
Code Generation

1

10-423/10-623 Generative AI

Matt Gormley & Henry Chai
Lecture 23

Nov. 25, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Project Midway Report
– Due: Mon, Nov 25 at 11:59pm

• HW623
– Only for students registered in 10-623
– Due: Mon, Dec 2 at 11:59pm

4



CODE GENERATION

5



Building Code Models

Languages for LLMs
• LLMs are trained on massive quantities 

of text from the internet (e.g. trillions of 
tokens)

• Some LLMs cover a variety of human 
languages, some focus primarily on 
English

• Most LLMs include a wide variety of 
programming languages

Code Generation Examples
• Auto-complete for code IDEs (e.g. GitHub 

CoPilot)
• Write code given a text prompt
• Write code given a docstring (e.g. 

function-level or class-level comment)
• Read a large codebase and add a new 

feature
• Find bugs / fix bugs
• Write unit tests
• Translate code from one language to 

another
• Generate comments for existing code

6



Programming Languages on GitHub

7
Figure from https://madnight.github.io/githut/#/pushes/2024/1



Example: Dolma Dataset
• The Dolma dataset is 3 trillion tokens 

of text
• It is sourced from a variety of existing 

datasets

• The Stack is 3TB of permissively 
licensed code intended for LLMs

8

Figure from https://allenai.github.io/dolma/docs/assets/dolma-v0_1-20230819.pdf Figure from https://arxiv.org/pdf/2211.15533



Applications for Code Models

Languages for LLMs
• LLMs are trained on massive quantities 

of text from the internet (e.g. trillions of 
tokens)

• Some LLMs cover a variety of human 
languages, some focus primarily on 
English

• Most LLMs include a wide variety of 
programming languages

Code Generation Examples
• Auto-complete for code IDEs (e.g. GitHub 

CoPilot)
• Write code given a text prompt
• Write code given a docstring (e.g. 

function-level or class-level comment)
• Read a large codebase and add a new 

feature
• Find bugs / fix bugs
• Write unit tests
• Translate code from one language to 

another
• Generate comments for existing code

9



Applications for Code Models

10
Figure from https://arxiv.org/pdf/2406.00515



EVALUATING CODE GENERATION

11



How to evaluate code?
• Metrics
– BLEU (metric used in machine translation for testing n-gram overlap 

with a known reference)
– CodeBLEU (a mixture of various syntactic and semantic metrics)
– Functional correctness (checks how many unit tests pass)
– NOTE: functional correctness has become the dominant metric for 

evaluation
• Benchmarks
– HumanEval
– MBPP
– (many more!)

12



CodeBLEU

13



HumanEval Benchmark
• Introduced alongside Codex 

model
• Measures functional 

correctness of code (i.e. how 
many unit tests pass)

• pass@k metric = % of k code 
samples that pass all the unit 
tests (actual implementation 
uses more samples to reduce 
variance)

• 164 handwritten problems

14
Figure from http://arxiv.org/abs/2107.03374



HumanEval Benchmark
• Introduced alongside Codex 

model
• Measures functional 

correctness of code (i.e. how 
many unit tests pass)

• pass@k metric = % of k code 
samples that pass all the unit 
tests (actual implementation 
uses more samples to reduce 
variance)

• 164 handwritten problems

• Results clearly indicate that 
BLEU is not a good surrogate

15
Figure from http://arxiv.org/abs/2107.03374



MBPP
• Mostly Basic Python Programs 

(MBPP) are intended to be 
problems solveable by a novice 
programmer

• 974 problems constructed by 
crowd-sourcing

• Consists of problem statement, 
3 tests, and a self-contained 
solution

16
Figure from https://arxiv.org/pdf/2108.07732



CODE MODELS

17



Code Generation with LLMs

18
Figure from https://aclanthology.org/2023.acl-long.411.pdf 



Code Generation with LLMs

19
Figure from https://arxiv.org/pdf/2406.00515



Approaches to Code Generation

Here we consider a few representative examples of code 
models:
• CodeBERT
• Codex
• CodeT5
• InCoder / FIM
• StarCoder
• LongCoder

20



CodeBERT
• One of the early successes in 

this space, CodeBERT has 125M 
model parameters (same 
architecture as RoBERTa)

• Two pre-training objectives:
– Masked language modeling 

(MLM) 
– Replaced token detection (RTD)

• Example application:
– natural language code retreival

21
Figure from http://arxiv.org/abs/2002.08155



Codex
• The original model behind 

GitHub Copilot
• GPT-3 model with 12B 

parameters fine-tuned on 159 
GB of Python code

• Notably: using a pre-trained 
GPT-3 does not improve 
performance, but does improve 
convergence time

22
Figure from http://arxiv.org/abs/2107.03374



CodeT5
• CodeT5 is based on the T5 

encoder-decoder 
Transformer architecture

• Like T5, CodeT5 brings 
together a number of 
different tasks

23
Figure from https://arxiv.org/pdf/2109.00859

input

encoder decoder

output

vectors representing 
the input

…



InCoder / FIM

InCoder (April 2022)
• Place a mask token where you want to 

fill in the code

FIM (July 2022)
• Goal is to train a model that fills in the 

middle
• Divide the code snippet into (prefix, 

middle, suffix)
• Then train with examples of the form:

<PRE> prefix <MID> middle <SUF> suffix

• And predict using examples of the form:

<PRE> prefix <MID> middle <SUF>

24

Question how do we use an 
causally-masked LM to fill in 

code in the middle of code file?

Figure from https://arxiv.org/pdf/2204.05999 FIM paper https://arxiv.org/pdf/2207.14255



StarCoder

StarCoder
• (Was) one of the best open source 

Code Models
• Used FIM for pre-training a 15.5B 

parameter model on 1 trillion tokens 
of text

25



LongCoder

• LongCoder aims to 
address the 
problem of 
working with large 
codebases

• Employs sparse 
attention to 
handle long input 
sequences

26



CODE MODEL-SPECIFIC TECHNIQUES

27



Iterative Self-Refinement
• Normally self-correction 

with an LLM (e.g. for 
reasoning problems) does 
not work

• However, when 
performing self-correction 
on a code model, we may 
also have access to unit 
test output

• This output from unit 
tests can lead to great 
success in iterative self-
refinement at test time

29
Figure from https://arxiv.org/pdf/2406.00515



Do code assistants make programmers more 
efficient?

• The bill is still 
out on this 
one…

• Current research 
includes 
conflicting 
results

30Figure from https://resources.uplevelteam.com/gen-ai-for-coding

Figure from https://www.mckinsey.com/capabilities/mckinsey-digital/our-
insights/unleashing-developer-productivity-with-generative-ai#/


