10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Diffusion Models

Matt Gormley & Pat Virtue
Lecture 7

Feb. 5, 2025

Reminders

* Homework 1: Generative Models of Text
— Out: Mon, Jan 27
— Due: Mon, Feb 10 at 11:59pm
* Quiz 2:
— In-class: Mon, Feb 17
— Lectures 5-8

* Homework 2: Generative Models of Images

— Out: Mon, Feb 10
— Due: Sat, Feb 22 at 11:59pm

UNSUPERVISED LEARNING

Unsupervised Learning

Assumptions:

1. our data comes from some distribution
P*(Xo)

2. we choose a distribution pg(x,) for which
sampling x, ~ pg(X,) is tractable

Goal: learn 6 s.t. pg(X,) = p*(X,)

Unsupervised Learning

Assumptions: Example: autoregressive LMs

1. our data comes from some distribution * true p*(x,)is the (human) process that
p*(x,) produced text on the web

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an autoregressive
sampling x, ~ pg(X,) is tractable language model

Goal: learn 6 s.t. pg(X,) = p*(X,) — autoregressive structure means that

p(x; | x,, ..., X.,) ~ Categorical(.) and
ancestral sampling is exact/efficient

* learn by finding

e=togpo0] O = argmaxg log(pe(x,))
[{,1(.;,)/]{/%,) = B using gradient based updates on
f \ L Ve 10g(pe(xo))
T: p(w,k T:p W, K’:) T:P wyhy) v, =p(wh,)
> y >
A \ A '\ A
" |T| F\Jiz i }J{BI\I - h4|T| \"
AT A AT,

T T

Unsupervised Learning

Assumptions:

1. our data comes from some distribution
P*(%,)

2. we choose a distribution pg(x,) for which
sampling x, ~ pg(X,) is tractable

Goal: learn 6 s.t. pg(X,) = p*(X,)

Dy(x)
p(real | image)
J =log(1- Dg(Ge(2)))

y
0 / \
Dy(x’) /
p(real | image) \

V4
y
1 /

J = log(Dy(x"))
real image

so optimize a minimax loss instead

Example: GANs

true p*(x,) is distribution over photos taken
and posted to Flikr

choose pg(x,) to be an expressive model
(e.g. noise fed into inverted CNN) that can
generate images
— sampling is typically easy:
z ~N(0, 1) and x, = fg(2)
learn by finding 6 = argmaxg log(pe(x,))?
— No! Because we can’t even compute
log(pe(x,)) or its gradient

— Why not? Because the integral is
intractable even for a simple 1-hidden
layer neural network with nonlinear
activation

o) = / p(xo | 2)p(z)dz

Unsupervised Learning

Assumptions: Example: VAEs [Diffusion Models

1. our data comes from some distribution * true p*(x,) is distribution over photos taken
p*(x,) and posted to Flikr

2. we choose a distribution pg(x,) for which * choose pg(x,) to be an expressive model
sampling x, ~ pg(X,) is tractable (e.g. noise fed into inverted CNN) that can

Goal: learn 6 s.t. pg(X,) = p*(X,) generate images

— sampling is will be easy
* learn by finding © = argmaxg log(pe(x,))?
— Sort of! We can’t compute the gradient

Ve log(pe(x,))
— So we instead optimize a variational

s >@ b’ ¢ oz & @ lower bound (more on that later)

< RIS
s s O]
s s Bia 08

e

-
, \ % Wy
q(xe|xe-1) RS ¢ ¥

-

Latent Variable Models

 For GANs and VAEs,
we assume that there
are (unknown) latent
variables which give
rise to our
observations

e The vector z are those
[atent variables

* Afterlearning a GAN
or VAE, we can
interpolate between

images in latent z

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space

S p ace learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

Figure from Radford et al. (2016)

GAN - VAE - Diffusion (in 15 minutes)

VAL ZTNP N (), 2,6)
N,Ef/\ &l \7 hedoh(bz 1)

=g 3 A < o X j{e(z> //U
' F(X> Sgwg’b() /\/o/a T O@(zx\ NS (X)> L +b,

e v e oc oS Hens e =dF)= =)= (Uhel
- J MA@ jF(> jg % ;E) <>i/ NO% L@am >1\
— r S T

I

Oj/j(x, >/_(a.

P RO ool M)
A%JV % ”’@ =
o = XiZo s

CZ%(Z ZtX/u/\)%/(Zé» CC(?{)
LEENOREy Lo & = vgun KL(,, 19 Ip(er) |

12

U-NET

Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf

14

* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf

15

Contracting path
* block consists of:

3x3 convolution
3x3 convolution
RelLU

max-pooling with stride of 2
(downsample)

* repeat the block N times,

doubling number of channels

Expanding path
* block consists of:

2x2 convolution (upsampling)

concatenation with
contracting path features

3x3 convolution
3x3 convolution
RelLU

* repeat the block N times,
halving the number of
channels

input
image
tile

U-Net

64 64

12¢ 64 2
> ole || OUtPUL

N A s segmentation

20 2 & 7 map

=»conv 3x3, RelLU
copy and crop

¥ max pool 2x2
| 4 up-conv 2x2
3 = cONv 1x1

16

* Originally designed
for applications to
biomedical
segmentation

* Key observation s
that the output
layer has the same
dimensions as the
iInput image
(possibly with
different number
of channels)

a

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

DIFFUSION MODELS

d¢

(

N o -

X7 | X7_1)

~

Diffusion Model

’ 7 N 7 \
~ // \~¢/ \~_¢/ _f

d¢ (X¢41 | X¢)

S =

Do (XT—1 | XT)

Diffusion Model

Po (Xt | Xt+1)

20

Do (XT—1 | XT)

Diffusion Model

Po (Xt | Xt+1)

21

Diffusion Model

po(XT—1 | XT) po (Xt | Xeq1) Po(Xo | X1)

Q¢(XT | XT—1) q¢(xt+1 \ Xt) C]qb(Xl \ Xo)

e ol BEEF R —— ' -
bt . -~
s p . : -

BlNENNENNSSssrrrrrrr
...‘Q--~R1YK%¥V¥VYV¥

22
Figure from Ho et al. (2020)

Diffusion Model

po(XT—1 | XT) po (Xt | Xeq1) Po(Xo | X1)

HIIIIIHEEEEEEE
.-.I Question: Answer:
Which are the latent variables in
...‘ a diffusion model? -.

23

Figure from Ho et al. (2020)

Denoising Diffusion Probabilistic Model (DDPM)

po(X7—1 | X7) po (Xt | Xeq1) Po(Xo | X1)
Po (XT)

9o (X7 | X7-1) Qo (Xey1 | X¢) qs (X1 | X0)

Forward Process:

q(x¢) = data distribution

g (Xt | Xp—1) ~ N(Varxi—1, (1 — ay)T)

T
q¢ XOT —C]XOH Xt’th

(Learned) Reverse Process:
T

pQ(XT) ~ N(Ovl)

po(Xo:1) = po(Xr) tl;[lpﬁ(xt—l | %) po(Xe—1 | X¢) ~ N (po(xe,t), Bo(xe, 1))

Diffusion Model

po(X7—1 | X7) po (Xt | Xeq1) Po(Xo | X1)

learning is hard.
why don’t we instead just infer
the exact reverse process

adds noise to S=- = = == == ~--" " corresponding to the forward
theimage (x| x7_;) Qo (Xet1 | X¢) process?
if we could sample
Forward Process: from this we’d be done (Exact) Reverse Process:
T T
P 4
g (X0:1) = q(%0) | | 9o (%t | Xt—1) 94 (X0:7) = Q¢ (x7) H Qo (X¢—1 | X¢)
The exactreverse process requires inference. And,
even though ¢4 (x; | x¢—1) is simple, computing
(Learned) Reverse Process: removes noise qs(x¢—1 | x¢) isintractable! Why? Because g(xo)
r might be not-so-simple.
po(Xo.7) = po(XT) Hpe(Xt—1 | X¢)
e fXO:t_MH:T 4 (X0:7)dX0:t—2,44+1:T

qp(Xi—1 | X¢) =

goal is to learn this fxo:t—2,t:T 4o (X0)dXo:1—2,1:7

Denoising Diffusion Probabilistic Model (DDPM)

po(X7—1 | X7) po (Xt | Xeq1) Po(Xo | X1)
Po (XT)

9o (X7 | X7-1) Qo (Xey1 | X¢) qs (X1 | X0)

Forward Process:

q(x¢) = data distribution

g (Xt | Xp—1) ~ N(Varxi—1, (1 — ay)T)

T
q¢ XOT —C]XOH Xt’th

(Learned) Reverse Process:
T

pQ(XT) ~ N(Ovl)

po(Xo:1) = po(Xr) tl;[lpﬁ(xt—l | %) po(Xe—1 | X¢) ~ N (po(xe,t), Bo(xe, 1))

Defining the Forward Process

Noise schedule:

We choose a; to follow a fixed schedule s.t.
qs(x7) ~ N(0,1), just like pp(x7).

1.0 1 —— linear
0.8
0.6 1

0.4 4

0.2 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Gaussian (an aside)
Let X NN(M%70-5213) and Y NN(M?J7O§)

Gaussian (an aside)
Let X NN(FLx?O-:%) and Y NN(M?/7O-§)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(M:B_N?J?U;“’_U::%)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

Defining the Forward Process

Forward Process:
q(x¢) = data distribution

o (Xt | Xp—1) ~ N(Varxi—1, (1 — ay)T)

T
%(XOT —QXO H Xt’Xt 1

Noise schedule: Property #1:

We choose a; to follow a fixed schedule s.t. a(%, | %0) ~ N(v/asxo, (1 — &,)T)
qs(x7) ~ N(0,1), just like pg(x7). ,
where a; = H Qg

1.0 4 —— linear

cosine

0.8 1

Q: So what is q4(xr | X,) ? Note the capital T in the
subscript.

0.6 1

0.4 4

A:

0.2 4

0.0 1 =

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Diffusion Model

po(x7-1 | XT) po(Xt | Xt41) po(Xo | X1)

G (X7 | X7_1) Qo (Xtt1 | X¢) qo(x1 | X0)

Q: If g4 is just adding noise, how can pg be interesting
at all?

T
q¢(X0:7) = q(X0 H (x¢ | x¢-1) A:

Forward Process:

(Learned) Reverse Process: Q: But if pg(x;_1|x;) is Gaussian, how can it learn a @
T such that pg(x9) ~ ¢q(x¢)? Won’t py(xg) be Gaussian
Po(X0.7) = po(X7) Hpe (x¢—1 | X¢) too?

t=1 A:

Gaussian (an aside)
Let X NN(FLx?O-:%) and Y NN(M?/7O-§)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(M:B_N?J?U;“’_U::%)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

Gaussian (an aside)
Let X NN(,LLx7O-:%) and Y NN(M?/7O-Z)

1. Sum of two Gaussians is a Gaussian

X"‘YNN(Nx"‘NyvOi""U;)

2. Difference of two Gaussians is a Gaussian

X_YNN(Mw_Uyaaz"i‘U;)

3. Gaussian with a Gaussian mean has a Gaussian Conditional

Z~ Ny =X,02) = P(Z | X) ~N(,")

4. But #3 does not hold if X is passed through a nonlinear function f

WNN(Mz:f(X)aaf?u)#P(W|X)NN(’)

Diffusion Model

po(x7-1 | XT) po(Xt | Xt41) po(Xo | X1)

G (X7 | X7_1) Qo (Xtt1 | X¢) qo(x1 | X0)

Q: If g4 is just adding noise, how can pg be interesting
at all?

T
q¢(X0:7) = q(X0 H (x¢ | x¢-1) A:

Forward Process:

(Learned) Reverse Process: Q: But if pg(x;_1|x;) is Gaussian, how can it learn a @
T such that pg(x9) ~ ¢q(x¢)? Won’t py(xg) be Gaussian
Po(X0.7) = po(X7) Hpe (x¢—1 | X¢) too?

t=1 A:

10N

iffusi

D

Model
Analogy

N~
M

Properties of forward and exact reverse processes

this is the same reparameterization trick from VAEs

39

Properties of forward and exact reverse processes

40

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

.Pe(Xt—l |Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn ¥y (x;,t) just use what we

Later we will show that given a train-
know about g(x;_1 | x¢,%xg) ~ N(,021):

ing sample xq, we want

D t) = o1
el | 5 o(Xi,t) = 0,

to be as close as possible to Idea #2: Choose g based on ¢(x:—1 | x¢,Xg), i.e. we
want ug(x¢,t) to be close to fi,(x¢, X0). Here are
q(x¢—1 | X¢,X0) three ways we could parameterize this:

Option A: Learnanetwork thatapproximates i, (x;, Xo)

Intuitively, this makes sense: if the :
directly from x; and ¢:

learned reverse processis supposed

to subtract away the noise, then

) y the ~ 1o (x¢,t) = UNety(xy, t)
whenever we’re working with a spe-
cific xq it should subtract it away where t is treated as an extra feature in UNet

exactly as exact reverse process would
have.

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea #1: Rather than learn Yy (x¢,?) just use what we

Later we will show that given a train- ,
know about ¢(x;_1 | x¢,%g) ~ N(,oi1):

ing sample xq, we want

¥ +) = o1
po(Xi_1 | %) o(X,t) = 0

to be as close as possible to Idea #2: Choose iy based on g(x;_1 | x¢,Xq), i.e. we
want g (x¢, t) to be close to i, (x¢, X0). Here are
q(X¢t—1 | X¢,%o) three ways we could parameterize this:

Option B: Learnanetworkthatapproximatesthe

Intuitively, this makes sense: if the
real xg from only x; and ¢:

learned reverse processis supposed
to subtract away the noise, then (0)_(0) (t)
whenever we’re working with a spe- o (Xe:t) = 07X (X1,) + g
cific xq it should subtract it away where xéo) (x¢,t) = UNetg(x¢, 1)
exactly as exact reverse process would

have.

Properties of forward and exact reverse processes

Property #1:
q(x¢ | x0) ~ N (Vauixo, (1 — a)I)

t
where a; = H Qg
s=1

= we can sample x; from x(at any timestep ¢
efficiently in closed form

= X; = \/oyXg + /1 — o€ where € ~ N(O,I)

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/ozif(= Oét)XO N \/ozi(= ozt)xt
- e - e

(0)

t
= oy "X —|—a§)xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = v/a;Xo + /1 — o€ we have
that:

xo = (X — VI=Gze) /v/a

Substituting this definition of x into property
#2’s definition of /i, gives:

fiq(X¢,X0) = ago)xo + agt)xt

— ago) ((Xt — 1 - o‘zte) /\/67t) + oz,gt)xt

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

pe(Xt—l | Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Idea #1: Rather than learn Xy (x;,t) just use what we

know about ¢(x;_1 | x¢,%xg) ~ N{(,o21):

EQ(Xt,t) = 0'752]:

Idea #2: Choose g based on g(x;_1 | x¢,Xg), i.e. we

want pg(x¢, t) to be close to fi,(x¢,xg). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximatesthe
e that gaverise to x; from xg in the forward
process from x; and ¢:

o (Xs,t) = ago)xéo) (x¢,1) + ozit)xt

where X(QO) (x¢,1) = (Xt — V1 — azeg(xy, t)) /

where €y(x;,t) = UNetg(xy, t)

Ol

Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Idea#1: Ratherthanlearn Xy (x;, t) just use what
we know about ¢(x;_1 | x¢,Xg) ~ N(,021):

EQ(Xt, t) = O'?I
Idea#2: Choose g basedonq(x;_1 | x¢,Xg), i.€.

we want pg(x¢, t) to be close to fi,(x¢, Xo). Here
are three ways we could parameterize this:

I Option A: Learn a network that approximates fi, (x¢, Xo)
directly from x; and ¢:

to(x¢,t) = UNety(xy, t)

L where t is treated as an extra feature in UNet

" Option B: Learn a network that approximates the real
xo from only x; and t¢:

Ko (Xt7 t) — OégO)XéO) (Xt7 t) + agt)xt

where x(go) (x¢,t) = UNety(x¢,t)

~Option C: Learn anetwork that approximates the e that
gave rise to x; from xg in the forward process from x;
and t:

+ Oégt)Xt

(xt — /1 - &tEQ(Xt,t)) aver

22 (Xtv t) - ()‘gO)XéO) (Xt7 t)

where xéo)(xt, t) =

where €g(x;,t) = UNety(xy, t)

DIFFUSION MODEL TRAINING

Learning the Reverse Process

Recall: given a training sample xg,

we want

Do (Xt—l | Xt)

to be as close as possible to
q(x¢—1 | X¢,X0)

Depending on which of the
options for parameterization we
pick, we get a different training
algorithm.

Option Cis the best
empirically

Algorithm 1 Training (Option C)

1: initialize 6

: foree {1,...,FE} do

for xp € Ddo
t ~ Uniform(1,...,7T)
e ~N(0,1)
X; < /auXg + /1 — aqe€
£(0) < |le — e (xs,)%
0 < 60— Vol (0)

XNV R W N

Option C: Learn a network that approximates the e that
gave rise to x; from xg in the forward process from x;
and t:

po (X, t) = ago)xéo)(xt, t) + agt)xt

where Xéo)(Xt, t) = (x¢ — V1 — aeg(xe,t)) /@

where €y(x¢,t) = UNetg(x¢, 1)

