
10-425/625: Introduction to Convex Optimization (Fall 2023)

Lecture 5: Properties of Convex Functions
Instructor:1 Matt Gormley September 13, 2023

5.1 Properties of Convex Functions

5.1.1 Convexity and Monotonicity

One nice property of convex functions is that their gradients are monotone.

5.1.1.1 Monotonicity in 1D

Definition 5.1 (Monotone Increasing Function). In 1D this is a simple thing
to interpret, a monotone function is order preserving. A function which is
monotone increasing has the property that if x ≥ y then f(x) ≥ f(y).

One way to write this mathematically is to say that for any x, y,

(x− y)× (f(x)− f(y)) ≥ 0.

5.1.1.2 Monotonicity of Gradients

For a differentiable convex function f , the multivariate analogue is that for
any x, y ∈ dom(f):

(x− y)T (∇f(x)−∇f(y)) ≥ 0.

Proof: To see this we observe that by the first-order characterization:

f(y) ≥ f(x) + ⟨∇f(x), (y − x)⟩
f(x) ≥ f(y) + ⟨∇f(y), (x− y)⟩,

and summing these inequalities gives our desired result: ⟨x − y,∇f(x) −
∇f(y)⟩ ≥ 0.

1These notes were originally written by Siva Balakrishnan for 10-725 Spring 2023 (orig-
inal version: here) and were edited and adapted for 10-425/625.
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The (sub)gradient of a convex function satisfies a multivariate analogue of
this property. Particularly for any x, y ∈ dom(f), if f is convex we have that
for any gx ∈ ∂f(x) and gy ∈ ∂f(y),

(x− y)T (gx − gy) ≥ 0.

Proof: To see this we observe that by the first-order characterization:

f(y) ≥ f(x) + gTx (y − x),

f(x) ≥ f(y) + gTy (x− y),

and summing these inequalities gives our desired result: (x−y)T (gx−gy) ≥ 0.

It turns out that there is a converse to the above characterization. If you
have a differentiable function whose gradient is monotone, then it must be
convex.

5.1.2 Other Properties

Here are a few properties of convex functions that will be useful:

1. A function is convex iff its epigraph,

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set. In simpler terms: if you take all the points that lie
above a function, those form a convex set.

Interesting note: There is an connection here between the supporting
hyperplane of this epigraph (set) and subgradients, most easily shown
with a picture.

2. A function is convex iff the univariate functions g(t) = f(x + tv) are
convex for any v ∈ Rd, and for any x ∈ dom(f).

3. Convex functions satisfy Jensen’s inequality. If f is convex, then for
any random variable X supported on dom(f), f(E[X]) ≤ Ef(X).
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5.2 Smooth, Strongly Convex and Strictly Con-

vex Functions

For this section, we will switch back to thinking about differentiable convex
functions.

5.2.1 Strict Convexity

Strict convexity is a “weakening” of strong convexity (we won’t use it so
much in this course but it’s a useful concept to be aware of). A function f
is strictly convex if either:

1. f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y) for 0 < θ < 1.

2. f(y) > f(x) +∇f(x)T (y − x), for any x ̸= y.

It is worth noting the second-order characterization doesn’t work in the ex-
pected way, i.e. you can have twice-differentiable, strictly convex functions
which don’t satisfy the condition that ∇2f(x) ≻ 0. (As an example, think
about the function x4 at x = 0.)

For a strictly convex function, we are guaranteed that its minimizer is unique
if it exists. That is, a strictly convex function has at most one local minimum.

Background: (Continuous, Lipschitz continuous)

Definition 5.2 (Continuous Function). A function f : Rn → R is con-
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tinuous at a point y ∈ dom(f) iff

f(y) exists

lim
x→y

f(x) exists

lim
x→y

f(x) = f(y).

Intuitively, this means the function consists of one curve without any
breaks over the reals. If a function f : Rn → R is continuous over all
points y ∈ Rn, then it is a continuous function.

Definition 5.3 (Continuously Differentiable). A function f : Rn → R
is continuously differentiable if its gradient ∇f(x) exists and each of its

partial derivatives ∂f(x)
∂xi

is a continuous function at all points x.

Definition 5.4 (Lipschitz Continuous). A 1D function f : R → R is
Lipschitz continuous if there exists a constant L ∈ R such that for all
x, y ∈ R:

|f(x)− f(y)| ≤ L|x− y|

That is, the difference of the rate of change of the function from the
beginning to the end of some interval is bounded by a constant factor of
the interval size, for all size intervals.

More generally, a function f : Rn → R is Lipschitz continuous if there
exists a constant L ∈ R such that for all x, y ∈ R:

∥f(x)− f(y)∥ ≤ L∥x− y∥

The above holds for any norm ∥ · ∥, but we can assume we’re working
with the ℓ-2 norm. We say that such a function is L-Lipschitz.

We can understand Lipschitz continuity at a point x geometrically, by
considering two cones: an upper cone and a lower cone sitting above
and below f(x) at x respecitively. The two cones are defined by all lines

whose slope obeys ∥f(x)−f(y)∥
∥x−y∥ ≤ L. Roughly, if for all x the function never

enters the upper or lower cones then it must be L-Lipschitz.
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A smaller Lipschitz constant L means a wider pair of cones, indicating
slower growth or change. Conversely, a larger Lipschitz constant Lmeans
steeper cones, indicating faster growth or change.

Any function that is Lipschitz continuous is also continuous.

Example 5.5. Some examples of functions that are not Lipschitz con-
tinuous are those that grow very rapidly, such as f(x) = exp(x) and
f(x) = x2, both of which become arbitrarily steep as x → ∞.

5.2.2 Smoothness

In optimization smoothness has a very particular meaning (it has a slightly
different meaning in stats, and other areas of math).

Definition 5.6 (β-Smooth). A function f is β-smooth, if its gradient is
Lipschitz continuous with parameter β, i.e. for any x, y ∈ dom(f),

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2.

There are several useful implications of smoothness that we will briefly discuss
now:

1. Another implication of smoothness, is that it implies a quadratic upper
bound on the function, i.e. if f is β-smooth then,

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
∥y − x∥2.

To interpret this fix a point x. Convex functions always lie above their
tangent lines (i.e. f(y) ≥ f(x) + ∇f(x)T (y − x)). Smooth convex
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functions always lie below a parabola which passes through the point
(x, f(x)) (defined by the RHS above).

2. Suppose x∗ is a minimum of a β-smooth function f , then for all y ∈
dom(f)

∥∇f(y)∥2 ≤ β∥y − x∥2

That is, if we are at a point y that is close to the minimum x∗, then
the gradient at y, ∇f(y) must also be small. So any algorithm we have
that follows the gradients of the functions should intuitively slow down
as it approaches the minimum.

3. Finally, if f is twice differentiable, then β-smoothness is equivalent to
the condition that,

0 ⪯ ∇2f(x) ⪯ βId.

where the lower bound 0 ⪯ comes from convexity of f and the upper
bound ⪯ βId comes from β-smoothness of f .

4. If f is β-smooth then the function β
2
∥x∥2 − f(x) is convex. Typically,

we would not expect −f(x) to be convex (except when f is affine).

Segue... Next time we’ll pick up with some examples of β-smooth func-
tions and then look at strong convexity.
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