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Reminders

• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Jan 17
– Due: Mon, Jan 27 at 11:59pm

• Quiz 1: Wed, Jan 29
• Homework 1: Generative Models of Text
– Out: Mon, Jan 27
– Due: Mon, Feb 10 at 11:59pm

3



Recap So Far
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() 
by chaining existing modules together

• Computation Graphs
– are another way to define f (more 

conducive to slides)
– so far, we saw two (deep) computation 

graphs
• 1) RNN-LM
• 2) Transformer-LM
• (Transformer-LM was kind of complicated)

Language Modeling
• key idea: condition on previous 

words to sample the next word
• to define the probability of the next 

word…
– …n-gram LM uses collection of massive 

50k-sided dice 
– …RNN-LM or Transformer-LM use a 

neural network

• Learning an LM
– n-gram LMs are easy to learn: just count 

co-occurrences!
– a RNN-LM / Transformer-LM is trained by 

optimizing an objective function with 
SGD; compute gradients with AutoDiff
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Two parts: Deep Learning and Language Modeling



LEARNING A TRANSFORMER LM
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Recall…



Learning a Language Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE
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MLE for Deep Neural LM
• We can also use maximum likelihood estimation 

to learn the parameters of an RNN-LM or 
Transformer-LM too!

• But not in closed form – instead we follow a 
different recipe:
– Write the likelihood of the sentences under the 

Deep Neural LM model
– Compute the gradient of the (batch) likelihood w.r.t. 

the parameters by AutoDiff
– Follow the negative gradient using Mini-batch SGD 

(or your favorite optimizer)



SGD and Mini-batch SGD
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Algorithm 1 SGD

1: Initialize θ(0)

2:
3:
4: s = 0
5: for t = 1, 2, . . . , T do
6: for i ∈ shufÒe(1, . . . , N) do
7: Select the next training point (xi, yi)
8: Compute the gradient g(s) = ∇Ji(θ

(s−1))
9: Update parameters θ(s) = θ(s−1)

− ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



SGD and Mini-batch SGD
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Algorithm 1Mini‐Batch SGD

1: Initialize θ(0)

2: Divide examples {1, . . . , N} randomly into batches {I1, . . . , IB}
3: where

⋃
B

b=1 Ib = {1, . . . , N} and
⋂

B

b=1 Ib = ∅
4: s = 0
5: for t = 1, 2, . . . , T do
6: for b = 1, 2, . . . , B do
7: Select the next batch Ib, wherem = |Ib|
8: Compute the gradient g(s) = 1

m

∑
i∈Ib

∇Ji(θ
(s))

9: Update parameters θ(s) = θ(s−1) − ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



RNN
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y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = Wyh · ht + by



RNN
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Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
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RNN + Loss
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Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?



RNN-LM + Loss   _
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y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?
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                  = log p(w1 | h1) + … + log p(w2 | hT) Algorithm 1 Elman RNN + Loss
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∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
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5: Compute the hidden state update:
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9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t )k log((yt)k)
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13: " =

∑T

t=1
"t



RNN-LM + Loss   _
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Learning an RNN-LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

+
J = log p(w)

END



Learning a Transformer LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

Transformer LM

+
J = log p(w)

END

Training a Transformer-LM 
is the same, except we 

swap in a different deep 
language model.



Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks 

(e.g. GPT-2)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA 

architectures

20
Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word


PRE-TRAINING VS. FINE-TUNING
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The Start of Deep Learning

• The architectures of modern deep 
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer 

perceptron, ReLU )
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in 
2006 thanks to pre-training (e.g., 
Hinton & Salakhutdinov, 2006)

22
Figure from Vargas et al. (2017) 



Pre-Training vs. Fine-Tuning

Example: Vision Models
Pre-training
• Example A: unsupervised 

autoencoder training on very 
large set of unlabeled images 
(e.g. MNIST digits)

• Example B: supervised training on 
a very large image classification 
dataset (e.g. ImageNet w/21k 
classes and 14M images)

Fine-tuning
• object detection, training on 200k 

labeled images from COCO
• semantic segmentation, training 

on 20k labeled images from 
ADE20k

Example: Language Models
Pre-training
• unsupervised pre-training by 

maximizing likelihood of a large 
set of unlabeled sentences such 
as…

• The Pile (800 Gb of text)
• Dolma (3 trillion tokens)
Fine-tuning
• MMLU benchmark: a few training 

examples from 57 different tasks 
ranging from elementary 
mathematics to genetics to law

• code generation, training on ~400 
training examples from MBPP

23

Definitions
Pre-training
• randomly initialize the 

parameters, then…
• option A: unsupervised training 

on very large set of unlabeled 
instances

• option B: supervised training on a 
very large set of labeled 
examples

Fine-tuning
• initialize parameters to values 

from pre-training
• (optionally), add a prediction 

head with a small number of 
randomly initialized parameters

• train on a specific task of interest 
by backprop



Pre-Training and Fine-Tuning on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

% 
Er

ro
r
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data



Unsupervised Autoencoder Pre-Training for Vision

27

…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’



Unsupervised Autoencoder Pre-Training for Vision

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer 
Neural Networks with xm as both input and output.

29

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER:  x’ = h(W’z)

ENCODER:  z = h(Wx)
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data



Supervised Pre-Training for Vision

• Nowadays, we tend 
to just do supervised 
pre-training on a 
massive labeled 
dataset

• Vision Transformer’s 
success was largely 
due to using a much 
larger pre-training 
dataset

32
Figure from https://arxiv.org/pdf/2010.11929



Pre-Training vs. Fine-Tuning

Example: Vision Models
Pre-training
• Example A: unsupervised 

autoencoder training on very 
large set of unlabeled images 
(e.g. MNIST digits)

• Example B: supervised training on 
a very large image classification 
dataset (e.g. ImageNet w/21k 
classes and 14M images)

Fine-tuning
• object detection, training on 200k 

labeled images from COCO
• semantic segmentation, training 

on 20k labeled images from 
ADE20k

Example: Language Models
Pre-training
• unsupervised pre-training by 

maximizing likelihood of a large 
set of unlabeled sentences such 
as…

• The Pile (800 Gb of text)
• Dolma (3 trillion tokens)
Fine-tuning
• MMLU benchmark: a few training 

examples from 57 different tasks 
ranging from elementary 
mathematics to genetics to law

• code generation, training on ~400 
training examples from MBPP
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Definitions
Pre-training
• randomly initialize the 

parameters, then…
• option A: unsupervised training 

on very large set of unlabeled 
instances

• option B: supervised training on a 
very large set of labeled 
examples

Fine-tuning
• initialize parameters to values 

from pre-training
• (optionally), add a prediction 

head with a small number of 
randomly initialized parameters

• train on a specific task of interest 
by backprop



Unsupervised Pre-Training for an LLM
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Generative pre-training for a deep 
language model:
• each training example is an 

(unlabeled) sentence 
• the objective function is the 

likelihood of the observed 
sentence

Practically, we can batch together 
many such training examples to 
make training more efficient



Training Data for LLMs
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GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165 

http://arxiv.org/abs/2005.14165


Training Data for LLMs
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The Pile:
• An open source dataset for 

training language models
• Comprised of 22 smaller 

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens 



MODERN TRANSFORMER MODELS
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Modern Tranformer Models
• PaLM (Oct 2022)

– 540B parameters
– closed source
– Model:

• SwiGLU instead of ReLU, GELU, or Swish
• multi-query attention (MQA) instead of multi-headed attention
• rotary position embeddings
• shared input-output embeddings instead of separate parameter matrices

– Training: Adafactor on 780 billion tokens
• Llama-1 (Feb 2023)

– collection of models  of varying parameter sizes: 7B, 13B, 32B, 65B
– semi-open source
– Llama-13B outperforms GPT-3 on average
– Model compared to GPT-3: 

• RMSNorm on inputs instead of LayerNorm on outputs
• SwiGLU activation function instead of ReLU
• rotary position embeddings (RoPE) instead of absolute 

– Training: AdamW on 1.0 – 1.4 trillion tokens
• Falcon (June - Nov 2023)

– models of size 7B, 40B, 180B
– first fully open source model, Apache 2.0
– Model compared to Llama-1:

• (GQA) instead of multi-headed attention (MHA) or grouped query attention 
multi-query attention (MQA)

• rotary position embeddings (worked better than Alibi)
• GeLU instead of SwiGLU

– Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for 
stability and weight decay

• Llama-2 (Aug 2023)
– collection of models  of varying parameter sizes: 7B, 13B, 70B.
– introduced Llama 2-Chat, fine-tuned as a dialogue agent
– Model compared to Llama-1:

• grouped query attention (GQA) instead of multi-headed attention (MHA)
• context length of 4096 instead of 2048

– Training: AdamW on 2.0 trillion tokens
• Mistral 7B (Oct 2023)

– outperforms Llama-2 13B on average
– introduced Mistral 7B – Instruct, fine-tuned as a dialogue agent
– truly open source: Apache 2.0 license
– Model compared to Llama-2

• sliding window attention (with W=4096) and grouped-query attention 
(GQA) instead of just GQA

• context length of 8192 instead of 4096 (can generate sequences up to 
length 32K)

• rolling buffer cache (grow the KV cache and the overwrite position i into 
position i mod W)

– variant Mixtral offers a mixture of experts (roughly 8 Mistral models)

39

In this section we’ll look at four 
techniques:
1. key-value cache (KV cache)
2. rotary position embeddings (RoPE)
3. grouped query attention (GQA)
4. sliding window attention



Key-Value Cache
• At each timestep, we reuse all 

previous keys and values (i.e. 
we need to cache them)

• But we can get rid of the 
queries, similarity scores, and 
attention weights (i.e. we can 
let them fall out of the cache)

40

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this 

timestep



Key-Value Cache
• At each timestep, we reuse all 

previous keys and values (i.e. 
we need to cache them)

• But we can get rid of the 
queries, similarity scores, and 
attention weights (i.e. we can 
let them fall out of the cache)
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q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

Wv

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this 

timestep

Qt = XtWq

V = XWv

St = QtKT /
√

dk

K = XWk

At = softmax(St)

X′

t
= AtV = softmax(QtKT /

√

dk)V

X = [x1, . . . , xt]
T



ROTARY POSITION EMBEDDINGS (ROPE)

42



Rotary Position Embeddings (RoPE)

43

fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide 
have so many typos?

A: I’m really not sure. I 
very meticulously type 
up the latex for my 
slides myself and think 
carefully about all the 
things I put in them.

wrong

wrong

wrong

wrong

wrong
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Q: Why does this slide 
have so many typos?

A: I’m really not sure. I 
very meticulously type 
up the latex for my 
slides myself and think 
carefully about all the 
things I put in them.



Rotary Position Embeddings (RoPE)
• Rotary position 

embeddings are a 
kind of relative 
position embeddings

• Key idea:
– break each d-

dimensional input 
vector into d/2 
vectors of length 2

– rotate each of the 
d/2 vectors by an 
amount scaled by m

– m is the absolute 
position of the 
query or the key

45
Figure from http://arxiv.org/abs/2104.09864
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qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk . Herein we use d = dk for brevity.

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}
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qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
y2
y3
y4
...

yd−1

yd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

!

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−y2
y1
−y4
y3
...

−yd
yd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

!

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =







1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2







Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

! cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

! sin(C)
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Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =







1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2







Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

! cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

! sin(C)

Q: Is this slide correct?

A: I’m really not sure. 

But I did write it myself!



RoPE

Pat’s RoPE Demo: 
https://www.desmos.com/calculator/z1fuchfpej
– Two word embeddings represented as 2D vectors: 
• 1) cat
• 2) ate

– We consider each one residing in a different position
– Each one is rotated by an amount given by theta

53

https://www.desmos.com/calculator/z1fuchfpej
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Matrix Version of Multi-Headed (Causal) Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Recall…



Grouped Query Attention (GQA)
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Figure from http://arxiv.org/abs/2305.13245 



Grouped Query Attention (GQA)
• Key idea: reuse the 

same key-value 
heads for multiple 
different query heads

• Parameters: The 
parameter matrices 
are all the same size, 
but we now have 
fewer key/value 
parameter matrices 
(heads) than query 
parameter matrices 
(heads)

57

X = [x1, . . . , xT ]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , hkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , hkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245 

• hq = the number of query heads

• hkv = the number of key/value heads

• Assume hq is divisible by hkv

• g = hq/hkv is the size of each group
(i.e. the number of query vectors per key/value vector).



Grouped Query Attention (GQA)
• Key idea: reuse the 

same key-value 
heads for multiple 
different query heads

• Parameters: The 
parameter matrices 
are all the same size, 
but we now have 
fewer key/value 
parameter matrices 
(heads) than query 
parameter matrices 
(heads)
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X = [x1, . . . , xT ]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , hkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , hkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245 

S(i,j) = Q(i,j)(K(i))T /
√

dk, ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

A(i,j) = softmax(S(i,j)), ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

X′(i,j) = A(i,j)V(i), ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

X′ = concat(X′(i,j)), ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

X = X′Wo (where Wo ∈ Rdmodel×dmodel)



SLIDING WINDOW ATTENTION
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Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)

60

regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V



Sliding Window Attention
Sliding Window Attention
• also called “local attention” 

and introduced for the 
Longformer model  (2020)

• The problem: regular 
attention is computationally 
expensive and requires a lot 
of memory

• The solution: apply a causal 
mask that only looks at the 
include a window of 
(½w+1) tokens, with the 
rightmost window element 
being the current token
(i.e. on the diagonal)

61

sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do 

the matrix multiplication, but 
this is still slow

2. for-loop implementation: 
asymptotically faster / less 
memory, but unusable in 
practice b/c for-loops in 
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into 
chunks of size w x w, with 
overlap of ½w; then compute 
full attention within each 
chunk and mask out chunk 
(very fast/low memory in 
practice)


