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Reminders

• Homework 4: Logistic Regression
– Out: Fri, Sep 29
– Due: Mon, Oct 9 at 11:59pm

• Exam viewings
• Lecture on Friday
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A RECIPE FOR ML
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A Recipe for 
Machine Learning

1. Given training data:
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Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Neural Networks)

2. Consider variants of this recipe for training



Linear Regression
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Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Logistic Regression
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Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Perceptron
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Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Neural Network
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Decision Functions

…

…

Output

Input

Hidden Layer



COMPONENTS OF A NEURAL NETWORK
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Neural Network
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Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned 
the weights of the neural 
network.

To make a new prediction, we 
take in some new features 
(aka. the input layer) and 
perform the feed-forward 
computation. 



Neural Network
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Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

Σ = .50

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network

19

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.

Except we only have the 
target value for y at training 

time! 
We have to learn to create 

“useful” values of z1 and z2 in 
the hidden layer.



From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between 

neurons
• A neuron sends an 

electrochemical pulse along its 
synapses when a sufficient voltage 
change occurs

• Biological Neural Network: 
collection of neurons along some 
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic 

graph (DAG)
• Weight: multiplier on each edge
• Activation Function: nonlinear 

thresholding function, which allows a 
neuron to “fire” when the input value 
is sufficiently high 

• Artificial Neural Network: collection 
of neurons into a DAG, which define 
some differentiable function
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Biological “Computation”
• Neuron switching time : ~ 0.001 sec
• Number of neurons:  ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching 

units
• Many weighted interconnections 

among units
• Highly parallel, distributed processes 

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…



DEFINING A 1-HIDDEN LAYER NEURAL 
NETWORK
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Example: Neural Network with One Hidden Layer
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Neural Network
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Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
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β1 β2Weights

Weights



Neural Network
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Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



NONLINEAR DECISION BOUNDARIES AND 
NEURAL NETWORKS
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y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

33

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



1D Face Recognition
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y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Network Parameters
Question:
Suppose you are training a 
one-hidden layer neural 
network with sigmoid 
activations for binary 
classification.

True or False: There is a 
unique set of parameters 
that maximize the 
likelihood of the dataset 
above.
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Answer:



Neural Network Architectures

Even for a basic Neural Network, there are many design 
decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

38



BUILDING WIDER NETWORKS
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Building a Neural Net

40

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D = M



Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D < M



Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D > M



Building a Neural Net
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…

Output

Input

Hidden Layer

In the following examples, we have two input features, 
M=2, and we vary the number of hidden units, D.

The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D ≥ M



DECISION BOUNDARY EXAMPLES
Examples 1 and 2
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band

50

hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden

hidden

hiddenhidden



Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden hidden

hiddenhidden



DECISION BOUNDARY EXAMPLES
Examples 3 and 4
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #3: Four Gaussians

63



Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



BUILDING DEEPER NETWORKS
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Neural Network
Example: Neural Network with 2 
Hidden Layers and 2 Hidden Units
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Neural Network (Matrix Form)
Example: Arbitrary Feed-forward Neural Network
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𝒛(!) = 	σ((𝜶 ! )'𝒙 + 𝒃(!))

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)
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𝑧!
($) 𝑧$
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𝜶($)

𝑦

𝜷

𝑧&!
(!)

…

…

𝑧&"
($)…

𝒛($) = 	σ((𝜶 $ )'𝒛(!) + 𝒃($))

𝑦 = 	σ((𝜷)'𝒛($) + 𝛽& )

𝜶 ! 	 ∈ ℝ(×*'

𝒃(!) ∈ ℝ*'

𝜶 $ 	 ∈ ℝ(×*(

𝒃($) ∈ ℝ*(

𝜷 ∈ ℝ*(

𝛽& ∈ ℝ



Neural Network (Vector Form)
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Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network with 1 Hidden Layers 
and 2 Hidden Units (Matrix Form)



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?



Deeper Networks
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…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?



Q: How many layers should we use?

Deeper Networks
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…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

88
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

decision



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

89
Figures from Lee et al. (ICML 2009)
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…

pixels

lines

parts

objects

CBDN on Faces



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

90
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Cars



Neural Network Errors
Question X: For which of the datasets below 
does there exist a one-hidden layer neural 
network that achieves zero classification 
error? Select all that apply.
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Question Y: For which of the datasets 
below does there exist a one-hidden layer 
neural network for regression that achieves 
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)



Neural Network Architectures

Even for a basic Neural Network, there are many design 
decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters
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ACTIVATION FUNCTIONS
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Activation Functions
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…

…

Output

Input

Hidden Layer

Neural Network with sigmoid 
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Activation Functions
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Neural Network with arbitrary 
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Activation Functions
So far, we’ve 
assumed that the 
activation function 
(nonlinearity) is 
always the sigmoid 
function…

…but the sigmoid 
is not widely used 
in modern neural 
networks 
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Sigmoid (aka. logistic) function

Hyperbolic tangent function



Activation Functions
• sigmoid, σ(x)
– output in range 

(0,1)
– good for 

probabilistic 
outputs

• hyperbolic 
tangent, tanh(x)
– similar shape to 

sigmoid, but 
output in range (-
1,+1)

97

Sigmoid (aka. logistic) function

Hyperbolic tangent function



AI Stats 2010

sigmoid 
vs. 
tanh

depth 5

Figure from Glorot & Bentio (2010)

depth 5
depth 5

depth 5
depth 5



Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute
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Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute
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• Exponential Linear 
Unit (ELU)
– same as ReLU on 

positive inputs
– unlike ReLU, allows 

negative outputs and 
smoothly transitions 
for x < 0



Activation Functions
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1. Training loss 
converges 
fastest with 
ELU

2. ELU(x) yields 
lower test 
error than 
ReLU(x) on 
CIFAR-10

Image Classification Benchmark (CIFAR-10)

Figure from Clevert et al. (2016)



LOSS FUNCTIONS & OUTPUT LAYERS
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Neural Network for Classification
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(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Neural Network for Regression

104

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

y…

…

Output

Input

Hidden Layer



Objective Functions for NNs
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared error

105

2. Binary Cross-Entropy:
– the same objective as Binary Logistic Regression
– i.e. negative log likelihood
– This requires our output y to be a probability in [0,1]



Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss



Multiclass Output
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…

…

Output

Input

Hidden Layer

…



Multiclass Output
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Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
2tT(bk)

�K
l=1 2tT(bl)

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Objective Functions for NNs
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3. Cross-Entropy for Multiclass Outputs:
– i.e. negative log likelihood for multiclass outputs
– Suppose output is a random variable Y that takes one of K values
– Let y(i) represent our true label as a one-hot vector:

– Assume our model outputs a length K vector of probabilities:

– Then we can write the log-likelihood of a single training example (x(i), y(i)) 
as:

0 00 00 …1 0
1 52 63 …4 K

y(i) = 

y = softmax(fscores(x, θ))



Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary logistic 

regression, multinomial logistic regression) as components to 
build up feed-forward neural network architectures

• Explain the reasons why a neural network can model nonlinear 
decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing the 
architecture of a neural network

• Implement a feed-forward neural network
110


