the weight matrices which

transform a given x; into a query, key, or value, and d is N L

the inner dimension of the queries and keys. The output at
each position is a sum of the values weighted by the scaled
dot-product similarity of the keys and queries. (a) Transformer (c) Sparse Transformer (fixed)

Figure from http://arxiv.org/abs/1904.10509

Sliding Window Attention

Sliding Window Attention

X' = softmax (Q

also called “local attention”
and introduced for the
Longformer model (2020)

The problem: regular
attention is computationally
expensive and requires a lot
of memory

The solution: apply a causal
mask that only looks at the
include a window of
(Yaw+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

T

M)V

regular causal attention

sliding window attention (w=6)

sliding window attention (w=4)

22

Sliding Window Attention

Sliding Window Attention

e also called “local attention”
and introduced for the
Longformer model (2020)

* The problem: regular
attention is computationally
expensive and requires a lot
of memory

* The solution: apply a causal
mask that only looks at the
include a window of
(Yaw+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

T

X' = softmax (Q

M)V

sliding window attention (w=4)

3 ways you could implement
1. ndive implementation: just do

the matrix multiplication, but
this is still slow

. for-loop implementation:

asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

. sliding chunks implementation:

break into Q and K into
chunks of size w x w, with
overlap of ¥4w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

23

Ll

Dilated Attention
}

B —> [

+H —v

e

I ST

Segment Length: 4 Segment Length: 8 Segment Length: 16
Dilated Rate: 1 Dilated Rate: 2 Dilated Rate: 4

/

Figure from http://arxiv.org/abs/2307.02486

Dilated attention mixes
together multiple dilation
rates

Each dilation rate decides
the sparsity pattern of Q,K,V

Computation is easily
parallelizable

Runtime is great, but it’s
now a different model
altogether

| == Dilated attention w/ FlashAttention
Vanilla attention w/ FlashAttention

00000

00000

ntime

Ru

00000

00000

24

512K 2M 8Mm 32M 12‘8M
Sequence Length

EFFICIENT FULL ATTENTION

Scaling Up Computation with Context Length

the FLOPS do not

scaleup as quicklyas o v 0 0 e e 26 e e H

you might expect
With Context Size (,O g 658 11 1.2 1.5 2.2 3.4 5.8 20.6

¢ There are IOtS Of ,’O 338 1.1 1.3 1.6 2.3 3.7 6.5 23.2
computationally

intensive |0 1 11 1e 18 28 46 84 |30
components to the .
Transformer besides T
the O(Nz) attention Wt B s G20 e | (260 2560 M) (10M) (100M)

Figure 5: The per dataset trainig FLOPs cost ratio relative to a 4k context size, considering different
model dimensions. On the x-axis, you’ll find the context length, where, for example, 32x(128k)

5000

* |In TransformerLMs,

1TB 1.0 1l 1,71 1.3 1.6 2.1 5.6

1000

100

Model Size

7B 11l 1.4 2.0 Sl 5.4 10.0 37.4 4682.0

1

denotes a context length of 128k, 32x the size of the same model’s 4k context length.

Figure from R\Vj Avﬁ/\\—;\’\' 26

Sequence Parallelism

* Sequence parallelism breaks Y000]
apart a long sequence into L
chunks R |
* Each chunkis givento aseparate eo(C o |
device (GPU or TPU) and the —t—— —)
computation of earlier devices () Pipeline parallelism e i
must be sent to later devices (for e
decoder-only Transformers) cart ramat T :
* Problem: this does not scale up i: (¢) Sequence parallelism (Qurs)
very efficiently because the later :: —
queries still must attend to O(N) E*| :

other key/value tokens |

Micro Batch 1 | I
Micro Batch 2 |)

(b) Tensor parallelism
Figure from http://arxiv.org/abs/2105.13120

Blockwise Attention Computation

Recall: softmax is shift invariant! So we can compute attention in blocks and
rescale the prior outputs appropriately based on the sufficient statistics from
the other blocks

This 1s achieved by keeping track of normalization statistics and combining them from all blocks to
scale each block accordingly. For a specific query block Q;, 1 <@ < B, the corresponding attention
output can be computed by scaling each blockwise attention as follows:

Attention(Q;, K,V) = S(:aling({exp(Qi,A"f)\f‘"}}1-3). (3)

J=1

The scaling operation scales each blockwise attention based on the difference between the blockwise
maximum and the global maximum:

Attention(Q;, K;,V;) = exp(Qi 1\"}1 — max(Q); I\JT)) / Z exp(Q.,- 1'\"JT — max(Q); AJT))
max; = max (max(Q); K1), ... max(Q 1-,1{};))

Attention(Q;, K, V) = [exp(Q i,l\"]r — max;) Attention(Q;, K, \J)] Fuo

j=1"

This blockwise self-attention computation eliminates the need to materialize the full attention matrix
of size O(n?), resulting in significant memory savings.

Figure from http://arxiv.org/abs/2305.19370

28

. Rl
Ring Attention -... 2

(@) : T
’ ’_é ! : '
. ' S 1
: Blockwise ' : :
: FeedForward . '|__}—(FeedForward '
' : ' :
' ' ' :
Key Value Block | A/ 1 Key Value Block | 1 Key Value Block

' Blockwise . Blockwise :
: Attention ' : Attention '

A : ' 7'y

e e

Figure from http://arxiv.org/abs/2310.01889

(b)

Query Outer Loop

e

Figure from http://arxiv.org/abs/2310.01889

Ring Attention

5 . - e W,
Blockwise Blockwise Blockwise Blockwise
FeedForward LFeed:orward LFeedForward LFeedForward
- _J J J >

A £ T Y T f T)
Blockwise 25 Blockwise) Blockwise L Blockwise
Attention Attention Attention Attention]

J . J .

I SERETR R, Y S PO I
| ! ! |

i : Key2 . Key3 : Keyd

! | | | | |

| i |
Valuel + |, Value2 1 | , Value3 | Valued 1

! | ! | | |

compute, send to receive from
» next device » \pr_evious devic_e/ .

Key and Value Inner Loop

........... £ f. 4

30

Ring Attention
vz

2l

Ring Attention

Algorithm 1 Reducing Transformers Memory Cost with Ring Attention.

Required: Input sequence . Number of hosts Nj,.
Initialize
Split input sequence into N}, blocks that each host has one input block.
Compute query, key, and value for its input block on each host.
for Each transformer layer do
for count = 1to N;, — 1do
for For each host concurrently. do
Compute memory efficient attention incrementally using local query, key, value blocks.
Send key and value blocks to next host and receive key and value blocks from previous
host.
end for
end for
for For each host concurrently. do
Compute memory efficient feedforward using local attention output.
end for
end for

Figure from http://arxiv.org/abs/2310.01889

32

Ring Attention

e Results:

— 13B model can be increased to handle a 128k token context length on 8 A100s
— 7B model can be increased to handle a 4 million token context length on 32

A100s
Max context size supported (< 1e3)
Vanills Memory Memory Efficient Ring Attention Ours

ML Efficient Attn Attn and FFN (Ours) vs SOTA
8x A100
NVLink
3B 4 32 64 512 8x
7B 2 16 52 256 8x
13B 2 4 16 128 8Xx
32x A100
InfiniBand
7B 4 64 128 4096 32x
13B 4 32 64 2048 320x%

Figure from http://arxiv.org/abs/2310.01889

Large World Model

01:01:51

User: What vehicle was the person dressed in the t-rex costume riding?

[GP‘I‘-4V: I'm sorry, | can’t provide assistance with that request. x

[Gernini Pro Vision: A motorized scooter. x

- =)

[Video-LLaVA: The person dressed in a t-rex costume was riding a truck. x

s): The person dre ex costume was riding a motorcycle. /

User: What color jacket was the girl on the trampoline wearing?

PT-4V: The sequence provided does not include a definitive image of a girl on a trampoline; therefore, | cannot
describe the color of the jacket.

__jVideo-LLaVA: The girl on the trampoline was wearing a black jacket. x

__A-LGemini Pro Vision: The girl on the trampoline was wearing a green jacket. x]

[LWM (Ours): The girl on the trampoline was wearing a blue jacket. f

Figure 1 LWM can answer questions over a 1 hour YouTube video. Qualitative comparison of
LWM-Chat-1M against Gemini Pro Vision, GPT-4V, and open source models. Our model is able to
answer QA questions that require understanding of over an hour long YouTube compilation of over
500 video clips.

Figure from https://arxiv.org/pdf/2402.08268

Single Needle Retrieval Comparison

| oy
=}

B Gemini Pro
. GPT-4
mm |WM-Text-Chat-1M (Ours)

R R S SHE SRS Y
D
S R) (e

o
™

o
>

Retrieval Accuracy
o o
N o

o
o

S . I - R 0@*’ ,ﬂp*‘ '60'*_

Needle Position in Context
Figure 2 LWM can retrieval facts across 1M context with high accuracy. Needle retrieval

comparisons against Gemini Pro and GPT-4 for each respective max context length — 32K and 128K.

Our model performs competitively while being able to extend to 8x longer context length. Note
that in order to show fine-grained results, the x-axis is log-scale from 0-128K, and linear-scale from
128K-1M.

34

