

10-423/10-623 Generative AI

Machine Learning Department School of Computer Science Carnegie Mellon University

Learning Large Language Models and Decoding

Pat Virtue and Matt Gormley Lecture 3 Jan. 22, 2025

Slide credit: Matt Gormley and Henry Chai

A Recipe for Machine Learning

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

– Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small stepsopposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Backpropagation

$g_b = g_y \frac{\partial g}{\partial b}, \ \frac{\partial g}{\partial b} = y(1-y)$
$g_{\beta_j} = g_b \frac{\partial b}{\partial \beta_j}, \ \frac{\partial b}{\partial \beta_j} = z_j$
$g_{z_j} = g_b \frac{\partial b}{\partial z_j}, \ \frac{\partial b}{\partial z_j} = \beta_j$
$g_{a_j} = g_{z_j} \frac{\partial z_j}{\partial a_j}, \ \frac{\partial z_j}{\partial a_j} = z_j (1 - z_j)$
$g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \ \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$

Day Day

Recalle

LEARNING A TRANSFORMER LM

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

2. Choose Decision function $\hat{oldsymbol{y}} = f_{oldsymbol{ heta}}(oldsymbol{x}_i)$

But what is the task?

Data

I am Sam. I am Sam. Sam I am. That Sam-I-am. That Sam-I-am ! I do not like that Sam-I-am Do you like green eggs and ham I do not like them, Sam-I-am. I do not like green eggs and ham. Would you like them here or there ? I would not like them here or there. I would not like them anywhere. I do not like green eggs and ham. I do not like them , Sam-I-am . Would you like them in a house ? Would you like them with a mouse ? I do not like them in a house. I do not like them with a mouse . 6

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

Data

I am Sam. I am Sam. Sam Lam. That Sam-I-am. That Sam-I-am ! I do not like that Sam-I-am Do you like green eggs and ham I do not like them, Sam-I-am. I do not like green eggs and ham . Would you like them here or there ? I would not like them here or there. I would not like them anywhere . I do not like green eggs and ham. I do not like them , Sam-I-am . Would you like them in a house ? Would you like them with a mouse ? I do not like them in a house . I do not like them with a mouse .

2. Choose Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

2. Choose each of these:

Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small stepsopposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

EFFICIENT TRANSFORMERS

Why does efficiency matter?

Case Study: GPT-3

- # of training tokens = 500 billion
- # of parameters = 175 billion
- # of cycles = 50 petaflop/s-days (each of which are 8.64e+19 flops)

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

Model Name	n_{params}	$n_{\rm layers}$	d_{model}	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

 Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models [KMH⁺20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute during pre-training. Methodology for these calculations can be found in Appendix D.

Efficient Parallelism for Transformers

Transformers can be trained very efficiently! (This is arguably one of the key reasons they have been so successful.)

- **Batching:** Rather than processing one sentence at a time, Transformers take in a batch of B sentences at a time. The computation is identical for each batch and is trivially parallelized.
- Scaled Dot-product Attention: can be easily parallelized because the attention scores of one timestep do not depend on other timesteps.
- Multi-headed Attention: computes each head independently, which permits yet more parallelism.

- Matrix multiplication: The core computation in attention is matrix multiplication, and specialized hardware (GPUs and TPUs) makes this very fast.
- **Model parallelism:** For huge models, we can divide the model over multiple GPUs/machines.
- **Key-value caching:** The keys and values are re-used over many timesteps, but we do not need to cache the queries, similarity scores, and attention weights.

- Suppose we have 8 training sentences
- We set our block size (maximum sequence length) to 10
- Before collecting them into a batch, we:
 - 1. truncate those sentences that are too long
 - 2. pad the sentences that are too short
 - 3. convert each token to an integer via a lookup table (vocabulary)
 - 4. convert each token to an embedding vector of fixed length

i	w ₁	w,	W,	w ₄	w _s	w ₆	w ₇	w ₈	w	W ₁₀	W ₁₁	W ₁₂
1	In	the	hole	in	the	ground	there	lived	a	hobbit		
2	lt	is	our	choices	that	show	what	we	truly	are		
3	lt	was	the	best	of	times	it	was	the	worst	of	times
4	Even	miracles	take	а	little	time						
5	The	more	that	you	read	the	more	things	you	will	know	
6	We'll	always	have	each	other	no	matter	what	happens			
7	The	sun	did	not	shine	it	was	too	wet	to	play	
8	The	important	thing	is	to	never	stop	questioning				

- Suppose we have 8 training sentences
- We set our block size (maximum sequence length) to 10
- Before collecting them into a batch, we:
 - 1. truncate those sentences that are too long
 - 2. pad the sentences that are too short
 - 3. convert each token to an integer via a lookup table (vocabulary)
 - 4. convert each token to an embedding vector of fixed length

i	w ₁	w,	w,	w ₄	w ₅	w ₆	w ₇	w ₈	w	W ₁₀	W ₁₁	
1	In	the	hole	in	the	ground	there	lived	а	hobbit		
2	lt	is	our	choices	that	show	what	we	truly	are		
3	lt	was	the	best	of	times	it	was	the	worst	of	
4	Even	miracles	take	а	little	time	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>		
5	The	more	that	you	read	the	more	things	you	will	know	
6	We'll	always	have	each	other	no	matter	what	happens	<pad></pad>		
7	The	sun	did	not	shine	it	was	too	wet	to	plav	
8	The	important	thing	is	to	never	stop	questioning	<pad></pad>	<pad></pad>)	

- Suppose we have 8 training sentences
- We set our block size (maximum sequence length) to 10
- Before collecting them into a batch, we:
 - 1. truncate those sentences that are too long
 - 2. pad the sentences that are too short
 - 3. convert each token to an integer via a lookup table (vocabulary)
 - 4. convert each token to an embedding vector of fixed length

i	W ₁	w,	w,	w ₄	w ₅	w ₆	w ₇	w ₈	w	W ₁₀
1	2	41	17	19	41	13	42	23	6	16
2	3	20	32	10	40	36	53	51	49	8
3	3	50	41	9	30	46	21	50	41	55
4	1	25	39	6	22	45	0	0	0	0
5	4	26	40	56	34	41	26	44	56	54
6	5	7	15	12	31	28	24	53	14	0
7	4	38	11	29	35	21	50	48	52	47
8	4	18	43	20	47	27	37	33	0	0

Vocabulary:

' <pad>': 0,</pad>
'Even': 1,
'In': 2,
'It': 3,
'The': 4,
"We'll": 5,
'a': 6,
'always': 7,
'are': 8,
'best': 9,
'what': 53,
'will': 54,
'worst': 55,
'you': 56

- Suppose we have 8 training sentences
- We set our block size (maximum sequence length) to 10
- Before collecting them into a batch, we:
 - 1. truncate those sentences that are too long
 - 2. pad the sentences that are too short
 - 3. convert each token to an integer via a lookup table (vocabulary)
 - 4. convert each token to an embedding vector of fixed length

i	W ₁	w,	w ₃	w _a	w _s	w ₆	w ₇	w ₈	w	W ₁₀
1										
2										
3										
4										
5										
6										
7										
8										

Emb	bed	di	in	gs:
{				U
	0	•		
	1	•		
	2	•		
	3	•		
	4	•		
	5	•		
	6	•		
	7	•		
	•••			
	55		•	
	56		•	
1				

Efficient Parallelism for Transformers

Transformers can be trained very efficiently! (This is arguably one of the key reasons they have been so successful.)

- **Batching:** Rather than processing one sentence at a time, Transformers take in a batch of B sentences at a time. The computation is identical for each batch and is trivially parallelized.
- Scaled Dot-product Attention: can be easily parallelized because the attention scores of one timestep do not depend on other timesteps.
- Multi-headed Attention: computes each head independently, which permits yet more parallelism.

- Matrix multiplication: The core computation in attention is matrix multiplication, and specialized hardware (GPUs and TPUs) makes this very fast.
- **Model parallelism:** For huge models, we can divide the model over multiple GPUs/machines.
- **Key-value caching:** The keys and values are re-used over many timesteps, but we do not need to cache the queries, similarity scores, and attention weights.

Key-Value Cache

W_a

 W_k

 W_{v}

- At each timestep, we reuse all previous keys and values (i.e. we need to cache them)
- But we can get rid of the queries, similarity scores, and attention weights (i.e. we can let them fall out of the cache)

timestep

19

TOKENIZATION

Word-based Tokenizer:

Input: "Henry is giving a lecture on transformers"

Output: ["henry", "is", "giving", "a", "lecture", "on", "transformers"]

- Can have difficulty trading off between vocabulary size and computational tractability
- Similar words e.g., "transformers" and "transformer" can get mapped to completely disparate representations
- Typos will typically be out-of-vocabulary (OOV)

Word-based Tokenizer:

Input: "Henry is givin' a lectrue on transformers"

Output: ["henry", "is", <OOV>, "a", <OOV>, "on", "transformers"]

- Can have difficulty trading off between vocabulary size and computational tractability
- Similar words e.g., "transformers" and "transformer" can get mapped to completely disparate representations
- Typos will typically be out-of-vocabulary (OOV)

Character-based Tokenizer:

Input: "Henry is givin' a lectrue on transformers"

Output: ["h", "e", "n", "r", "y", "i", "s", "g", "i", "v", "i", "n", " ", …]

- Much smaller vocabularies but a lot of semantic meaning is lost...
- Sequences will be much longer than word-based tokenization, potentially causing computational issues
- Can do well on logographic languages e.g., Kanji 漢字

Subword-based Tokenizer:

Input: "Henry is givin' a lectrue on transformers"

Output: ["henry", "is", "giv", "##in", " ' ", "a", "lec" "##true", "on", "transform", "##ers"]

- Split long or rare words into smaller, semantically meaningful components or subwords
- No out-of-vocabulary words any non-subword token can be constructed from other subwords (always includ all characters as subwords)
- Examples algorithms for learning a subword tokenization:
 - Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

GREEDY DECODING FOR A LANGUAGE MODEL

Background: Greedy Search

Goal:

•

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: **linear** in max path length

Background: Greedy Search

Goal:

•

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
 - Computation time: linear in max path length

Background: Greedy Search

Goal:

•

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
 - Computation time: linear in max path length

Greedy Decoding for a Language Model

Goal:

- Search space consists of nodes (partial sentences) and weighted by negative log probability
- Goal is to find the highest probably (lowest negative log probability) path from root to a leaf

- At each node, selects the edge with lowest negative log probability
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: **linear** in max path length

Sampling from a Language Model

Goal:

- Search space consists of nodes (partial sentences) and weighted by negative log probability
- Goal is to sample a path from root to a leaf with probability according to the probability of that path

Ancestral Sampling:

- At each node, randomly pick an edge with probability (converting from negative log probability)
- **Exact** method of sampling, assuming a locally normalized distribution (i.e. does not necessarily find the best path)
- Computation time: **linear** in max path length