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Reminders

• Exam
– Date: In-class, Monday, Nov 11
– Time: 75 minutes, taking up the whole class time
– Covered Material: Lectures 1 – 15 (same as Quiz 1 – Quiz 4)
– You may bring one sheet of notes (front and back)
– Format of questions: Unlike the Quiz questions, which were all

multiple choice, Exam questions will include open-ended
questions as well

– Check Piazza for seat assignment

4



LONG-CONTEXT LLMS
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Context 
Length of 

Transformer 
LMs

6

Comparison of some recent 
large language models (LLMs) 
on their context size, i.e. how 
many tokens they can accept

Model Creators Year Model Size Context Size

GPT-2 OpenAI 2019 1.5 billion 1024

GPT-3 OpenAI 2020 175 billion 2048

PaLM Google 2022 540 billion 2048

LLaMA Meta 2023 65 billion 2048

LLaMA-2 Meta 2023 70 billion 4096

Claude-2 Anthropic 2023 ? (130 billion) 100k

Claude-2.1 Anthropic 2023 ? (130 billion) 200k

GPT-4 OpenAI 2023 ? (1.76 trillion) 8192

Mistral Mistral AI 2023 7 billion 8192 (32k)

Mixtral Mistral AI 2023 47 billion 8192 (128k)

Gemini (Ultra) Google 2023 ? (1.5 trillion) 32k

LWModel academia! 2023 7 billion 1 million

Gemini-1.5 Google 2024 ? (1.5 trillion) 1 million

GPT-4o OpenAI 2024 ? 128k

LLaMA-3 Meta 2024 405 billion 8192

LLaMA-3.1 Meta 2024 405 billion 128k

Claude-3.5 Anthropic 2024 ? 200k



Needle-in-a-Haystack Test
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Figure from https://github.com/gkamradt/LLMTest_NeedleInAHaystack

• The Needle-in-a-Haystack Test 
provides an extremely simple, 
bare minimum test of an LLM’s 
ability to find information 
within a long-context

• Key idea:
– Create a long document
– Embed a fact somewhere in the 

document (e.g. at some depth)
– Check whether the LLM can 

answer a question whose answer 
is that fact



Needle-in-a-Haystack Test
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Figure from https://github.com/gkamradt/LLMTest_NeedleInAHaystack



Extending Short-Context Models
• There are two key ingredients for 

extending a short context model
1. extensible positional embeddings
2. careful selection of long data

• General recipe
– Pre-train a short context model 

(block size = 4k) on 1 trillion tokens 
of text

– Adjust the hyperparameters of the 
positional embeddings

– Continue pre-training but increase 
the block size to support long-
contexts (block size = 80k) on only 
5 billion tokens of text
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Figure from http://arxiv.org/abs/2402.10171 



Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT 

outperforms ICL for most model sizes on RTE and MNLI
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Figure from https://aclanthology.org/2023.findings-acl.779.pdf

At least this was the 
general wisdom in 2023.

We might have a 
different story to tell 

now that it’s 2024.
(See Lecture 19)



ICL with Long Sequences
• Modern wisdom reveals that ICL can 

sometimes outperform fine-tuning
• All we need is a long context model that can 

hold our in-context demonstrations
• Two multiclass classification datasets (Clinic-

150 with 151 labels, Trecfine with 50 labels)
• Base model: LLaMa2-7B
• Approaches:

– Finetuned: LoRA 
– Random ICL: randomly selects training examples 

for ICL
– Retrieval ICL: selects training examples for ICL 

most similar to test example based on BM25
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Figure from http://arxiv.org/abs/2405.00200 



APPROXIMATE ATTENTION
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Approximate Attention

• Standard attention requires O(N2) memory and computation
• While the computation requirement may be acceptable, the 

memory requirement is usually not
• One solution is to instead approximate the attention 

computation
• Examples include:
– Sparse Attention (2019), O(N √𝑁)
– Sliding Window Attention (2020), O(N)
– Dilated Attention (2023), O(N)

13
Figure from 



Sparse Attention
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Figure from http://arxiv.org/abs/1904.10509 



Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)
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regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
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)
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Recall…
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sliding window attention (w=4)
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3 ways you could implement
1. naïve implementation: just do 

the matrix multiplication, but 
this is still slow

2. for-loop implementation: 
asymptotically faster / less 
memory, but unusable in 
practice b/c for-loops in 
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into 
chunks of size w x w, with 
overlap of ½w; then compute 
full attention within each 
chunk and mask out chunk 
(very fast/low memory in 
practice)

Recall…



Dilated Attention
• Dilated attention mixes 

together multiple dilation 
rates

• Each dilation rate decides 
the sparsity pattern of Q,K,V

• Computation is easily 
parallelizable

• Runtime is great, but it’s 
now a different model 
altogether 
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Figure from http://arxiv.org/abs/2307.02486 



EFFICIENT FULL ATTENTION
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Scaling Up Computation with Context Length
• In TransformerLMs, 

the FLOPS do not 
scale up as quickly as 
you might expect 
with context size

• There are lots of 
computationally 
intensive 
components to the 
Transformer besides 
the O(N2) attention
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Figure from 



Sequence Parallelism
• Sequence parallelism breaks 

apart a long sequence into 
chunks

• Each chunk is given to a separate 
device (GPU or TPU) and the 
computation of earlier devices 
must be sent to later devices (for 
decoder-only Transformers)

• Problem: this does not scale up 
very efficiently because the later 
queries still must attend to O(N) 
other key/value tokens
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Figure from http://arxiv.org/abs/2105.13120  



Blockwise Attention Computation
Recall: softmax is shift invariant! So we can compute attention in blocks and 
rescale the prior outputs appropriately based on the sufficient statistics from 
the other blocks
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Figure from http://arxiv.org/abs/2305.19370 



Ring Attention
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Figure from  http://arxiv.org/abs/2310.01889 



Ring Attention
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Figure from  http://arxiv.org/abs/2310.01889 



Ring Attention
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Ring Attention
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Figure from  http://arxiv.org/abs/2310.01889 



Ring Attention
• Results:
– 13B model can be increased to handle a 128k token context length on 8 A100s
– 7B model can be increased to handle a 4 million token context length on 32 

A100s
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Figure from  http://arxiv.org/abs/2310.01889 



Large World Model
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Figure from https://arxiv.org/pdf/2402.08268 


