10-423/623: Generative Al

Lec 5 — Computer Vision
CNNs, Decoder-only, ViT

Pat Virtue & Matt Gormley
1/29/25

Slide credits: CMU MLD, Henry Chai



* Neural networks are frequently applied to inputs with

some inherent spatial structure, e.g., images

* Insight: for spatially-structured inputs, many useful

features are shift or location-invariant

Convolutional

Neural
Networks

Source: Felzenszwalb, et al. PAMI 2009



https://ieeexplore.ieee.org/abstract/document/5255236

* Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

* Insight: for spatially-structured inputs, many useful
features are shift or location-invariant

Convolutional

* Strategy:
Neural oy

Networks

a) learn a filter for micro-feature detection in a small
window and apply it over the entire image

b) downsample (shink) resulting feature image(s)

c) repeat at future layers to learn increasingly macro

features

Source: Felzenszwalb, et al. PAMI 2009
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* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

* A filter (or kernel) is just a small matrix that is convolved

with same-sized sections of the image matrix

Convolutional

| ololololo]o
Filters 112121
0 0 0 1 0
ol2lalal2]o0
*x |1 -4 1
ol1(3]3]1]0
ol1l2]3]1]0 0]11]0
olol1]1]0]o0




* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

* A filter (or kernel) is just a small matrix that is convolved

with same-sized sections of the image matrix

Convolutional

| ololololo]o
Filters 112121 0
0 0 0 1 0
ol21alal2]o0
*x |1 -4 1 =
ol1l3]3]1]0
ol1l2]3]1]0 0]11]0
olol1]1]0]o0

0x0)4+O0+«x1)+0*x0)+(0+x1)+ (1x—4)
+2+x1)+0*x0)+@2*1)+4=*x0)=0




* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

* A filter (or kernel) is just a small matrix that is convolved

with same-sized sections of the image matrix

Convolutional

| ololololo]o
Filters 112121 0 -1

0 0 0 1 0

ol2lalal2]o0
*x |1 -4 1 =

ol1l3]3]1]0
ol1l2]3]1]0 0]11]0

olol1]1]0]o0

0x0)4+ 0«1+ O0*x0)+(1x1)+ (2*x—4)
+2+*1D)+2*x0)+@*x1)+4=+0)=-1




* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

* A filter (or kernel) is just a small matrix that is convolved

with same-sized sections of the image matrix

Convolutional

ololololo]o
Filters ol1l2]2]1]0 T1To 0ol-1]-1]0
ol2lalal2]0 21-5]-5]-2
*x |1 /-4 1 =
ol1l3l3]1]o0 2121113
0 1 0
ol1l213]1]o0 1lo0|-5]0
olol1l1]0]o0




Operation Kernel w Image result g(x,y)

0 0 0
Identity 01 0

Convolutional

Filters e dotection F . E]

Source: https://en.wikipedia.org/wiki/Kernel (image processing)



https://en.wikipedia.org/wiki/Kernel_(image_processing)

Operation Kernel w Image result g(x,y)

0 0 O
Identity 0 1 O
0 0 O
0 -1 0
M O re Sharpen -1 5 -1
. 0 -1 0
Filters
Box blur 1 L
(normalized) 5 Lo
1 1 1

Source: https://en.wikipedia.org/wiki/Kernel (image processing)
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Convolutional

Filters

- Convolutional layers vs Fully-connected layers

1. Nodes in the input layer are only connected to

some nodes in the next layer but not all nodes.

2. Shared weight parameters across locations

0({0|{0(0]|0|O0
0(1(2|12(1]0 01-1|-1(0
0(2(4(4|2|0 -2|-5|-5]-2
013|310 2 1-2|-1|3
0(112(3(1|0 -1101|-5]|0
0(0{1|11(0]0

10



- Convolutional layers vs Fully-connected layers

1. Nodes in the input layer are only connected to

some nodes in the next layer but not all nodes.

2. Shared weight parameters across locations

: olojolofo]|o
Cpnvolutlonal e T B e e e Tl
Filters olzlala]2]0 2|-5]-5]-2

0|1|3|3([1]0 21-2(-1|3
011123110 -1{0|-5]0
010|1(1(0]0

* Many fewer weights than a fully connected layer!

- Convolution weights are learned using gradient descent/

backpropagation, not prespecified



Convolutional

Filters: Padding

- Want to keep the same image size?

- Add zeros around the image to allow for the filter to be
applied “everywhere” e.g. a padding of 1 with a 3x3 filter

preserves image size and allows every pixel to be the center

0O(0[{O0O|O|O]O|O{O
010(0]O0O|]O0O]O0fO]fO O|1(2(2]1]0
0O(0f(1(2|2|1(0]0 1{0(-1|-1]0{1
0O/ 1|0
0102414 ]12([0]0 21-2|-5(-5]|-2|2
* 1 4|1 =
01013 |3|1(0]0o0 1({2|-2|-1]3 |1
01012 |3|1(0f0O0 0j1]9 1(-1/0|-5]{0{1
0o(0f(o0|1]1]0(0]oO 0O|21|-1101]2]0
0O(0j{O0|O|O]O|O{O
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* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

oloflo|o|ofo

ol1l2]2|1]o0 5

0ol2(4]4a|2]0 0|1

. ol1]3|3]1]o| |1 2
Downsampling: PR P pa
Stride olol1]1]o]0




* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololo|o|o]oO
ol1|2]2(1]0 51
024420*01_
, o[1]3|3]1]0 12
Downsampling: NIRRT
Stride 0joj1]1fo]o




* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololo|o|o]|o0
ol1|2]2[1]0 1211
024420*01_
, o[1]3|3]1]0 12
Downsampling: NIRRT
Stride 0joj1]1fo]o




* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

olololo]o]o
ol1]2]211]0 5T
ol2lalal2]0 0 1
* = |0
Downsampling: e e e
: pling: ol1l213]1]0
Stride olol1]l1]0]o0




Downsampling:

Stride

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0O|0|O0|0(0]O
O|1|12(12(1]0
21-211
01241420 0 1
* = | 0|11
0[1|3(3(1]0 1 -2
11210
0|12 |3(1]0
O|0|1(1({0]O0

* Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Many relevant macro-features will tend to span large
portions of the image, so taking strides with the

convolution tends not to miss out on too much

17



Downsampling:

Pooling

- Combine multiple adjacent nodes into a single node

04=14-1|0
\
215l 5|9
\max
2 -2 -1 3 ﬂ
1l0]-5]0

18



Downsampling:

Pooling

- Combine multiple adjacent nodes into a single node

— T —
pooling 2|3

0|-1|-1]0
-2|1-5]1-5]-2 max 00
2 1-2]-1|3
-1]10(-5]0

* Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Protects the network from (slightly) noisy inputs

19



INPUT
32x32

Convolutions

C1: feature maps
6@28x28

C3: f. maps 16@10x10

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

F6: layer OUTPUT
84 10

|
Full conAection ‘ Gaussian connections

Subsampling Convolutions  Subsampling Full connection

LeNet (LeCun et al., 1998)

Source: http://vision.stanford.edu/cs5q8 springo7/papers/Lecung8.pdf
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C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

3232 5@28x28 IT_
T

’ ‘ Fu
Convolutions Subsampling Convolutions  Subsampling FUll connecuon

S2: f. maps
6@14x14

= -lh-'---_-_

—

NINNNEE
<NEREN

HMQDNM
| | O
~NWUWRNES

One of the earliest, most famous deep learning models —achieved remarkable

performance at handwritten digit recognition (< 1% test error rate on MNIST)

Used sigmoid (or logistic) activation functions between layers and mean-pooling, both

of which are pretty uncommon in modern architectures

Source: http://vision.stanford.edu/cs598 springo7/papers/Lecunqg8.pdf
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C3: f. maps 16@10x10

INPUT g1@ 2fggtzusre maps S4: f. maps 16@5x5
32x32 S2: f. maps C3: layer pg. OUTPUT
b@14x14 120 o aer S

|
Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Wait how did we go from 6 to 167

Source: http://vision.stanford.edu/cs5q8 springo7/papers/Lecung8.pdf
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* Animage can be represented as the sum of red, green and blue pixel intensities

* Each color corresponds to a channel

24



Example: 3 X
4 X 6 tensor

An image can be represented as the sum of red, green and blue pixel intensities

Each color corresponds to a channel

16 6
5 6 14 | 15
26 4 8 9
0 16 2 8
! 5 14 | 11
15 5 0

25



Convolutions

on Multiple
Input Channels

* Given multiple input channels, we can specify a filter for

each one and sum the results to get a 2-D output tensor

Input Kernel Input Kernel Output
1123
112
4 | 5|6 | *

[, 1] |, T 3|4
0f1]2H — 7819 56 | 72
b | % |01 = + =
3145 - ~ [104]120
) 213 0O11]2
6|78 o1l 1

314 |5 *
213
6178

* For c channels and h X w filters, we have chw + ¢

learnable parameters (each filter has a bias term)

Source: http://preview.d2l.ai/d2]l-en/master/chapter convolutional-neural-networks/channels.html
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- Given multiple input channels, we can specify a filter for

each one and sum the results to get a 2-D output tensor

Input Kernel Input Kernel Output
1121 3
1] 2
T oo 4156 ]| *% 312
Convolutions 012:—*(',‘1# os] B [E]
- S14° 104|120
on Multiple ey AL 2‘1‘2*2;
Input Channels 35K
* Questions:

1. Why might we want a different filter for each input?

2. Why do we combine them together into a single

output channel?

Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 27



http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html

C3: f. maps 16@10x10

INPUT g1@ 2fggtzusre maps S4: f. maps 16@5x5
32x32 S2: f. maps C3: layer pg. OUTPUT
6@14x14 120 o aer S

|
’ Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

* We can combine these macro-features into a new, interesting, “higher-level” feature

Source: http://vision.stanford.edu/cs5q8 springo7/papers/Lecung8.pdf
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C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

6@28x28
Co: 1ayer £e: layer OUTPUT

INPUT
32x32

S2: f. maps
6@14x14

|
‘ Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Alright, so what kind of stuff can

we actually do with this thing?

Source: http://vision.stanford.edu/cs5q8 springo7/papers/Lecung8.pdf 29
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Common Tasks

iIn Computer
Vision

* Image Classification

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation

30



Common Tasks

iIn Computer
Vision

* Image Classification

* Object Localization

* Object Detection

- Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation

Source: https://proceedings.neurips.cc/paper/2012/file/c399862d3bgd6b76c8436e924a68cs45b-Paper.pdf
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Common Tasks

iIn Computer
Vision

* Image Classification

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257

* Given an image, for each

object predict a bounding box

and a label, I: (x,y,w, h,[)

Car

(b) Strong false positive

32
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Common Tasks

iIn Computer
Vision

* Image Classification

* Object Detection

P
¢ 4 \
4 '\
N\
i -

1. Input 2. Extract region
image  proposals (~2k)

R-CNN: Regions with CNN features

CEE

Given an image, for each
object predict a bounding box

and a label, I: (x,y,w, h,[)

=] warped region p aeroplane? no.
""""" =R 5
% > person? yes.
--------------- C "NN:\4
tvmonitor? no.
3. Compute 4. Classify
CNN features regions

Source: https://openaccess.thecvf.com/content cvpr 2014/papers/Girshick Rich Feature Hierarchies 2014 CVPR paper.pdf
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Input image Ground-truth

* Image Classification

* Object Detection

Common Tasks . .
* Semantic Segmentation

iIn Computer
Vision * Instance Segmentation

* Image Captioning

_ * Given an image, predict a label
* Image Generation

for every pixel in the image

Source: https://openaccess.thecvf.com/content iccv 201g/papers/Noh Learning Deconvolution Network ICCV 2015 paper.pdf 34
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Input image Ground-truth

* Image Classification

* Object Detection

Common Tasks . .
* Semantic Segmentation

iIn Computer
Vision

Source: https://openaccess.thecvf.com/content iccv 201g/papers/Noh Learning Deconvolution Network ICCV 2015 paper.pdf

35
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* Image Classification

* Object Detection

Common Tasks

' Semantic segmentation . pp et per-pixel labels as in

iIn Computer
Vision

* Instance Segmentation semantic segmentation, but

o differentiate between different
* Image Captioning

instances of the same label

* Image Generation :
8 e.g., given two people, one

should be labeled person-1 and

one should be labeled person-2

Source: https://openaccess.thecvf.com/content ICCV 2017/papers/He Mask R-CNN ICCV 2017 paper.pdf 36
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* Image Classification

* Object Detection

Common Tasks | |
* Semantic Segmentation

iIn Computer
Vision * Instance Segmentation

* Image Captioning

* Image Generation

Figure 1. The Mask R-CNN framework for instance segmentation.

Source: https://openaccess.thecvf.com/content ICCV 2017/papers/He Mask R-CNN ICCV 2017 paper.pdf
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Common Tasks

iIn Computer
Vision

* Image Classification

* Object Detection

* Semantic Segmentation
* Instance Segmentation
- Image Captioning

* Image Generation

Source: https://dl.acm.org/doi/pdf/10.1145/3295748

————
e

«  ~—— GroundTruth Caption: A little boy runs away from the
- approaching waves of the ocean.

— gy

- Generated Caption: A young boy is running on the beach.

Ground Truth Caption: A brunette girl wearing sunglasses
and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses
smiles.

- Take an image as input, and
generate a sentence describing

it as output

* Dense captioning
generates one description

per bounding box

38
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%g% \\

Image Encoder
Input Image |—»| .. | —» —» Gme.med

Captions
/M'nkimodal Space

Language Encoder

Common Tasks e

Encoder

iIn Computer

* Typical architectures will

Vision combine a CNN and an RNN-

* Image Captioning like or tranformer language

* Image Generation model

Source: https://dl.acm.org/doi/pdf/10.1145/3295748
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Common Tasks

iIn Computer
Vision

* Image Classification

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation?
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Vision

Transformers

Time Out: LM Decoders, Encoders

42



Recall:
Transformer
Language

Model

[ Narwhals (are ) cooler ) than ]
|

LLLI.LhL.L

ﬂ- 7M

Transformer layer

o e

Transformer layer

o o

Transformer layer

W—Kﬁh

Each layer of a

Transformer LM

consists of:

1. causal attention

2. feed-forward neural
network

3. layer normalization

4. residual connections

Each hidden vector

looks back at the

hidden vectors of the
current and previous
timesteps in the

previous layer. -



Each layer of a
Transformer LM

Narwha|s\ are/\{ cooler | than) consists of:
T T T 1. causal attention
Recall: ‘ 2. feed-forward neural
I I—lb network

Transformer

] hT |h|3T - lhlj - 3. layer normalization
dnguage 7 ];l ,//QV/%T 4. residual connections
MOdel aka ransformer layer

[ T ] L.
Decoder-only [D:;{ % /rgm] Fach hidden vector
T

f |
Transformer L looks back at the
Iﬁ%' T l,%l ' hidden vectors of the
[ Transform er layer } t d .
x, %Z/ 7 m current and previous
(111 0T Oro oo timesteps in the

previous layer. ”



Recall:
Causal
Attention

Idea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to O

QK"
X' = softmax +M |V

Jay
T:I:I A ask = softmax(S + M)
w,
w, 0 —oo —00 —00
10 0 —oo -
M= 0 O 0 —o
0 0 0 0
w, v,
CTT]
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Holy cow,
that’s a lot of
New arrows...
do we

always
want/need all
of those?

NoO...

LITI | M\T\l II/ITI T

X' =AV = [softmax (Q

KT

Ja

)

11 A = softmax(S)

_oK”

Jax

S
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Holy cow,
that’s a lot of

new arrows...
do we

sometimes
want/need all
of those?

Yes!

LITI | M\T\l II/ITI T

X' =AV = [softmax (Q

KT

Ja

)

11 A = softmax(S)

_oK”

Jax

S
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Language

Translation

Positional
Encoding

Output
Pro ba'b lities
L Softmax ]

| Linear |

r‘
| Add & Narm |--.
Feed
Forward

| I

| Add & Norm Je

Multi-Head
Attention

7 J 7

—| Add & Norm |

Multi-Head
Attention

At 2

—

——

| Add & Norm Je=,

Masked
Multi-Head
Attention

tr 7

L o

TALS

Input
Embedding

Inputs

Output
Embedding

I

QOutputs
(shifted right)

4 Positional
Encoding
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Language

Translation

Output
Pri ba'b lities
(_Softmax ]

|  Linear |

: N
English ’
Y Encoder
Positional _ Positional
Encoding + e Encoding

French
Generated
(so far)

English

Input
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Language

Translation

Output
Pri ba'b lities
(_Softmax ]

|  Linear |

French
Decoder

Multi-Head
Attention
English

M)
Y Encoder
Positional _ Positional
Encoding + e Encoding

French
Generated
(so far)

English

Input
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Decoder:

Causal
Attention

Idea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to O

QK"
X' = softmax +M |V

Jax

(1T A5k = softmax(S + M)

0 —o0 —00o —oo
_ 10 0 —00 —00
M= 0 0 0 —00
0O O 0 0
v,
L1111
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Encoder:

Full
Attention

COC N\ NCICY OO T
VYN VNI 1

X' =AV = [softmax(

QK"

/.

)

A = softmax(S)

= U

Jdx
Q=XW,
K = XW,
V=XW,

52



Encoder-only

Transformer

Transformer layer

[ J ...

Transformer layer

[ Transformer layer }

Each layer of a

Transformer LM

consists of:

1. non-causal attention

2. feed-forward neural
network

w

. layer normalization
4. residual connections

Each hidden vector
looks back at the
hidden vectors of
all timesteps in the
previous layer.
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Okay, but how
would we train

one of these
things?

Transformer layer

[ J ...

Transformer layer

[ Transformer layer }

Each layer of a

Transformer LM

consists of:

1. non-causal attention

2. feed-forward neural
network

W

layer normalization
4. residual connections

Each hidden vector
looks back at the
hidden vectors of
all timesteps in the
previous layer.
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Rather than trying to
predict the next
token, mask out a
few tokens in the
sequence and train
the model to predict

\WEN Gl
Language

the masked tokens.

Transformer layer

Model
Pre-training

Transformer layer

[ Transformer layer }

( Narwhals ) are ] [ cooler ] 55




Rather than trying to
predict the next
token, mask out a

few tokens in the

sequence and train

Masked the model to predict
Language

% % % % the masked tokens.

Transformer layer

Model
Pre-training

Transformer layer

[ Transformer layer }

[ MASK [ are ) [ cooler | e




\WEN Gl
Language

Model
Pre-training

V‘z w
What is this loss? / 3)

[ Narwhals | : : -

« What is this probability
‘l Il; distribution? K“’I\MZ/V’))
LLH&% %}ﬁ%u

[ Transformer layer

[ Transformer layer }

[ Transformer layer }

Xq 2

LI CI 1T 11 11 L1
N N\ N

[ MASK | are ) | cooler ]
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Rather than trying to

predict the next

(£20) ) (£3(,) token, mask out a

Ire few tokens in the

sequence and train

Masked T T the model to predict
Language L0 050 !hf me !hf [T the masked tokens.
MOdel [ Transformer layer ]
= - This kind of
Pre-training TS O ‘
[ Transformer layer } pre-training was
popularized by the
[ Transformer layer } BERT language model
Xy

2
L1 | 1T T 111
N N\ /

\

([ Narwhals | MASK | MASK |




Rather than trying to

predict the next

(£20) ) (£3(,) token, mask out a

Ire few tokens in the

sequence and train

Masked T T the model to predict
Language L0 050 !hf me !hf [T the masked tokens.
MOdel [ Transformer layer ]
= - This kind of
Pre-training TR L R 3 y
[ Transformer layer } pre-training was
popularized by the
[ Transformer layer } BERT language model
Xy

2
L1 | 1T T 111
N N\ /

\

([ Narwhals | MASK | MASK |




Prepend a special

]7@ class token and fine-
Ler () tune the (pre-trained)
" — REAL ) model to predict the
‘I I label for each
T sequence
: hy
Supervised Ty L0 CTp0 L
F|ne'tun|ng [ Transformer layer ] . This model is not
[E@W%@u generative but has
[ Transformer layer } been shown to be a
highly effective
( Transformer layer ] discriminator on a
X 2 variety of tasks

1T T 111
N N\ /

\

L] ]
A

[ CLS | Narwhals |[ are ] [ cooler |




Vision

Transformer
(ViT)

Transformer Encoder

, A .
MLP Lx @4—
Head
[ MLP ]
| ]

Transformer Encoder [ Norm ]
P Emboddma > © 3] @J 6 (6 [ Multi-Head ]

Tclslzggllzar;%il?ilging Linear Projection of Flattened Patches - 'Atten' thIl’
; | . i T I l Norm ]
[ Embedded ]

Patches

* Instead of words as input, the inputs are P X P pixel
patches

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929
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Transformer Encoder

Class - A <
Narwhal MLP L x @;
Axolotl head
Parrot [ MLP ]
| ]
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* Instead of words as input, the inputs are P X P pixel
patches

(ViT)

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Can be fine-tuned by learning a new classification head on
some (small) target dataset (e.g., CIFAR-100)

Source: https://arxiv.org/pdf/2010.11929
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* Instead of words as input, the inputs are P X P pixel

* Each patch is embedded linearly into a vector of size 1024

* Can be fine-tuned by learning a new classification head on
some (small) target dataset (e.g., CIFAR-100)
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AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

. Alexey Dosovitskiy*'f, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
W hy d I d Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby™*'f
*equal technical contribution, Tequal advising

Transformers
Google Research, Brain Team
ta ke SO IO ng to {adosovitskiy, neilhoulsby}@google.com

ga I n tra Ct I O n I n When trained on mid-sized datasets such as ImageNet without strong regularization, these mod-
els yield modest accuracies of a few percentage points below ResNets of comparable size. This

seemingly discouraging outcome may be expected: Transformers lack some of the inductive biases

CO l I I p u te r inherent to CNNs, such as translation equivariance and locality, and therefore do not generalize well

when trained on insufficient amounts of data.

V I S I O n ? However, the picture changes if the models are trained on larger datasets (14M-300M images). We
find that # Our Vision Transformer (ViT) attains excellent
results when pre-trained at sufficient scale and transferred to tasks with fewer datapoints. When

pre-trained on the public ImageNet-21k dataset or the in-house JFT-300M dataset, ViT approaches
or beats state of the art on multiple image recognition benchmarks. In particular, the best model

reaches the accuracy of 88.55% on ImageNet, 90.72% on ImageNet-Real., 94.55% on CIFAR-100,
and 77.63% on the VTAB suite of 19 tasks.

Source: https://arxiv.org/pdf/2010.11929
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Source: https://arxiv.org/pdf/2010.11929
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Figure 3: Transfer to ImageNet. While
large ViT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.
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Wait, hang on:
is this even a

generative
model?

Source: https://arxiv.org/pdf/2010.11929
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Common Tasks

iIn Computer
Vision

* Image Classification

* Object Localization

* Object Detection

- Semantic Segmentation
* Instance Segmentation
* Image Captioning

- Image Generation

* Class-conditional

generation

* Super resolution
- Image Editing
- Style transfer

* Text-to-image (TTI)

generation
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