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Audio Understanding and Synthesis

* QOutline
— working with audio data
* Mel spectrogram
— speech transcription (speech-to-text)
* Whisper
— speech generation (audio continuation)
* autoregressive audio codec models (AudioLM)

— music generation
* MIDI generation (MusicTransformer)
* audio tokenization (EnCodec)
* Text-to-music generation (e.g. MusicGen)

— combining speech and text models
* speech+text-to-text (SpeechVerse)



AUDIO UNDERSTANDING & SYNTHESIS



Working with Audio Data

* Pulse-code modulation (PCM) representation
— an audio recording device takes many samples of pressure (amplitude)

— araw audio file has several parameters:
* # of channels (e.g. stereo has two)
* bit depth (# of bits used to represent each amplitude)
 sampling rate (how many samples are taken per second)

— example: a 44.1 kHz 16-bit stereo recording has 44,100 samples per
second, each sample consists of two 16-bit integers, one for each
channel

NEDRRS— e - i

Figure 1: A second of generated speech.

Figure from https://arxiv.org/abs/1609.03499



Working with Audio Data

Figure from https://kinder-chen.medium.com/denoising-data-with-fast-fourier-transform-a81dgf38cc4c

* Sound wave representation

— if we were recording audio of a single
unchanging sound, we could run a single
Fast Fourier Transform (FFT) to extract the
sinusoidal waves that gave rise to the
samples we observe

* Mel-spetrogram representation

— in practice sound changes over time andso _ | | | N
o Figure from https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-
we need to run many FFTs of overlapping  »eombecerandsssnssos
windows to extract a usable representation
of real audio

— the output of this process is a spectrogram,

8192
+70dB

+50 dB

and can be easily visualized as an image § 2 +a0a8
— to obtain a mel-spectrogram, we pass the 1024 #3008
frequencies through a frequency-to-mel o 12048

+10dB

map

+0dB

Figure from https://www.sfu.ca/sonic-studio-webdav/handbook/Mel.html
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Speech Transcription: Whisper

* Speech transcription is
the task of taking in the
audio of speech and
generating the text

transcript

* Whisper is an encoder-
decoder Transformer N
model for speech Encoder Blocks
transcription

* The inputis the log-mel-
spectrogram of the audio
(30 second chunk) [16kHz,
80 channels, 25 ms
window, 10 ms stride]

Sinusoidal
Positional
Encoding

Figure from https://arxiv.org/abs/2212.04356
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Speech Transcription: Whisper

Whisper

* modelis almost identicas
to Vaswani et al. (2017)

* encoder: output of two
convolution layers
(filter={3,3}, stride={1,2})
+ sinusoidal positional
embeddings

 decoder: learned
positional embeddings

e same # of transformer
blocks in encoder/
decoder (32)

Figure from https://arxiv.org/abs/2212.04356
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Speech
Transcription:
Whisper
* many tasks are

used to train a
single model

* special tokens
are used to
indicate the type -
of task, the
language, etc.

timestamp
tokens allow the
generation of
time-aligned
transcripts

Multitask training data (680k hours)

English transcription
* “Ask not what your country can do for ---"

D Ask not what your country can do for -

Any-to-English speech translation
* “El rapido zorro marroén salta sobre "

D The quick brown fox jumps over -

Non-English transcription
& oo
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Figure from https://arxiv.org/abs/2213.04356
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Speech
Transcription:
Whisper

* Large model has 1.5B
parameters

* Training dataset is so
large that only 2-3
epochs are used

Multilingual Speech Recognition




Speech Transcription: Whisper

Results:

* Whisper closes the
gap to human level

performance on

LibriSpeech English

WER

Figure from https://arxiv.org/abs/2212.04356
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Figure 2. Zero-shot Whisper models close the gap to human
robustness. Despite matching or outperforming a human on Lib-
riSpeech dev-clean, supervised LibriSpeech models make roughly
twice as many errors as a human on other datasets demonstrating
their brittleness and lack of robustness. The estimated robustness
frontier of zero-shot Whisper models, however, includes the 95%
confidence interval for this particular human.
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Speech Transcription: Whisper

Results:

* Whisper closes the
gap to human level
performance on
LibriSpeech English
WER

Figure from https://arxiv.org/abs/2212.04356
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Figure 7. Whisper’s performance is close to that of profes-
sional human transcribers. This plot shows the WER distri-
butions of 25 recordings from the Kincaid46 dataset transcribed
by Whisper, the same 4 commercial ASR systems from Figure 6
(A-D), one computer-assisted human transcription service (E) and
4 human transcription services (F-I). The box plot is superimposed
with dots indicating the WERSs on individual recordings, and the
aggregate WER over the 25 recordings are annotated on each box.
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Whisper Demo

* Transcript: Whisper is an automatic
speech recognition (ASR) system trained
on 680,000 hours of multilingual and
multitask supervised data collected from

the web. We show that the use of such a X /2',"””2-)5/”55 |
large and diverse dataset leads to B ———

improved robustness to accents,
background noise and technical
language. Moreover, it enables
transcription in multiple languages, as
well as translation from those languages
into English. We are open-sourcing
models and inference code to serve as a
foundation for building useful
applications and for further research on
robust speech processing.



https://www.youtube.com/watch?v=zLP6oT3uqV8

Speech Transcription: Whisper

Results: T

« strong performance H
on high resource I VPR
languages NSy R

* not-so-strong
performance on low § . N
resource languages I | e I O " N

Hours of transcribed audio

Figure 3. Correlation of pre-training supervision amount with
downstream speech recognition performance. The amount of
pre-training speech recognition data for a given language is very
predictive of zero-shot performance on that language in Fleurs.

Figure from https://arxiv.org/abs/2212.04356
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Speech Transcription: Whisper

Results:

* capable of good
speech translation
performance on a
wide variety of

languages

Figure from https://arxiv.org/abs/2212.04356
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Figure 4. Correlation of pre-training supervision amount with
downstream translation performance. The amount of pre-
training translation data for a given language is only moderately
predictive of Whisper’s zero-shot performance on that language in
Fleurs.
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Speech Transcription: Gemini

* Multimodal large Ianguage models (e.g. Gemini) are
trained with many ditferent modalities as input

* Gemini converts each audio input to 16kHz, then each
second of audio is converted to 25 tokens

Input

seatence and allows interleaving of a text prompt with audio
Aa | tokens
I pecoser [ [
e g DeTc?c;(;er ﬂ Aé
—— — _

Figure from https://www.promptingguide.ai/models/gemini

* Speech transcription follows naturally from this setup
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Audio Continuation: AudioLM
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Fig. 1. Timeline of current neural codec models and codec-based language models.

* avariety of models use an audio code to convert the audio
signal to a sequence of discrete audio tokens

* we can then train a deep neural LM on these audio tokens
and use it to generate speech, music, nature sounds, etc.

Figure from http://arxiv.org/abs/2402.13236



Audio Continuation: AudioLM

AudioLM consists of

* input: x a single channel audio input of length T=16000
* tokenizer model(s):

— acoustic: SoundStream neural audio codec
e vocab size: N=1024

— semantic: w2v-BERT, a self-supervised model that returns a sequence of
T’ discrete tokens

e vocab size: K=1024
* length T’ =T/640

* decoder-only Transformer model:

— trained to maximize the sequence of discrete tokens from the tokenizer
— at test time: autoregressively decodes one token at a time
* detokinizer model: SoundStream decoder

Figure from https://ieeexplore.ieee.org/document/10158503/?2arnumber=10158503



Audio Continuation: AudioLM

AudioLM consists of

* decoder-only Transformer model:
— consists of three stages in a hierarchy

— each stage conditions on the output of the previous stage
— separate model for each stage to keep the lengths shorter

Semantic ,
A Semantic tokens
modeling
Coarse 5 SR Coarse acoustic tokens
acoustic modeling i ey (from layers 1:Q' of the RVQ)

- Bl — oo
[

[ SoundStream Decoder J

Fine Coarse acoustic tokens
acoustic modeling (from layers 1:Q' of the RVQ)

Fine acoustic tokens ] i

(from layers Q'+1:Q of the RVQ)

Fig. 2.  Three stages of the hierarchical modeling of semantic and acoustic tokens in AudioLM : i) semantic modeling for long-term structural coherence, 11)

acoustic tokens in the second stage and 2((QQ — Q") tokens in the third stage. The factor of 2 comes from the fact that the sampling rate of SoundStream embeddings

1s twice as that of the w2v-BERT embeddings.

Figure from https://ieeexplore.ieee.org/document/10158503/?arnumber=10158503
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Audio Continuation: AudioLM

* Demos:
Speech continuation

Continuations using 3 second prompts from LibriSpeech test-{clean, other}, for speakers and content not seen during training. AudioLM excels at generating
continuations that:

* preserve speaker identity, prosody, accent and recording conditions of the prompt,

» have syntactically correct and semantically coherent content.

Librispeech test-clean

Original Prompt Continuations

> 0:00/0:10 == o) 3 P 0:00/0:10 === o) 3
P 0:00/0:06 == o) 3 P 0:00/0:03 == o) 3

P 0:00/0:10 == o) 3 » 0:00/0:10 == o) 3

P 0:00/0:10 === o) 3 » 0:00/0:10 == o) 3
P 0:00/0:06 == o) 3 P 0:00/0:03 == o)

» 0:00/0:10 == o) 3 > 0:00/0:10 == o) 3

Figure from


https://google-research.github.io/seanet/audiolm/examples/

Music Generation: Music Transformer

MUSIC TRANSFORMER:
GENERATING MUSIC WITH LONG-TERM STRUCTURE

Cheng-Zhi Anna Huang® Ashish Vaswani Jakob Uszkoreit Noam Shazeer
Ian Simon Curtis Hawthorne Andrew M. Dai Matthew D. Hoffman
Monica Dinculescu Douglas Eck

Google Brain

ABSTRACT

Music relies heavily on repetition to build structure and meaning. Self-reference
occurs on multiple timescales, from motifs to phrases to reusing of entire sections
of music, such as in pieces with ABA structure. The Transformer (Vaswani
letall,2017), a sequence model based on self-attention, has achieved compelling
results in many generation tasks that require maintaining long-range coherence.
This suggests that self-attention might also be well-suited to modeling music.
In musical composition and performance, however, relative timing is critically
important. Existing approaches for representing relative positional information
in the Transformer modulate attention based on pairwise distance (Shaw et all,
[2018). This is impractical for long sequences such as musical compositions since
their memory complexity for intermediate relative information is quadratic in the
sequence length. We propose an algorithm that reduces their intermediate memory
requirement to linear in the sequence length. This enables us to demonstrate that a
Transformer with our modified relative attention mechanism can generate minute-
long compositions (thousands of steps, four times the length modeled in[Oore et all
(2018)) with compelling structure, generate continuations that coherently elaborate
on a given motif, and in a seq2seq setup generate accompaniments conditioned on
melodied]. We evaluate the Transformer with our relative attention mechanism on
two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art
results on the latter.

Figure from http://arxiv.org/abs/1809.04281



Music Generation: Music Transformer

3.4 MEMORY EFFICIENT IMPLEMENTATION OF RELATIVE POSITION-BASED ATTENTION

We improve the implementation of relative attention by reducing its intermediate memory requirement
from O(L2D) to O(LD), with example lengths shown in Table[1. We observe that all of the terms
we need from QR are already available if we directly multiply ) with E", the relative position
embedding. After we compute QE" ", its (iq,7) entry contains the dot product of the query in
position ¢, with the embedding of relative distance . However, each relative logit (i, ji) in the
matrix S”¢! from Equationﬂ should be the dot product of the query in position ¢, and the embedding
of the relative distance jj — i,, to match up with the indexing in QK. We therefore need to “skew”

QE"" so0 as to move the relative logits to their correct positions, as illustrated in Figurcﬂ and detailed
in the next section. The time complexity for both methods are O(L?D), while in practice our method
is 6x faster at length 650.

Previouswork: R 7 d
e A

FOI.' every (Iq, )

pai,

gather rI'= VLA

from E

Multiply by Q

Q™

Relative
embeddings

E o
-L+1

0

’

Figure 1: Relative global attention: the bottom row describes our memory-efficient “skewing’
algorithm, which does not require instantiating R (top row, which is O(L?D)). Gray indicates
masked or padded positions. Each color corresponds to a different relative distance.

Figure from http://arxiv.org/abs/1809.04281

3.5 RELATIVE LOCAL ATTENTION

For very long sequences, the quadratic memory requirement of even baseline Transformer is imprac-
tical. Local attention has been used for example in Wikipedia and image generation (Liu et all,2018;
[Parmar et all, 2018) by chunking the input sequence into non-overlapping blocks. Each block then
attends to itself and the one before, as shown by the smaller thumbnail on the top right corner of
Figure[d.

To extend relative attention to the local case, we first note that the right block has the same configura-
tion as in the global case (see Figurcﬂ) but much smaller: (“\%)2 (where M is the number of blocks,
and N be the resulting block length) as opposed to L?. The left block is unmasked with relative
indices running from -1 (top right) to -2V + 1 (bottom left). Hence, the learned E™ for the local case
has shape (2N — 1, N).

Similar to the global case, we first compute QE" " and then use the following procedure to skew it to
have the same indexing as QKT, as illustrated in Figure [3

1. Pad a dummy column vector of length /N after the rightmost column.

2. Flatten the matrix and then pad with a dummy row of length N — 1.

3. Reshape the matrix to have shape (N + 1,2N — 1).

4. Slice that matrix to retain only the first N rows and last N columns, resulting in a (/V, N') matrix.

QELrT r Padcolumn YA grel

g -1 G
N W Reshape
4 \ .f"”»“

[
g

-2N+1 -N

Pad N-1 after flatten k

B
Ry

Figure 2: Relative local attention: the thumbnail on the right shows the desired configuration for S"'.
The “skewing” procedure is shown from left to right.
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Music Generation: Music Transformer
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Figure 4: Comparing how models continue a prime (top left). Repeated motives and structure are seen
in samples from Transformer with relative attention (top row), but less so from baseline Transformer
(middle row) and PerformanceRNN (LSTM) (bottom row).

Figure from http://arxiv.org/abs/1809.04281



Music Generation: Music Transformer

* Demos: https://storage.googleapis.com/music-transformer/index.html

Piano-e-Competition Unconditioned Samples

Relative Transformer
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Figure from http://arxiv.org/abs/1809.04281


https://storage.googleapis.com/music-transformer/index.html

Text-to-Music Generation: MusicGen

e MusicGen Model

— audio tokenizer: EnCodec [Défossez et al., 2022], which is a
convolutional auto-encoder

— codebook interleaving: multiple token sequences are predicted in
parallel

— text prompt model: T5, Flan-T5, or CLAP
— melody prompt model: information bottleneck
— decoder model: transformer LM up to 3.3B parameters

Figure from https://proceedings.neurips.cc/paper_files/paper/2023/hash/94b472a1842cd7¢56dcb125fb2765fbd-Abstract-Conference.html



Text-to-Music Generation: MusicGen

* Demo:

Samples: comparison to prior work

In the following, we compare MusicGen (including stereo generation) 3.3B to a number of prior work detailed in the paper: MusicLM, using the public Al Test
Kitchen demo, Riffusion using the provided pre-trained modes, and Mousai, which we retrained on the same dataset as our proposed MusicGen model.

desc MusicGen MusicGen Stereo MusicLM Riffusion Musai

Pop dance track with
catchy melodies,
tropical percussion, and
upbeat rhythms, perfect
for the beach

> 000/0:30 = o) » 0:00/0:30  #) > 0:00/0:19 = o) > 0:00/0:30 = «) > 0:00/0:30 = «)

A grand orchestral

arrangement with » 0:00/0:30 = ¢) » 0:00/0:30 L DI » 0:00/0:19  4) » 0:00/0:30 L DI » 0:00/0:30 )
thunderous percussion,

epic brass fanfares, and

soaring strings, creating

a cinematic atmosphere

fit for a heroic battle.

Figure from https://proceedings.neurips.cc/paper_files/paper/2023/hash/94b472a1842cd7c56dcb125fb2765fbd-Abstract-Conference.html
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https://ai.honu.io/papers/musicgen/

Speech+Text to Text: SpeechVerse

[ *’-»—' + Transcribe the audio into English

C

{ *c»—o + Can you identify the intent of the audio? m

\

[*.—4 + Can you identify number of speakers?

b

*_»_. & Can you identify the emotion? categorise
into: sad, angry, neutral, happy
L

( *—»—o + Identify some keywords in the audioE

&

Multi-task fine-tuning

Generalization to unseen tasks and prompts

[*-»—o + Transcribe the audio into Spanish] /

/
/

b S Generate a factual answer /v
to preceding question /

*_»_. + Create a very crisp newspaper
headline for the preceding audio

SpeechVerse

[ | am looking for quotes on auto insurance)

( [The intent is: “auto_insurance_query”

/(Number of speakers: one]

h
—

\EKeywords: auto, insurance]

\
\ \ (Busco cotizaciones de seguro de autoJ
\ )

\
\ The process of composting is a gradual
decomposition of organic matter into soil ..

J

[

Former President Donald Trump Faces Election
Interference Charges in Court

]

Figure 1: Schematic diagram of the SpeechVerse framework.

Figure from https://arxiv.org/abs/2405.08295



Speech+Text to Text: SpeechVerse

The keywords identified from the audio are:
1. Auto 2. Insurance

T

Pre-trained Large Language Model Adapter J

I
Conv-1D ' Token Embedding
Downsamplmg k Layer
A
Pre-trained
k Audio Encoder

Can you identify the keywords
from the audio?

Figure 2: Block diagram of the SpeechVerse architecture.

Figure from https://arxiv.org/abs/2405.08295



