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Reminders
• HW623
– Only for students registered in 10-623
– Due: Mon, Dec 2 at 11:59pm
– Submit form: https://forms.gle/azrmUR9KrFexnASi7

• Project Poster
– Upload Due: Tue, Dec 10 at 11:59pm
– Presentations: Fri, Dec 13 at 1pm-4pm

• Project Final Report
– Due: Fri, Dec 13 at 11:59pm

• Project Code Upload
– Due: Fri, Dec 13 at 11:59pm
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Video Generation and Understanding
• Outline
– video generation (video diffusion models)

• 3D Unet (2016)
• VViT & Spatio-Temporal Attention (2021)
• Video Diffusion Model (2022) 
• Video Latent Diffusion Model (2023)
• Diffusion Transformer (2023)
• Sora (2024)

– video understanding (visual language models)
• Llava (understand text+image)
• Video-Llava (understand text+image+video)
• QwenVL (understand text+image+video)
• Large World Model (generate/understand text+image+video)
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VIDEO DIFFUSION MODELS

6



Datasets for Video Models
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Figure from https://dl.acm.org/doi/10.1145/3696415



Datasets for Video Models
• The largest 

datasets of 
videos with 
captions use a 
model to 
generate the 
captions

• The quality and 
style of the 
captions can 
vary wildly 
depending on 
which model is 
used
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Figure from http://arxiv.org/abs/2402.19479

Panda-70M Examples: https://snap-research.github.io/Panda-70M/  

https://snap-research.github.io/Panda-70M/


Video Diffusion Model

• Architecture = 3D UNet + spatial-temporal attention
• Relative positional embeddings across time axis
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Figure from https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html



3D UNet
• Suppose you want to do image segmentation on 3D images (e.g. 

high-resolution, 3D imaging of a Xenopus kidney)
• The 3D UNet model is almost identical to the standard UNet 

except that it replaces 2D convolution (height, width, channel) 
with 3D convolution (height, width, depth, channel)
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Figure from http://arxiv.org/abs/1606.06650 



Video Vision Transformer (VViT)
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Figure from http://arxiv.org/abs/2103.15691 

• The Video ViT takes a series of image 
frames from a video as input

• A standard ViT model for images would 
treat each frame as independent (i.e. only 
has spatial attention across the [w,h] 
axes)

• The Video ViT instead includes two types 
of attention: spatial attention and 
temporal attention



Factorized Spatial-Temporal Attention
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Figure from http://arxiv.org/abs/2103.15691 

VViT alternate between the two types:

Spatial attention:
1. reshape: b t h w c -> (b t) (h w) c
2. multi-headed attention
3. reshape: (b t) (h w) c -> b t h w c 

Temporal attention: 
1. reshape: b t h w c -> (b h w) t c
2. multi-headed attention
3. reshape: (b h w) t c -> b t c h w



Video Diffusion Model

• Architecture = 3D UNet + spatial-temporal attention
• Relative positional embeddings across time axis
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Figure from https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html



Video Diffusion Model
• The model can be jointly 

trained on images and video
• When trained on images, the 

temporal attention is masked 
so that all the attention mass 
is placed on the current batch 
element

• Such training improves 
performance on video 
generation
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Figure from https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html

Figure from http://arxiv.org/abs/2304.08818



Video Diffusion Model
• Classifier-free Guidance 

• Suppose we want to sample from a conditional distribution:
– xa could be the first 16 frames, and now we want to generate the next 16 frames xb

– or xa could be a low frame rate video and xb are the frames in between to increase framerate

• Reconstruction Guided Sampling
– key idea: guide the sample “based on the model’s reconstruction of the conditioning data”
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Figure from https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html



Video Diffusion Model
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Figure from  https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html

• Reconstruction Guided Sampling



Video Diffusion Model
Results
• In video prediction, we are given the beginning of a video and we 

see how well the model can complete it 
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Figure from https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html



Video Diffusion Model
Results
• In video prediction, we are given the beginning of a video and we 

see how well the model can complete it 

18
Figure from  https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html



Video Diffusion Model

• Demo: https://video-diffusion.github.io/ 
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Figure from https://proceedings.neurips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html

https://video-diffusion.github.io/


Video Latent Diffusion Model (VLDM)
• The VLDM model 

combines two pieces:
– Encoder/Decoder 

trained to 
reconstruct convert 
videos down to a 
latent representation 
and then reconstruct 
them

– A video diffusion 
model trained to 
work in the latent 
space

20
Figure from http://arxiv.org/abs/2304.08818
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– A video diffusion 
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21
Figure from http://arxiv.org/abs/2304.08818



Video Latent Diffusion Model (VLDM)
• Demo: https://research.nvidia.com/labs/toronto-ai/VideoLDM/  
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Figure from http://arxiv.org/abs/2304.08818

https://research.nvidia.com/labs/toronto-ai/VideoLDM/


Diffusion Transformer
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Figure from http://arxiv.org/abs/2212.09748 



Diffusion Transformer
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Figure from http://arxiv.org/abs/2212.09748 



Sora
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Figure from https://openai.com/index/video-generation-models-as-world-simulators/ 

Sora uses a Diffusion Transformer backbone trained on images and videos

https://openai.com/index/video-generation-models-as-world-simulators/


VIDEO AND VLMS
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Large World Model
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Figure from http://arxiv.org/abs/2402.08268 



Large World Model
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Figure from http://arxiv.org/abs/2402.08268 



Large World Model
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Figure from http://arxiv.org/abs/2402.08268 


