
Long Context in LLMs

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 19

Nov. 6, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Exam
– Date: In-class, Monday, Nov 11
– Time: 75 minutes, taking up the whole class time
– Covered Material: Lectures 1 – 15 (same as Quiz 1 – Quiz 4)
– You may bring one sheet of notes (front and back)
– Format of questions: Unlike the Quiz questions, which were all

multiple choice, Exam questions will include open-ended
questions as well

– Check Piazza for seat assignment

4

LONG-CONTEXT LLMS

5

Context
Length of

Transformer
LMs

13

Comparison of some recent
large language models (LLMs)
on their context size, i.e. how
many tokens they can accept

Model Creators Year Model Size Context Size

GPT-2 OpenAI 2019 1.5 billion 1024

GPT-3 OpenAI 2020 175 billion 2048

PaLM Google 2022 540 billion 2048

LLaMA Meta 2023 65 billion 2048

LLaMA-2 Meta 2023 70 billion 4096

Claude-2 Anthropic 2023 ? (130 billion) 100k

Claude-2.1 Anthropic 2023 ? (130 billion) 200k

GPT-4 OpenAI 2023 ? (1.76 trillion) 8192

Mistral Mistral AI 2023 7 billion 8192 (32k)

Mixtral Mistral AI 2023 47 billion 8192 (128k)

Gemini (Ultra) Google 2023 ? (1.5 trillion) 32k

LWModel academia! 2023 7 billion 1 million

Gemini-1.5 Google 2024 ? (1.5 trillion) 1 million

GPT-4o OpenAI 2024 ? 128k

LLaMA-3 Meta 2024 405 billion 8192

LLaMA-3.1 Meta 2024 405 billion 128k

Claude-3.5 Anthropic 2024 ? 200k

Needle-in-a-Haystack Test

14
Figure from https://github.com/gkamradt/LLMTest_NeedleInAHaystack

• The Needle-in-a-Haystack Test
provides an extremely simple,
bare minimum test of an LLM’s
ability to find information
within a long-context

• Key idea:
– Create a long document
– Embed a fact somewhere in the

document (e.g. at some depth)
– Check whether the LLM can

answer a question whose answer
is that fact

Needle-in-a-Haystack Test

15
Figure from https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Extending Short-Context Models
• There are two key ingredients for

extending a short context model
1. extensible positional embeddings
2. careful selection of long data

• General recipe
– Pre-train a short context model

(block size = 4k) on 1 trillion tokens
of text

– Adjust the hyperparameters of the
positional embeddings

– Continue pre-training but increase
the block size to support long-
contexts (block size = 80k) on only
5 billion tokens of text

16
Figure from http://arxiv.org/abs/2402.10171

Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT

outperforms ICL for most model sizes on RTE and MNLI

17
Figure from https://aclanthology.org/2023.findings-acl.779.pdf

At least this was the
general wisdom in 2023.

We might have a
different story to tell

now that it’s 2024.
(See Lecture 19)

ICL with Long Sequences
• Modern wisdom reveals that ICL can

sometimes outperform fine-tuning
• All we need is a long context model that can

hold our in-context demonstrations
• Two multiclass classification datasets (Clinic-

150 with 151 labels, Trecfine with 50 labels)
• Base model: LLaMa2-7B
• Approaches:

– Finetuned: LoRA
– Random ICL: randomly selects training examples

for ICL
– Retrieval ICL: selects training examples for ICL

most similar to test example based on BM25

18
Figure from http://arxiv.org/abs/2405.00200

APPROXIMATE ATTENTION

19

Approximate Attention

• Standard attention requires O(N2) memory and computation
• While the computation requirement may be acceptable, the

memory requirement is usually not
• One solution is to instead approximate the attention

computation
• Examples include:
– Sparse Attention (2019), O(N √𝑁)
– Sliding Window Attention (2020), O(N)
– Dilated Attention (2023), O(N)

20
Figure from

Sparse Attention

21
Figure from http://arxiv.org/abs/1904.10509

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

22

regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V

Recall…

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

23

sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do

the matrix multiplication, but
this is still slow

2. for-loop implementation:
asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into
chunks of size w x w, with
overlap of ½w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

Recall…

Dilated Attention
• Dilated attention mixes

together multiple dilation
rates

• Each dilation rate decides
the sparsity pattern of Q,K,V

• Computation is easily
parallelizable

• Runtime is great, but it’s
now a different model
altogether

24
Figure from http://arxiv.org/abs/2307.02486

EFFICIENT FULL ATTENTION

25

Scaling Up Computation with Context Length
• In TransformerLMs,

the FLOPS do not
scale up as quickly as
you might expect
with context size

• There are lots of
computationally
intensive
components to the
Transformer besides
the O(N2) attention

26
Figure from

Sequence Parallelism
• Sequence parallelism breaks

apart a long sequence into
chunks

• Each chunk is given to a separate
device (GPU or TPU) and the
computation of earlier devices
must be sent to later devices (for
decoder-only Transformers)

• Problem: this does not scale up
very efficiently because the later
queries still must attend to O(N)
other key/value tokens

27
Figure from http://arxiv.org/abs/2105.13120

Blockwise Attention Computation
Recall: softmax is shift invariant! So we can compute attention in blocks and
rescale the prior outputs appropriately based on the sufficient statistics from
the other blocks

28
Figure from http://arxiv.org/abs/2305.19370

Ring Attention

29
Figure from http://arxiv.org/abs/2310.01889

Ring Attention

30
Figure from http://arxiv.org/abs/2310.01889

Ring Attention

31

Ring Attention

32
Figure from http://arxiv.org/abs/2310.01889

Ring Attention
• Results:
– 13B model can be increased to handle a 128k token context length on 8 A100s
– 7B model can be increased to handle a 4 million token context length on 32

A100s

33
Figure from http://arxiv.org/abs/2310.01889

Large World Model

34
Figure from https://arxiv.org/pdf/2402.08268

