
Pretraining vs. finetuning
+ Modern Transformers

(RoPE, GQA, Longformer)

1

10-423/10-623 Generative AI

Matt Gormley & Pat Virtue
Lecture 4

Jan. 27, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 0: PyTorch + Weights & Biases
– Out: Wed, Jan 17
– Due: Mon, Jan 27 at 11:59pm

• Quiz 1: Wed, Jan 29
• Homework 1: Generative Models of Text
– Out: Mon, Jan 27
– Due: Mon, Feb 10 at 11:59pm

3

Recap So Far
Deep Learning
• AutoDiff

– is a tool for computing gradients of a
differentiable function, b = f(a)

– the key building block is a module with a
forward() and backward()

– sometimes define f as code in forward()
by chaining existing modules together

• Computation Graphs
– are another way to define f (more

conducive to slides)
– so far, we saw two (deep) computation

graphs
• 1) RNN-LM
• 2) Transformer-LM
• (Transformer-LM was kind of complicated)

Language Modeling
• key idea: condition on previous

words to sample the next word
• to define the probability of the next

word…
– …n-gram LM uses collection of massive

50k-sided dice
– …RNN-LM or Transformer-LM use a

neural network

• Learning an LM
– n-gram LMs are easy to learn: just count

co-occurrences!
– a RNN-LM / Transformer-LM is trained by

optimizing an objective function with
SGD; compute gradients with AutoDiff

4

Two parts: Deep Learning and Language Modeling

LEARNING A TRANSFORMER LM

5

Recall…

Learning a Language Model
Question: How do we learn the probabilities for the n-Gram
Model?

6

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
 wt-1 = eat)

MLE for n-gram LM
• This counting method

gives us the maximum
likelihood estimate of
the n-gram LM
parameters

• We can derive it in the
usual way:
– Write the likelihood of

the sentences under the
n-gram LM

– Set the gradient to zero
and impose the constraint
that the probabilities sum-
to-one

– Solve for the MLE

Learning a Language Model
Question: How do we learn the probabilities for the n-Gram
Model?

7

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
 wt-1 = eat)

MLE for n-gram LM
• This counting method

gives us the maximum
likelihood estimate of
the n-gram LM
parameters

• We can derive it in the
usual way:
– Write the likelihood of

the sentences under the
n-gram LM

– Set the gradient to zero
and impose the constraint
that the probabilities sum-
to-one

– Solve for the MLE

MLE for Deep Neural LM
• We can also use maximum likelihood estimation

to learn the parameters of an RNN-LM or
Transformer-LM too!

• But not in closed form – instead we follow a
different recipe:
– Write the likelihood of the sentences under the

Deep Neural LM model
– Compute the gradient of the (batch) likelihood w.r.t.

the parameters by AutoDiff
– Follow the negative gradient using Mini-batch SGD

(or your favorite optimizer)

SGD and Mini-batch SGD

8

Algorithm 1 SGD

1: Initialize θ(0)

2:
3:
4: s = 0
5: for t = 1, 2, . . . , T do
6: for i ∈ shufÒe(1, . . . , N) do
7: Select the next training point (xi, yi)
8: Compute the gradient g(s) = ∇Ji(θ

(s−1))
9: Update parameters θ(s) = θ(s−1)

− ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…

SGD and Mini-batch SGD

9

Algorithm 1Mini‐Batch SGD

1: Initialize θ(0)

2: Divide examples {1, . . . , N} randomly into batches {I1, . . . , IB}
3: where

⋃
B

b=1 Ib = {1, . . . , N} and
⋂

B

b=1 Ib = ∅
4: s = 0
5: for t = 1, 2, . . . , T do
6: for b = 1, 2, . . . , B do
7: Select the next batch Ib, wherem = |Ib|
8: Compute the gradient g(s) = 1

m

∑
i∈Ib

∇Ji(θ
(s))

9: Update parameters θ(s) = θ(s−1) − ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…

RNN

12

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = Wyh · ht + by

RNN

13

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

RNN + Loss

14

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute
the loss for an RNN-LM?

RNN-LM + Loss _

15

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute
the loss for an RNN-LM?

w1 w2 w3w0=START

w1 w2 w3 w4

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + … + log p(w2 | hT) Algorithm 1 Elman RNN + Loss

1: procedure FORWARD(x1:T , y
∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t

RNN-LM + Loss _

16

w1 w2 w3w0=START

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + … + log p(w2 | hT)

ℓ = log p(w)

h1 h2 h3 h4

w4

x1 x2 x3 x4 x5

How can we use this to compute
the loss for an RNN-LM?

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: "t = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: " =

∑T

t=1
"t

Learning an RNN-LM
• Each training example is

a sequence (e.g.
sentence), so we have
training data D = {w(1),
w(2), …, w(N)}

• The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples:
 J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

17

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one
training
example

+
J = log p(w)

END

Learning a Transformer LM
• Each training example is

a sequence (e.g.
sentence), so we have
training data D = {w(1),
w(2), …, w(N)}

• The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples:
 J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

18

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one
training
example

Transformer LM

+
J = log p(w)

END

Training a Transformer-LM
is the same, except we

swap in a different deep
language model.

Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks

(e.g. GPT-2)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA

architectures

20
Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

PRE-TRAINING VS. FINE-TUNING

21

The Start of Deep Learning

• The architectures of modern deep
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer

perceptron, ReLU)
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in
2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

22
Figure from Vargas et al. (2017)

Pre-Training vs. Fine-Tuning

Example: Vision Models
Pre-training
• Example A: unsupervised

autoencoder training on very
large set of unlabeled images
(e.g. MNIST digits)

• Example B: supervised training on
a very large image classification
dataset (e.g. ImageNet w/21k
classes and 14M images)

Fine-tuning
• object detection, training on 200k

labeled images from COCO
• semantic segmentation, training

on 20k labeled images from
ADE20k

Example: Language Models
Pre-training
• unsupervised pre-training by

maximizing likelihood of a large
set of unlabeled sentences such
as…

• The Pile (800 Gb of text)
• Dolma (3 trillion tokens)
Fine-tuning
• MMLU benchmark: a few training

examples from 57 different tasks
ranging from elementary
mathematics to genetics to law

• code generation, training on ~400
training examples from MBPP

23

Definitions
Pre-training
• randomly initialize the

parameters, then…
• option A: unsupervised training

on very large set of unlabeled
instances

• option B: supervised training on a
very large set of labeled
examples

Fine-tuning
• initialize parameters to values

from pre-training
• (optionally), add a prediction

head with a small number of
randomly initialized parameters

• train on a specific task of interest
by backprop

Pre-Training and Fine-Tuning on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

24

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data

Pre-Training and Fine-Tuning on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

25

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data

Pre-Training and Fine-Tuning on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

26

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data

Unsupervised Autoencoder Pre-Training for Vision

27

…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

Unsupervised Autoencoder Pre-Training for Vision

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

28

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Unsupervised Autoencoder Pre-Training for Vision

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer
Neural Networks with xm as both input and output.

29

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

Pre-Training and Fine-Tuning on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

30

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data

Pre-Training and Fine-Tuning on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

31

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)
• Some methods first do pre-training
• Every method includes fine-tuning on labeled data

Supervised Pre-Training for Vision

• Nowadays, we tend
to just do supervised
pre-training on a
massive labeled
dataset

• Vision Transformer’s
success was largely
due to using a much
larger pre-training
dataset

32
Figure from https://arxiv.org/pdf/2010.11929

Pre-Training vs. Fine-Tuning

Example: Vision Models
Pre-training
• Example A: unsupervised

autoencoder training on very
large set of unlabeled images
(e.g. MNIST digits)

• Example B: supervised training on
a very large image classification
dataset (e.g. ImageNet w/21k
classes and 14M images)

Fine-tuning
• object detection, training on 200k

labeled images from COCO
• semantic segmentation, training

on 20k labeled images from
ADE20k

Example: Language Models
Pre-training
• unsupervised pre-training by

maximizing likelihood of a large
set of unlabeled sentences such
as…

• The Pile (800 Gb of text)
• Dolma (3 trillion tokens)
Fine-tuning
• MMLU benchmark: a few training

examples from 57 different tasks
ranging from elementary
mathematics to genetics to law

• code generation, training on ~400
training examples from MBPP

33

Definitions
Pre-training
• randomly initialize the

parameters, then…
• option A: unsupervised training

on very large set of unlabeled
instances

• option B: supervised training on a
very large set of labeled
examples

Fine-tuning
• initialize parameters to values

from pre-training
• (optionally), add a prediction

head with a small number of
randomly initialized parameters

• train on a specific task of interest
by backprop

Unsupervised Pre-Training for an LLM

34

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Generative pre-training for a deep
language model:
• each training example is an

(unlabeled) sentence
• the objective function is the

likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient

Training Data for LLMs

35

GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/2005.14165

Training Data for LLMs

36

The Pile:
• An open source dataset for

training language models
• Comprised of 22 smaller

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens

MODERN TRANSFORMER MODELS

38

Modern Tranformer Models
• PaLM (Oct 2022)

– 540B parameters
– closed source
– Model:

• SwiGLU instead of ReLU, GELU, or Swish
• multi-query attention (MQA) instead of multi-headed attention
• rotary position embeddings
• shared input-output embeddings instead of separate parameter matrices

– Training: Adafactor on 780 billion tokens
• Llama-1 (Feb 2023)

– collection of models of varying parameter sizes: 7B, 13B, 32B, 65B
– semi-open source
– Llama-13B outperforms GPT-3 on average
– Model compared to GPT-3:

• RMSNorm on inputs instead of LayerNorm on outputs
• SwiGLU activation function instead of ReLU
• rotary position embeddings (RoPE) instead of absolute

– Training: AdamW on 1.0 – 1.4 trillion tokens
• Falcon (June - Nov 2023)

– models of size 7B, 40B, 180B
– first fully open source model, Apache 2.0
– Model compared to Llama-1:

• (GQA) instead of multi-headed attention (MHA) or grouped query attention
multi-query attention (MQA)

• rotary position embeddings (worked better than Alibi)
• GeLU instead of SwiGLU

– Training: AdamW on up to 3.5 trillion tokens for 180B model, using z-loss for
stability and weight decay

• Llama-2 (Aug 2023)
– collection of models of varying parameter sizes: 7B, 13B, 70B.
– introduced Llama 2-Chat, fine-tuned as a dialogue agent
– Model compared to Llama-1:

• grouped query attention (GQA) instead of multi-headed attention (MHA)
• context length of 4096 instead of 2048

– Training: AdamW on 2.0 trillion tokens
• Mistral 7B (Oct 2023)

– outperforms Llama-2 13B on average
– introduced Mistral 7B – Instruct, fine-tuned as a dialogue agent
– truly open source: Apache 2.0 license
– Model compared to Llama-2

• sliding window attention (with W=4096) and grouped-query attention
(GQA) instead of just GQA

• context length of 8192 instead of 4096 (can generate sequences up to
length 32K)

• rolling buffer cache (grow the KV cache and the overwrite position i into
position i mod W)

– variant Mixtral offers a mixture of experts (roughly 8 Mistral models)

39

In this section we’ll look at four
techniques:
1. key-value cache (KV cache)
2. rotary position embeddings (RoPE)
3. grouped query attention (GQA)
4. sliding window attention

Key-Value Cache
• At each timestep, we reuse all

previous keys and values (i.e.
we need to cache them)

• But we can get rid of the
queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

40

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this

timestep

Key-Value Cache
• At each timestep, we reuse all

previous keys and values (i.e.
we need to cache them)

• But we can get rid of the
queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

41

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

Wv

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this

timestep

Qt = XtWq

V = XWv

St = QtKT /
√

dk

K = XWk

At = softmax(St)

X′

t
= AtV = softmax(QtKT /

√

dk)V

X = [x1, . . . , xt]
T

ROTARY POSITION EMBEDDINGS (ROPE)

42

Rotary Position Embeddings (RoPE)

43

fq(xt,m) ! RΘ,mWT
q xt

fk(xj ,m) ! RΘ,mWT
k xj

st,j = fk(xj ,m)T fq(xt,m)/
√

|k|,
∀j, twherem = t− j

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk , and the rotary matrix RΘ,m ∈ R

dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2i−1/d, i ∈ [1, 2, . . . , d/2]}

Q: Why does this slide
have so many typos?

A: I’m really not sure. I
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things I put in them.

wrong

wrong

wrong

wrong

wrong

Rotary Position Embeddings (RoPE)

44

Q: Why does this slide
have so many typos?

A: I’m really not sure. I
very meticulously type
up the latex for my
slides myself and think
carefully about all the
things I put in them.

Rotary Position Embeddings (RoPE)
• Rotary position

embeddings are a
kind of relative
position embeddings

• Key idea:
– break each d-

dimensional input
vector into d/2
vectors of length 2

– rotate each of the
d/2 vectors by an
amount scaled by m

– m is the absolute
position of the
query or the key

45
Figure from http://arxiv.org/abs/2104.09864

Rotary Position Embeddings (RoPE)

46

Rotary Position Embeddings (RoPE)

49

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

where Wk,Wq ∈ R
dmodel×dk . Herein we use d = dk for brevity.

For some fixed absolute positionm, the rotary matrix RΘ,m ∈ R
dk×dk is given by:

RΘ,m =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθdk/2 − sinmθdk/2

0 0 0 0 . . . sinmθdk/2 cosmθdk/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The θi parameters are fixed ahead of time and defined as below.

Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}

Rotary Position Embeddings (RoPE)

50

qj = WT
q xj , ∀j

kj = WT
k xj , ∀j

st,j = kT
j qt/

√

|k|, ∀j, t

at = softmax(st), ∀t

Standard attention:
qj = WT

q xj , ∀j kj = WT
k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention:

Because of the block sparse pattern inRθ,m, we can efÏciently com‐
pute thematrix‐vector product ofRθ,m with some arbitrary vector y
in a more efÏcient manner:

RΘ,my =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1
y2
y3
y4
...

yd−1

yd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

!

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−y2
y1
−y4
y3
...

−yd
yd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

!

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Matrix Version of RoPE

51

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

! cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

! sin(C)

Matrix Version of RoPE

52

Q = XWq K = XWk

Q̃ = g(Q;Θ) K̃ = g(K;Θ)

S = Q̃K̃T /
√

dk

A = softmax(S)

qj = WT
q xj , ∀j kj = WT

k xj , ∀j

q̃j = RΘ,jqj k̃j = RΘ,jkj

st,j = k̃T
j q̃t/

√

dk, ∀j, t

at = softmax(st), ∀t

RoPE attention: Matrix Version:

Goal: to construct a newmatrix Ỹ = g(Y;Θ) such that Ỹm,· = RΘ,mym

C =

1θ1 · · · 1θ d

2

1θ1 · · · 1θ d

2

...
...

...
...

Nθ1 · · · Nθ d

2

Nθ1 · · · Nθ d

2

Ỹ =g(Y;Θ)

=
[

Y
·,1:d/2 Y

·,d/2+1:d

]

! cos(C)

+
[

−Y
·,d/2+1:d Y

·,1:d/2

]

! sin(C)

Q: Is this slide correct?

A: I’m really not sure.

But I did write it myself!

RoPE

Pat’s RoPE Demo:
https://www.desmos.com/calculator/z1fuchfpej
– Two word embeddings represented as 2D vectors:
• 1) cat
• 2) ate

– We consider each one residing in a different position
– Each one is rotated by an amount given by theta

53

https://www.desmos.com/calculator/z1fuchfpej

GROUPED QUERY ATTENTION (GQA)

54

Matrix Version of Multi-Headed (Causal) Attention

55

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Recall…

Grouped Query Attention (GQA)

56
Figure from http://arxiv.org/abs/2305.13245

Grouped Query Attention (GQA)
• Key idea: reuse the

same key-value
heads for multiple
different query heads

• Parameters: The
parameter matrices
are all the same size,
but we now have
fewer key/value
parameter matrices
(heads) than query
parameter matrices
(heads)

57

X = [x1, . . . , xT]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , hkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , hkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245

• hq = the number of query heads

• hkv = the number of key/value heads

• Assume hq is divisible by hkv

• g = hq/hkv is the size of each group
(i.e. the number of query vectors per key/value vector).

Grouped Query Attention (GQA)
• Key idea: reuse the

same key-value
heads for multiple
different query heads

• Parameters: The
parameter matrices
are all the same size,
but we now have
fewer key/value
parameter matrices
(heads) than query
parameter matrices
(heads)

58

X = [x1, . . . , xT]
T

V(i) = XW(i)
v , ∀i ∈ {1, . . . , hkv}

K(i) = XW(i)
k , ∀i ∈ {1, . . . , hkv}

Q(i,j) = XW(i,j)
q , ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

Figure from http://arxiv.org/abs/2305.13245

S(i,j) = Q(i,j)(K(i))T /
√

dk, ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

A(i,j) = softmax(S(i,j)), ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

X′(i,j) = A(i,j)V(i), ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

X′ = concat(X′(i,j)), ∀i ∈ {1, . . . , hkv}, ∀j ∈ {1, . . . , g}

X = X′Wo (where Wo ∈ Rdmodel×dmodel)

SLIDING WINDOW ATTENTION

59

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

60

regular causal attention sliding window attention (w=4)

sliding window attention (w=6)

X′
= softmax

(

QKT

√

dk

+ M
)

V

Sliding Window Attention
Sliding Window Attention
• also called “local attention”

and introduced for the
Longformer model (2020)

• The problem: regular
attention is computationally
expensive and requires a lot
of memory

• The solution: apply a causal
mask that only looks at the
include a window of
(½w+1) tokens, with the
rightmost window element
being the current token
(i.e. on the diagonal)

61

sliding window attention (w=4)

X′
= softmax

(

QKT

√

dk

+ M
)

V

3 ways you could implement
1. naïve implementation: just do

the matrix multiplication, but
this is still slow

2. for-loop implementation:
asymptotically faster / less
memory, but unusable in
practice b/c for-loops in
PyTorch are too slow

3. sliding chunks implementation:
break into Q and K into
chunks of size w x w, with
overlap of ½w; then compute
full attention within each
chunk and mask out chunk
(very fast/low memory in
practice)

