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Front Matter

 Announcements: 

 Project proposal due on 11/15 (Friday) at 11:59 PM 

 Reminder: you may not use grace days on any 

project deliverables

 We hope to assign project liaisons today or 

tomorrow; please reach out to your assigned 

liaison ASAP to set-up an initial meeting

 Quiz 5 in-class on 11/18 (Monday)

 Will cover Lectures 16 – 20
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Q: How can I 
get one of 
those sweet 
hoodies you 
were wearing 
on Monday?

 A: Apply to be a TA 

for this course!

 Applications are due by 

Wednesday, November 

20th (1 week from today)

 For more information 

and the application, see 

https://www.ml.cmu.edu

/academics/ta.html
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Oh so very many things…
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Sources: 1. https://www.cio.com/article/190888/5-famous-analytics-and-ai-disasters.html
Sources: 2. https://www.worklife.news/technology/generative-ai-blunders-2023/ 
Sources: 3. https://www.buzzfeed.com/carleysuthers/weird-and-wrong-ai-responses 
Sources: 4. https://www.bbc.com/news/articles/cd11gzejgz4o 

https://www.cio.com/article/190888/5-famous-analytics-and-ai-disasters.html
https://www.worklife.news/technology/generative-ai-blunders-2023/
https://www.buzzfeed.com/carleysuthers/weird-and-wrong-ai-responses
https://www.bbc.com/news/articles/cd11gzejgz4o


And fixing them can be hard…
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Sources: 1. https://variety.com/2024/digital/news/google-gemini-ai-image-racial-inaccuracies-nazi-soldiers-1235919168/
Sources: 2. https://www.theverge.com/2024/2/21/24079371/google-ai-gemini-generative-inaccurate-historical 
Sources: 3. https://blog.google/products/gemini/gemini-image-generation-issue/ 

https://www.theverge.com/2024/2/21/24079371/google-ai-gemini-generative-inaccurate-historical
https://blog.google/products/gemini/gemini-image-generation-issue/


And fixing them can be hard…
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Sources: 1. https://variety.com/2024/digital/news/google-gemini-ai-image-racial-inaccuracies-nazi-soldiers-1235919168/
Sources: 2. https://www.theverge.com/2024/2/21/24079371/google-ai-gemini-generative-inaccurate-historical 
Sources: 3. https://blog.google/products/gemini/gemini-image-generation-issue/ 

https://www.theverge.com/2024/2/21/24079371/google-ai-gemini-generative-inaccurate-historical
https://blog.google/products/gemini/gemini-image-generation-issue/


A Taxonomy 
of Risks
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A Taxonomy 
of Risks
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https://airisk.mit.edu/


A (Tiny) Subset 
of Risks 
Associated 
with 
Generative AI

 Copyright infringement 

 Susceptibility to 

adversarial attack

 Hallucinations 

 Bias/discrimination

 Generation of 

toxic/unsafe content

 Environmental impact

 We’ll examine these using 

the following framework:

1. What does it mean 

(in the context of 

generative AI)?

2. Who does it impact?

3. Why does it happen?

4. How can we fix it?
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A Taxonomy 
of Risks
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Copyrighted material is everywhere…
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But maybe that’s okay?
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What do you think?
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What do you think?

11/13/24 20Source: https://arxiv.org/pdf/2303.15715 

https://arxiv.org/pdf/2303.15715


What do you think?
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Defining / 
Quantifying 
Copyright 
Infringement

11/13/24 22Source: https://aclanthology.org/2023.emnlp-main.458.pdf 

(LCS = longest common subsequence)

https://aclanthology.org/2023.emnlp-main.458.pdf


Defining / 
Quantifying 
Copyright 
Infringement

11/13/24 23Source: https://arxiv.org/pdf/2302.10870 

https://arxiv.org/pdf/2302.10870


Solutions for 
Mitigating 
Copyright 
Infringement
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Mitigating 
Copyright 
Infringement…
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Mitigating 
Copyright 
Infringement
can be hard!
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https://arxiv.org/pdf/2303.15715


Adversarial 
Attack on LLMs
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Attack on LLMs
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Recall:
Learning to 
Prompt

 Some ways of learning better prompts for your task:

1. Prompt paraphrasing – programmatically generate 

and test many different prompts from a paraphrase 

model, then pick the one that “works best”

2. Gradient-based search – use optimization to search 

for the discrete representation of the prompt that 

makes the desired output most likely

3. Prompt tuning – directly optimize the embeddings 

that are input into the LLM, without bothering to 

construct a discrete representation of the prompt
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Gradient-based
Adversarial 
Attack on LLMs
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Mitigating
Adversarial 
Attack on LLMs

11/13/24 33Source: https://arxiv.org/pdf/2307.02483 

https://arxiv.org/pdf/2307.02483


Mitigating
Adversarial 
Attack on LLMs
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Example of 
Copyright 
Infringement
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This is a 
Hallucination!
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Hallucination
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https://arxiv.org/pdf/2303.08774


A Taxonomy of
Hallucinations

11/13/24 38Source: https://arxiv.org/pdf/2311.05232 

• These roughly correspond to what OpenAI calls “open-

domain” and “closed-domain” hallucinations respectively

https://arxiv.org/pdf/2311.05232


A Taxonomy of
Hallucinations
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A Taxonomy of
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Causes of
Hallucinations: 
Data
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Causes of
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Data
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Causes of
Hallucinations: 
Other

 Fundamental limitations of the transformer architecture

 Insufficient context or ineffective use of attention

 Misalignment during supervised fine-tuning

 Inherent randomness during sampling

 And many, many more…
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Mitigating
Hallucinations: 
RLHF
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Mitigating
Hallucinations: 
Retrieval 
Augmented 
Generation
(RAG)
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Mitigating
Hallucinations: 
Factual-Nucleus 
Sampling
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Mitigating
Hallucinations: 
Other

 Curating factual datasets

 Deduplicating datasets

 Knowledge editing

 Chain-of-thought prompting

 Chain-of-verification decoding
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Another 
Cause of
Hallucinations: 
Bias
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Defining
Discrimination &
Bias
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A Taxonomy of
Discrimination &
Bias
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Discrimination &
Bias in Different 
NLP Tasks
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Gender Bias in 
LLMs: Example
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Causes of
Discrimination &
Bias in LLMs
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A Taxonomy of
Mitigating
Discrimination &
Bias in LLMs
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Mitigating
Discrimination &
Bias in LLMs
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A (Tiny) Subset 
of Risks 
Associated 
with 
Generative AI

 Copyright infringement 

 Susceptibility to 

adversarial attack

 Hallucinations 

 Bias/discrimination

 Generation of 

toxic/unsafe content

 Environmental impact

 We’ll examine these using 

the following framework:

1. What does it mean 

(in the context of 

generative AI)?

2. Who does it impact?

3. Why does it happen?

4. How can we fix it?
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 Copyright infringement 

 Susceptibility to 

adversarial attack

 Hallucinations 

 Bias/discrimination

 Generation of 

toxic/unsafe content

 Topic of Monday’s 

guest lecture!
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Recall: How much did it cost to train LLaMa?
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Llama-1 Llama-2

Llama-3



Okay, but what do these numbers actually mean?
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Okay, but what do these numbers actually mean?
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Environmental 
Impacts of 
Training Large 
Generative 
Models
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Those are 
some pretty 
large error bars 
(note the log-
scale!), what’s 
causing that?
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Environmental 
Impacts of 
Training Large 
Generative 
Models
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Carbon 
Intensity of 
Google 
Datacenters
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Mitigating
Environmental 
Impacts of 
Training Large 
Generative 
Models

11/13/24 74Source: https://dl.acm.org/doi/pdf/10.1145/3531146.3533234 

(max time window 
to search over)

(max runtime 
increase)

https://dl.acm.org/doi/pdf/10.1145/3531146.3533234


Mitigating
Environmental 
Impacts of 
Training Large 
Generative 
Models
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