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Reminders

• Homework 1: Generative Models of Text
– Out: Mon, Jan 27
– Due: Mon, Feb 10 at 11:59pm

• Quiz 2: 
– In-class: Mon, Feb 17
– Lectures 5-8

• Homework 2: Generative Models of Images
– Out: Mon, Feb 10 
– Due: Sat, Feb 22 at 11:59pm
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UNSUPERVISED LEARNING
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

5

Recall…



Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: autoregressive LMs
• true p*(x0) is the (human) process that 

produced text on the web
• choose pθ(x0) to be an autoregressive 

language model
– autoregressive structure means that 

p(xt | x1, …, xt-1) ~ Categorical(.) and 
ancestral sampling is exact/efficient

• learn by finding 
  θ ≈ argmaxθ log(pθ(x0))
using gradient based updates on 
  ∇θ log(pθ(x0))
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Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: GANs
• true p*(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is typically easy:

z ~ N(0, I)  and x0 = fθ(z) 
• learn by finding θ ≈ argmaxθ log(pθ(x0))?

– No! Because we can’t even compute 
log(pθ(x0)) or its gradient

– Why not? Because the integral is 
intractable even for a simple 1-hidden 
layer neural network with nonlinear 
activation

 
7p(x0) =

∫
z
p(x0 | z)p(z)dz

so optimize a minimax loss instead

Recall…



Unsupervised Learning
Assumptions: 
1. our data comes from some distribution 

p*(x0)
2. we choose a distribution pθ(x0) for which 

sampling x0 ~ pθ(x0) is tractable
Goal: learn θ s.t. pθ(x0) ≈ p*(x0)

Example: VAEs / Diffusion Models
• true p*(x0) is distribution over photos taken 

and posted to Flikr
• choose pθ(x0) to be an expressive model 

(e.g. noise fed into inverted CNN) that can 
generate images
– sampling is will be easy

• learn by finding θ ≈ argmaxθ log(pθ(x0))?
– Sort of! We can’t compute the gradient  
∇θ log(pθ(x0))

– So we instead optimize a variational 
lower bound (more on that later)

 

 8
Figure from Ho et al. (2020) 

Recall…



Latent Variable Models
• For GANs and VAEs, 

we assume that there 
are (unknown) latent 
variables which give 
rise to our 
observations

• The vector z are those 
latent variables

• After learning a GAN 
or VAE, we can 
interpolate between 
images in latent z 
space

9
Figure from Radford et al. (2016)



GAN à VAE à Diffusion
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(in 15 minutes)



U-NET
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Semantic Segmentation
• Given an image, 

predict a label for 
every pixel in the 
image

• Not merely a 
classification 
problem, because 
there are strong 
correlations between 
pixel-specific labels

14Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Instance Segmentation
• Predict per-pixel labels as 

in semantic segmentation, 
but differentiate between 
different instances of the 
same label

• Example: if there are two 
people in the image, one 
person should be labeled 
person-1 and one should 
be labeled person-2

15
Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf 



U-Net
Contracting path
• block consists of:

– 3x3 convolution
– 3x3 convolution
– ReLU
– max-pooling with stride of 2 

(downsample)
• repeat the block N times, 

doubling number of channels

Expanding path
• block consists of:

– 2x2 convolution (upsampling)
– concatenation with 

contracting path features
– 3x3 convolution
– 3x3 convolution
– ReLU

• repeat the block N times, 
halving the number of 
channels

16



U-Net
• Originally designed 

for applications to 
biomedical 
segmentation

• Key observation is 
that the output 
layer has the same 
dimensions as the 
input image 
(possibly with 
different number 
of channels)

17



DIFFUSION MODELS
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Diffusion Model
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Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)
q(x0)

x1…xT



Diffusion Model
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Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

Diffusion Model

21

if we could sample 
from this we’d be done

adds noise to 
the image

removes noise

goal is to learn this



Diffusion Model

22
Figure from Ho et al. (2020) 

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Diffusion Model

23
Figure from Ho et al. (2020) 

Question:
Which are the latent variables in 
a diffusion model?

Answer:

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Denoising Diffusion Probabilistic Model (DDPM)
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Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

q(x0) = data distribution
qφ(xt | xt−1) ∼ N (

√
αtxt−1, (1− αt)I)

pθ(xT ) ∼ N (0, I)
pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

Diffusion Model
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if we could sample 
from this we’d be done

adds noise to 
the image

removes noise

goal is to learn this

(Exact) Reverse Process:

qφ(x0:T ) = qφ(xT )

T∏

t=1

qφ(xt−1 | xt)

The exact reverseprocess requires inference. And,
even though qφ(xt | xt−1) is simple, computing
qφ(xt−1 | xt) is intractable! Why? Because q(x0)
might be not‐so‐simple.

qφ(xt−1 | xt) =

∫
x0:t−2,t+1:T

qφ(x0:T )dx0:t−2,t+1:T
∫

x0:t−2,t:T
qφ(x0:T )dx0:t−2,t:T

learning is hard.
why don’t we instead just infer 

the exact reverse process 
corresponding to the forward 

process?



Denoising Diffusion Probabilistic Model (DDPM)
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Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

q(x0) = data distribution
qφ(xt | xt−1) ∼ N (

√
αtxt−1, (1− αt)I)

pθ(xT ) ∼ N (0, I)
pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Noise schedule:

We choose αt to follow a fixed schedule s.t.
qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Defining the Forward Process

27

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)
q(x0) = data distribution

qφ(xt | xt−1) ∼ N (
√
αtxt−1, (1− αt)I)



Gaussian (an aside)
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LetX ∼ N (µx,σ
2

x
) and Y ∼ N (µy,σ

2

y
)

1. Sum of two Gaussians is a Gaussian

X + Y ∼ N (µx + µy,σ
2

x
+ σ2

y
)

2. Difference of two Gaussians is a Gaussian

X − Y ∼ N (µx − µy,σ
2

x
+ σ2

y
)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z ∼ N (µz = X,σ2

z
) ⇒ P (Z | X) ∼ N (·, ·)

4. But #3 does not hold ifX is passed through a nonlinear function f

W ∼ N (µz = f(X),σ2

w
) ! P (W | X) ∼ N (·, ·)



Gaussian (an aside)
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LetX ∼ N (µx,σ
2

x
) and Y ∼ N (µy,σ

2

y
)

1. Sum of two Gaussians is a Gaussian

X + Y ∼ N (µx + µy,σ
2

x
+ σ2

y
)

2. Difference of two Gaussians is a Gaussian

X − Y ∼ N (µx − µy,σ
2

x
+ σ2

y
)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z ∼ N (µz = X,σ2

z
) ⇒ P (Z | X) ∼ N (·, ·)

4. But #3 does not hold ifX is passed through a nonlinear function f

W ∼ N (µz = f(X),σ2

w
) ! P (W | X) ∼ N (·, ·)



Noise schedule:

We choose αt to follow a fixed schedule s.t.
qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Defining the Forward Process

30

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)
q(x0) = data distribution

qφ(xt | xt−1) ∼ N (
√
αtxt−1, (1− αt)I)

Q: So what is q𝜙(xT | x0) ? Note the capital T in the 
subscript.

A:

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs



Diffusion Model
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Q: If q𝜙 is just adding noise, how can pθ be interesting 
at all?

A: Because q(x0) is not just a noise distribution and pθ 
must capture that interesting variability 

Q: But if pθ(xt−1|xt) is Gaussian, how can it learn a θ
such that pθ(x0) ≈ q(x0)? Won’t pθ(x0) be Gaussian
too?

A: No. In fact, a diffusion model of sufÏciently long
timespanT can capture any smooth targetdistribution.

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Gaussian (an aside)
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LetX ∼ N (µx,σ
2

x
) and Y ∼ N (µy,σ

2

y
)

1. Sum of two Gaussians is a Gaussian

X + Y ∼ N (µx + µy,σ
2

x
+ σ2

y
)

2. Difference of two Gaussians is a Gaussian

X − Y ∼ N (µx − µy,σ
2

x
+ σ2

y
)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z ∼ N (µz = X,σ2

z
) ⇒ P (Z | X) ∼ N (·, ·)

4. But #3 does not hold ifX is passed through a nonlinear function f

W ∼ N (µz = f(X),σ2

w
) ! P (W | X) ∼ N (·, ·)



Gaussian (an aside)
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LetX ∼ N (µx,σ
2

x
) and Y ∼ N (µy,σ

2

y
)

1. Sum of two Gaussians is a Gaussian

X + Y ∼ N (µx + µy,σ
2

x
+ σ2

y
)

2. Difference of two Gaussians is a Gaussian

X − Y ∼ N (µx − µy,σ
2

x
+ σ2

y
)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z ∼ N (µz = X,σ2

z
) ⇒ P (Z | X) ∼ N (·, ·)

4. But #3 does not hold ifX is passed through a nonlinear function f

W ∼ N (µz = f(X),σ2

w
) ! P (W | X) ∼ N (·, ·)



Diffusion Model
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Q: If q𝜙 is just adding noise, how can pθ be interesting 
at all?

A: Because q(x0) is not just a noise distribution and pθ 
must capture that interesting variability 

Q: But if pθ(xt−1|xt) is Gaussian, how can it learn a θ
such that pθ(x0) ≈ q(x0)? Won’t pθ(x0) be Gaussian
too?

A: No. In fact, a diffusion model of sufÏciently long
timespanT can capture any smooth targetdistribution.

Forward Process:

qφ(x0:T ) = q(x0)

T∏

t=1

qφ(xt | xt−1)

(Learned) Reverse Process:

pθ(x0:T ) = pθ(xT )

T∏

t=1

pθ(xt−1 | xt)

xT-1 x0xtxt+1…

qφ(xt+1 | xt) qφ(x1 | x0)qφ(xT | xT−1)

pθ(xt | xt+1)pθ(xT−1 | xT ) pθ(x0 | x1)

q(x0)

pθ(xT )

x1…xT



Diffusion 
Model 

Analogy

37



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 +

√
1− ᾱtεwhere ε ∼ N (0, I) this is the same reparameterization trick from VAEs



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 +

√
1− ᾱtεwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2

t I):

Σθ(xt, t) = σ2

t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option A: Learnanetwork that approximates µ̃q(xt, x0)
directly from xt and t:

µθ(xt, t) = UNetθ(xt, t)

where t is treatedas anextra feature inUNet



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option B: Learnanetwork that approximates the
real x0 from only xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = UNetθ(xt, t)



Properties of forward and exact reverse processes
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Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 +
√

1− ᾱtε we have
that:

x0 =
(

xt −

√

1− ᾱtε

)

/
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

((

xt −

√

1− ᾱtε

)

/
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 +

√
1− ᾱtεwhere ε ∼ N (0, I)



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) =

(

xt −
√
1− ᾱtεθ(xt, t)

)

/
√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Idea #1: Rather than learnΣθ(xt, t) just usewhat
weknowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2

t I):

Σθ(xt, t) = σ2

t I

Idea #2: Chooseµθ basedon q(xt−1 | xt, x0), i.e.
wewantµθ(xt, t) to be close to µ̃q(xt, x0). Here
are three ways we could parameterize this:

OptionC:Learnanetwork that approximates theε that
gave rise to xt from x0 in the forward process from xt

and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) =
(

xt −

√

1− ᾱtεθ(xt, t)
)

/
√

ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Option B: Learn a network that approximates the real
x0 from only xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) = UNetθ(xt, t)

OptionA:Learnanetwork that approximates µ̃q(xt, x0)
directly from xt and t:

µθ(xt, t) = UNetθ(xt, t)

where t is treated as an extra feature in UNet
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Algorithm 1 Training (Option C)
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0 ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t)‖2
8: θ ← θ −∇θ#t(θ)

Option C is the best 
empirically

OptionC:Learnanetwork that approximates theε that
gave rise to xt from x0 in the forward process from xt

and t:

µθ(xt, t) = α
(0)
t x(0)

θ
(xt, t) + α

(t)
t xt

where x(0)
θ

(xt, t) =
(

xt −

√

1− ᾱtεθ(xt, t)
)

/
√

ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Depending on which of the 
options for parameterization we 
pick, we get a different training 
algorithm. 

Recall: given a training sample x0,
we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)


