
Long Context in LLMs

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 19

Nov. 6, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Exam
– Date: In-class, Monday, Nov 11
– Time: 75 minutes, taking up the whole class time
– Covered Material: Lectures 1 – 15 (same as Quiz 1 – Quiz 4)
– You may bring one sheet of notes (front and back)
– Format of questions: Unlike the Quiz questions, which were all

multiple choice, Exam questions will include open-ended
questions as well

– Check Piazza for seat assignment

4

LONG-CONTEXT LLMS

5

Context
Length of

Transformer
LMs

6

Comparison of some recent
large language models (LLMs)
on their context size, i.e. how
many tokens they can accept

Model Creators Year Model Size Context Size

GPT-2 OpenAI 2019 1.5 billion 1024

GPT-3 OpenAI 2020 175 billion 2048

PaLM Google 2022 540 billion 2048

LLaMA Meta 2023 65 billion 2048

LLaMA-2 Meta 2023 70 billion 4096

Claude-2 Anthropic 2023 ? (130 billion) 100k

Claude-2.1 Anthropic 2023 ? (130 billion) 200k

GPT-4 OpenAI 2023 ? (1.76 trillion) 8192

Mistral Mistral AI 2023 7 billion 8192 (32k)

Mixtral Mistral AI 2023 47 billion 8192 (128k)

Gemini (Ultra) Google 2023 ? (1.5 trillion) 32k

LWModel academia! 2023 7 billion 1 million

Gemini-1.5 Google 2024 ? (1.5 trillion) 1 million

GPT-4o OpenAI 2024 ? 128k

LLaMA-3 Meta 2024 405 billion 8192

LLaMA-3.1 Meta 2024 405 billion 128k

Claude-3.5 Anthropic 2024 ? 200k

Needle-in-a-Haystack Test

7
Figure from https://github.com/gkamradt/LLMTest_NeedleInAHaystack

• The Needle-in-a-Haystack Test
provides an extremely simple,
bare minimum test of an LLM’s
ability to find information
within a long-context

• Key idea:
– Create a long document
– Embed a fact somewhere in the

document (e.g. at some depth)
– Check whether the LLM can

answer a question whose answer
is that fact

Needle-in-a-Haystack Test

8
Figure from https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Extending Short-Context Models
• There are two key ingredients for

extending a short context model
1. extensible positional embeddings
2. careful selection of long data

• General recipe
– Pre-train a short context model

(block size = 4k) on 1 trillion tokens
of text

– Adjust the hyperparameters of the
positional embeddings

– Continue pre-training but increase
the block size to support long-
contexts (block size = 80k) on only
5 billion tokens of text

9
Figure from http://arxiv.org/abs/2402.10171

Fine-Tuning vs. In-Context Learning
• Why would we ever bother with fine-tuning if it’s so inefficient?
• Because, even for very large LMs, fine-tuning often beats in-context learning
• In a fair comparison of fine-tuning (FT) and in-context learning (ICL), we find that FT

outperforms ICL for most model sizes on RTE and MNLI

10
Figure from https://aclanthology.org/2023.findings-acl.779.pdf

At least this was the
general wisdom in 2023.

We might have a
different story to tell

now that it’s 2024.
(See Lecture 19)

ICL with Long Sequences
• Modern wisdom reveals that ICL can

sometimes outperform fine-tuning
• All we need is a long context model that can

hold our in-context demonstrations
• Two multiclass classification datasets (Clinic-

150 with 151 labels, Trecfine with 50 labels)
• Base model: LLaMa2-7B
• Approaches:

– Finetuned: LoRA
– Random ICL: randomly selects training examples

for ICL
– Retrieval ICL: selects training examples for ICL

most similar to test example based on BM25

11
Figure from http://arxiv.org/abs/2405.00200

APPROXIMATE ATTENTION

12

Approximate Attention

• Standard attention requires O(N2) memory and computation
• While the computation requirement may be acceptable, the

memory requirement is usually not
• One solution is to instead approximate the attention

computation
• Examples include:
– Sparse Attention (2019), O(N √𝑁)
– Sliding Window Attention (2020), O(N)
– Dilated Attention (2023), O(N)

13
Figure from

Sparse Attention

14
Figure from http://arxiv.org/abs/1904.10509

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

15

regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V

Recall…

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

16

sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do

the matrix multiplication, but
this is still slow

2. for-loop implementation:
asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into
chunks of size w x w, with
overlap of ½w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

Recall…

Dilated Attention
• Dilated attention mixes

together multiple dilation
rates

• Each dilation rate decides
the sparsity pattern of Q,K,V

• Computation is easily
parallelizable

• Runtime is great, but it’s
now a different model
altogether

17
Figure from http://arxiv.org/abs/2307.02486

EFFICIENT FULL ATTENTION

18

Scaling Up Computation with Context Length
• In TransformerLMs,

the FLOPS do not
scale up as quickly as
you might expect
with context size

• There are lots of
computationally
intensive
components to the
Transformer besides
the O(N2) attention

19
Figure from

Sequence Parallelism
• Sequence parallelism breaks

apart a long sequence into
chunks

• Each chunk is given to a separate
device (GPU or TPU) and the
computation of earlier devices
must be sent to later devices (for
decoder-only Transformers)

• Problem: this does not scale up
very efficiently because the later
queries still must attend to O(N)
other key/value tokens

20
Figure from http://arxiv.org/abs/2105.13120

Blockwise Attention Computation
Recall: softmax is shift invariant! So we can compute attention in blocks and
rescale the prior outputs appropriately based on the sufficient statistics from
the other blocks

21
Figure from http://arxiv.org/abs/2305.19370

Ring Attention

22
Figure from http://arxiv.org/abs/2310.01889

Ring Attention

23
Figure from http://arxiv.org/abs/2310.01889

Ring Attention

24

Ring Attention

25
Figure from http://arxiv.org/abs/2310.01889

Ring Attention
• Results:
– 13B model can be increased to handle a 128k token context length on 8 A100s
– 7B model can be increased to handle a 4 million token context length on 32

A100s

26
Figure from http://arxiv.org/abs/2310.01889

Large World Model

27
Figure from https://arxiv.org/pdf/2402.08268

