
HOMEWORK 4
MULTI-MODAL FOUNDATION MODELS *

10-423/10-623 GENERATIVE AI
http://423.mlcourse.org

OUT: Oct. 25, 2024
DUE: Nov. 5, 2024

TAs: Ryan, Haoyang, Shrikara

Instructions
• Collaboration Policy: Please read the collaboration policy in the syllabus.

• Late Submission Policy: See the late submission policy in the syllabus.

• Submitting your work: You will use Gradescope to submit answers to all questions and code.

– Written: You will submit your completed homework as a PDF to Gradescope. Please use the
provided template. Submissions can be handwritten, but must be clearly legible; otherwise, you
will not be awarded marks. Alternatively, submissions can be written in LATEX. Each answer
should be within the box provided. If you do not follow the template, your assignment may
not be graded correctly by our AI assisted grader and there will be a 2% penalty (e.g., if the
homework is out of 100 points, 2 points will be deducted from your final score).

– Programming: You will submit your code for programming questions to Gradescope. We will
examine your code by hand and may award marks for its submission.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on the course website.

Question Points

LATEX Template Alignment 0

Latent Diffusion Model (LDM) 6

VQ-VAEs 6

CLIP 4

Programming: Prompt2Prompt 38

Code Upload 0

Collaboration Questions 2

Total: 56

*Compiled on Friday 25th October, 2024 at 12:00

1

http://423.mlcourse.org


Homework 4: Multi-Modal Foundation Models 10-423/10-623

1 LATEX Template Alignment (0 points)
1.1. (0 points) Select one: Did you use LATEX for the entire written portion of this homework?

⃝ Yes

⃝ No

1.2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other
modifications which will result in a misaligned template. I understand that incorrectly responding
yes to this question will result in a penalty equivalent to 2% of the points on this assignment.
Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

⃝ Yes

2 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

2 Latent Diffusion Model (LDM) (6 points)
2.1. (2 points) Short answer: Why does a latent diffusion model run diffusion in a latent space instead

of pixel space?

2.2. Short answer: Standard cross-attention for a diffusion-based text-to-image model defines the
queries Q as a function of the pixels (or latent space) Y ∈ Rm×dy , and the keys K and values
V as a function of the text encoder output X ∈ Rn×dx .

Q = YWq, K = XWk, V = XWv

(where Wq ∈ Rdy×d and Wk,Wv ∈ Rdx×d) and then applies standard attention:

Attention(Q,K,V) = softmax(QKT /
√
d)V

Now, suppose you instead defined a new formulation where the values are a function of the pixels
(or latent space): V = YWv where Wv ∈ Rdy×d.

2.2.a. (2 points) What goes wrong mathematically in the new formulation?

2.2.b. (2 points) Intuitively, why doesn’t the new formulation make sense? Briefly begin with an
explanation of what the original formulation of cross-attention is trying to accomplish for a
single query vector, and why this new formulation fails to accomplish that.

3 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

3 VQ-VAEs (6 points)
3.1. The objective function for a VQ-VAE contains two terms in addition to the reconstruction loss

term:

• The vector-quanization loss, ∥sg [ze(x)]− e∥22 and

• The “commitment” loss, β∥ze(x)− sg [e]∥22
where sg is the stopgradient operator and e is the latent embedding vector closest to the output of
the encoder ze(x).1

In this question, you will examine the impact of these terms and the stopgradient operator. Let

L = ∥sg [ze(x)]− e∥22 + β∥ze(x)− sg [e]∥22 (1)

L̃ = ∥ze(x)− e∥22 + β∥ze(x)− e∥22 (2)

3.1.a. (1 point) Math: What is the gradient of L with respect to ze(x)?

3.1.b. (1 point) Math: What is the gradient of L with respect to e?

3.1.c. (1 point) Math: What is the gradient of L̃ with respect to ze(x)?

3.1.d. (1 point) Math: What is the gradient of L̃ with respect to e?

3.1.e. (2 points) Short answer: Given your findings from the previous parts, how would you de-
scribe the impact of the stopgradient operator on the optimization of these two terms? How do
the gradients with and without the stopgradient operator differ?

1For the purposes of this question, we are still assuming that the encoder outputs a single vector; in practice, a true VQ-VAE
encoder would output multiple vectors and these terms in the objective function would be sums over these vectors.

4 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

4 CLIP (4 points)
4.1. (4 points) Short answer: In https://arxiv.org/pdf/2103.00020, Radford et al., pre-trained the im-

age and text encoders using a symmetric cross-entropy loss. Formally, given a mini-batch of N
(image, caption) pairs, let e(n)i be the image embedding of the nth image normalized to have unit
norm and let e(n)t be the text embedding of the nth caption, also normalized to have unit norm.

The symmetric cross-entropy loss consists of two terms for each (image, caption) pair, a term that
compares the image embedding to all N caption embeddings and a term that compares the caption
embedding to all N image embeddings. Formally, let

ℓ
(n)
i→t = − log

 exp
(
e
(n)
i · e(n)t

)
∑N

m=1 exp
(
e
(n)
i · e(m)

t

)
 (3)

ℓ
(n)
t→i = − log

 exp
(
e
(n)
i · e(n)t

)
∑N

m=1 exp
(
e
(m)
i · e(n)t

)
 (4)

where · is the dot-product operation between two (same-length) vectors. The CLIP objective can
then be expressed as

ℓ =
1

N

N∑
n=1

ℓ
(n)
i→t + ℓ

(n)
t→i

2
(5)

Show that minimizing this objective function is equivalent to jointly maximizing the cosine similar-
ity of an image embedding and its corresponding caption embedding while minimizing the cosine
similarity of all other pairs of image and caption embeddings. You may use (clear, concise) English
sentences or mathematical formulae or both in your response.

5 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5 Programming: Prompt2Prompt (38 points)

Reminder: you are not permitted to use code from any existing implementations of prompt-to-prompt.

Introduction

In this section, we explore an innovative approach to image editing. Editing techniques aim to retain the
majority of the original image’s content while making certain changes. However, current text-to-image
models often produce completely different images when only a minor change to the prompt is made.
State-of-the-art methods typically require a spatial mask to indicate the modification area, which ignores
the original image’s structure and content in that region, resulting in significant information loss.

In contrast, the Prompt2Prompt framework by Hertz et al. (2022) facilitates edits using only text,
striving to preserve original image elements while allowing for changes in specific areas.

Cross-attention maps, which are high-dimensional tensors binding pixels with prompt text tokens, hold
rich semantic relationships crucial to image generation. The key idea is to edit the image by injecting
these maps into the diffusion process. This method controls which pixels relate to which particular
prompt text tokens throughout the diffusion steps, allowing for targeted image modifications.

You’ll explore modifying token values to change scene elements (e.g. a ”dog” riding a bicycle → a
”cat” riding a bicycle) while maintaining the original cross-attention maps to keep the scene’s layout
intact.

HuggingFace Diffusers

In this assignment, we will be using HuggingFace’s diffusers, a library created for easily using well-
known state-of-the-art diffusion models, including creating the model classes, loading pre-trained
weights, and calling specific parts of the models for inference. Specifically, we will be using the API
for the class DiffusionPipeline and methods from its subclass LDMTextToImagePipeline
for loading the pre-trained LDM model.

You are required to read the API for LDMTextToImagePipeline:

https://huggingface.co/docs/diffusers/en/api/pipelines/latent_
diffusion

You will be implementing the model loading and calling individual components of LDMTextToIm-
agePipeline in this assignment.

Starter Code

The files are organized as follows:

hw4/
run_in_colab.ipynb
prompt2prompt.py
requirements.txt

Here is what you will find in each file:

1. run_in_colab.ipynb: This is where you can run inference and see the visualization of your
implemented methods.

6 of 19

https://arxiv.org/pdf/2208.01626.pdf
https://huggingface.co/docs/diffusers/main/en/index
https://huggingface.co/docs/diffusers/en/api/pipelines/latent_diffusion
https://huggingface.co/docs/diffusers/en/api/pipelines/latent_diffusion


Homework 4: Multi-Modal Foundation Models 10-423/10-623

2. prompt2prompt.py: Contains the follwoing classes and helper functions:

(a) Class MyLDMPipeline - Initializes the pipeline by downloading the pre-trained model.
Contains the method _generate_image_from_text which uses the swapper from
MySharedAttentionSwapper to change the attention and generate new images from
the prompt. This class also contains the method get_random_noise, which needs to be
implemented. This is used to generate the latents required for image generation

(b) Method get_replacement_mapper_(...) - Details of the function provided below.
Locations in the code where changes ought to be made are marked with a TODO.

(c) Class MySharedAttentionSwapper - contains the method
swap_attention_probs(...) which needs to be implemented. This method is
responsible for swapping attention probabilities based on the current state of the model.

(d) Class MyCrossAttention - the actual class that you are going to be using to replace the
existing attention of the UNet module. You need to implement the actual attention mechanism
(define query, key and value, apply linear projection, dropout and add residual connection, if
needed, all in order to calculate the hidden states)

Carefully read through the entire file to understand the helper functions and their functionalities.

3. requirements.txt: A list of packages that need to be installed for this homework.

Carefully read through the entire file to understand the helper functions and their functionalities.

Command Line

We recommend conducting your final experiments for this homework on Colab. Colab provides a free
T4 GPU for code execution.

(Run the run_in_colab.ipynb for visualization.)

Prompt2Prompt

In this problem, you will implement Prompt2Prompt in the file prompt2prompt.py.

Figure 1: Visual and textual embedding are fused using cross-attention layers that produce attention maps
for each textual token. Figure source: Hertz et al. (2022)

Latent Diffusion Model Pipeline:

This is the class that implements and runs the entire pipeline of prompt2prompt. The __init__
function loads the different parts of the pre-trained model. The function get_image_from_text is

7 of 19

https://arxiv.org/pdf/2208.01626.pdf


Homework 4: Multi-Modal Foundation Models 10-423/10-623

the entry point to this class which, as the name suggests, returns the generated image. It internally calls
get_image_from_text_.

Here is an overview of the key steps this method performs:

• Tokenization and Embedding of Prompts: The model’s tokenizer converts both an empty string
(to represent the unconditional generation case) and the actual text prompts into tokenized inputs.
These tokenized inputs are then passed through a BERT-like model to obtain embeddings. The
embeddings for the unconditional inputs and the text prompts are concatenated to serve as the
context for the diffusion process.

• Latent Space Initialization: You need to implement get_random_noise that achieves this. It
needs to initialize a latent space with the specified dimensions. This space will evolve into the
final image through the diffusion process.

• Diffusion Process: The core of the image generation happens here. For each timestep defined
by num inference steps, the function performs a diffusion step. This involves manipulating the
latent space towards the desired outcome based on the context and the current timestep, under
the guidance of the specified scale. The controller plays a role here in directing the attention
mechanism during these steps.

• Image Generation: After completing the diffusion steps, the final latent representation is converted
into an image using the model’s VQ-VAE (Vector Quantized Variational AutoEncoder).

Cross Attention:

The LDM utilizes text prompts to influence the noise prediction at each diffusion step through cross-
attention layers. Essentially, at each step t, the model predicts noise ϵ based on a noisy image zt and
the text prompt’s embedding ψ(P ) using a U-net architecture, leading to the final image I = z0. The
key interaction between image and text occurs in the noise prediction phase, where visual and textual
embeddings are integrated via cross-attention layers. As illustrated in Fig. 1, these layers generate
spatial attention maps for textual tokens by projecting the image’s deep features and text embedding
into query (Q), key (K), and value (V ) matrices through learned projections ℓQ, ℓK , ℓV . The attention
mechanism is formulated as:

M = Softmax
(
QKT

√
d

)
, (6)

where Mij represents the influence of the j-th token’s value on the i-th pixel, with dk being the dimen-
sionality of the keys and queries. The output from cross-attention, ϕb(zt) = MV , updates the image
features ϕ(zt). Intuitively, MV is a weighted average of V based on the attention maps M , which are
correlated to the similarity between Q and K. This process leverages multi-head attention to enhance
expressiveness, concatenating the outcomes from parallel heads and refining them through an additional
linear layer for the final output.

Controlling Cross Attention:

Pixels are more attracted (correlated) to the words that describe them (you will visualize this when
you run the notebook). Building on the insight that cross-attention maps dictate the spatial layout
and relationship between pixels and their corresponding descriptive words, Prompt2Prompt proposes a
method to edit images while maintaining their original structure. By reusing attention maps M from an
initial generation with prompt P in a subsequent generation with an altered prompt P ∗, we can create
an edited image I∗ that respects the original image’s layout I .

8 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

We can defineDM(zt, P, t, s) as the function for a single diffusion step t, outputting a noisy image zt−1

and optionally an attention map Mt. We denote DM(zt, P, t, s){M ← M̂} to indicate the diffusion
step with an externally supplied attention map M̂ overriding the attention map M , while maintaining
the value matrix V from P . The attention map generated with the edited prompt P ∗ isM∗

t . The function
Edit(Mt,M

∗
t , t) represents an editing operation on the attention maps of the original and edited prompts

at step t. This general algo is written out in Fig. 2.

Figure 2: Algorithm: Prompt-to-Prompt image editing. Source: Hertz et al. (2022). Note that local is
always False in our implementation.

Word Swap:

While Prompt-to-Prompt can be used for various different types of edit operations on the prompt, we
will focus exclusively on word swapping, e.g., P = “a big bicycle” to P ∗= “a big car”.

For word swapping, we inject the attention maps of the source image into the generation by the modified
prompt. We work with the MySharedAttentionSwapper class, where you will initialize a mapper
tensor as self.mapper, and with the MyCrossAttentionClass. It is designed to facilitate the
replacement of tokens in the cross-attention map and should be used to reassign attention from the old
tokens to the new ones (dive into the code base to see what exactly it does and also refer to the section
on Replacement Mapper). You will implement:

• one line of code in swap_attention_probs(...) in the
MySharedAttentionSwapper class where you swap out the existing attention with
the self.mapper

• forward method of the MyCrossAttentionClass: In this method you need to initialize
and implement the attention mechanism, which means you need to initialize your query, key and
value tensors, and use them to calculate the attention probabilities. Once the prompt-to-prompt
attention swapping is done, you need to calculate the hidden states and apply the linear projection,
dropout and if required, add the residual connection.
Some functions that might come in handy are:

– self.attn.to_q, self.attn.to_k and self.attn.to_v: these are linear trans-

9 of 19

https://arxiv.org/pdf/2208.01626.pdf


Homework 4: Multi-Modal Foundation Models 10-423/10-623

formations that project the input into query, key, and value vectors, which are used to compute
attention scores and weighted outputs in the attention mechanism.

– torch.bmm: performs a batch-wise matrix multiplication of two 3D tensors. Specifically,
if you have tensors of shape (b, n, m) and (b, m, p), torch.bmm multiplies each pair of
matrices in the batch (of size b) to produce a new tensor of shape (b, n, p).

Replacement Mapper:

In the function get_replacement_mapper, we return the stacked PyTorch tensor containing all
the mapping matrices, where each matrix corresponds to the mapping from the first prompt to one of
the subsequent prompts. It calls upon get_replacement_mapper_ (which you will implement)
that splits both input strings x and y into words and constructs a mapping matrix of size max_len ×
max_len, with values in [0, 1] indicating the matching between the changing word in the input prompt
and the corresponding word in the modification prompt.

(Hint: For most things in PyTorch we avoid for loops, but you needn’t do so here. Since this method is
only called once during initialization, for loops are fine.)

Evaluation:

We ask you to run the notebook to get the visualizations once you complete filling in the needed func-
tions. You will be visualizing replacement edit and local editing results.

10 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

Empirical Questions

5.1. (1 point) Short answer: Print out the structure of the UNet model by calling
print(pipe.unet). Notice that within the up and down transformer blocks
(BasicTransformerBlock), there are two attention layers: one is named attn1 and
the other attn2. Which of these two is self-attention and which is cross-attention? Briefly
justify your answer based on the printout of the model.

The questions below refer directly to the section headers of the Colab notebook in
run_in_colab.ipynb.

5.2. (4 points) Paste the results from the section ‘Baseline: Different Initial Noise for Each Prompt’

[Expected runtime on Colab T4: 30s]

11 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5.3. (4 points) Paste the results from the section ‘Same Initial Noise for Each Prompt’

[Expected runtime on Colab T4: 30s]

5.4. (1 point) Briefly explain how your results from Question 5.2 differ from your results in Question
5.3?

12 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5.5. (4 points) Paste the results from the section ‘Prompt-to-Prompt: Word Swap’

[Expected runtime on Colab T4: 30s]

5.6. (1 point) Briefly explain how your results from Question 5.3 differ from your results in Question
5.5?

13 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5.7. (4 points) Paste the results from the section ‘Prompt-to-Prompt: Modify Cross-Attention Injec-
tion’

[Expected runtime on Colab T4: 30s]

5.8. (2 points) How do you your results in Question 5.7 vary as you change the cross attention param-
eters?

14 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5.9. (4 points) Paste the results from the section ‘Prompt-to-Prompt: Modify Self-Attention Injection’

[Expected runtime on Colab T4: 30s]

5.10. (2 points) How do you your results in Question 5.9 vary as you change the cross attention param-
eters?

15 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5.11. (4 points) Paste the results from the section ‘Prompt-to-Prompt: Single-Token to Multiple-Token
Word Swap’

[Expected runtime on Colab T4: 30s]

5.12. (4 points) Paste the results from the section ‘Prompt-to-Prompt: Multiple-Token to Single-Token
Word Swap’

[Expected runtime on Colab T4: 30s]

16 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

5.13. Define your own base prompt and three prompt edits (i.e. something other than the examples
provided in the .ipynb) and run them through Prompt-to-Prompt.

5.13.a. (1 point) Report the prompts and any hyperparameters that you used.

5.13.b. (2 points) Paste the resulting images below.

17 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

6 Code Upload (0 points)
6.1. (0 points) Did you upload your code to the appropriate programming slot on Gradescope?

Hint: The correct answer is ‘yes’.

⃝ Yes

⃝ No

For this homework, you should upload only prompt2prompt.py.

18 of 19



Homework 4: Multi-Modal Foundation Models 10-423/10-623

7 Collaboration Questions (2 points)
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found in the syllabus.

7.1. (1 point) Did you collaborate with anyone on this assignment? If so, list their name or Andrew ID
and which problems you worked together on.

7.2. (1 point) Did you find or come across code that implements any part of this assignment? If so,
include full details.

19 of 19


	LaTeX Template Alignment
	Latent Diffusion Model (LDM)
	VQ-VAEs
	CLIP
	Programming: Prompt2Prompt
	Code Upload
	Collaboration Questions

