
Neural Networks

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 11

Oct. 4, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 4: Logistic Regression
– Out: Fri, Sep 29
– Due: Mon, Oct 9 at 11:59pm

• Exam viewings
• Lecture on Friday

3

A RECIPE FOR ML

7

A Recipe for
Machine Learning

1. Given training data:

8

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression,
Logistic regression, Neural Network

Examples: Mean-squared error,
Cross Entropy

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

9

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

10

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

11

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions
(Neural Networks)

2. Consider variants of this recipe for training

Linear Regression

12

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a

Logistic Regression

13

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Perceptron

14

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Neural Network

15

Decision Functions

…

…

Output

Input

Hidden Layer

COMPONENTS OF A NEURAL NETWORK

16

Neural Network

17

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned
the weights of the neural
network.

To make a new prediction, we
take in some new features
(aka. the input layer) and
perform the feed-forward
computation.

Neural Network

18

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

Σ = .50

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

19

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

20

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

21

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)
.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

22

Decision Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Except we only have the
target value for y at training

time!
We have to learn to create

“useful” values of z1 and z2 in
the hidden layer.

From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between

neurons
• A neuron sends an

electrochemical pulse along its
synapses when a sufficient voltage
change occurs

• Biological Neural Network:
collection of neurons along some
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic

graph (DAG)
• Weight: multiplier on each edge
• Activation Function: nonlinear

thresholding function, which allows a
neuron to “fire” when the input value
is sufficiently high

• Artificial Neural Network: collection
of neurons into a DAG, which define
some differentiable function

23

Biological “Computation”
• Neuron switching time : ~ 0.001 sec
• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching

units
• Many weighted interconnections

among units
• Highly parallel, distributed processes

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…

DEFINING A 1-HIDDEN LAYER NEURAL
NETWORK

24

Example: Neural Network with One Hidden Layer

25

Neural Network

26

Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

27

Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

28

Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

29

Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

30

Decision Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

NONLINEAR DECISION BOUNDARIES AND
NEURAL NETWORKS

31

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

32

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

33

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

1D Face Recognition

34

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

35

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

36

Decision Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Neural Network Parameters
Question:
Suppose you are training a
one-hidden layer neural
network with sigmoid
activations for binary
classification.

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.

37

Answer:

Neural Network Architectures

Even for a basic Neural Network, there are many design
decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

38

BUILDING WIDER NETWORKS

39

Building a Neural Net

40

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D = M

Building a Neural Net

41

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D < M

Building a Neural Net

42

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D > M

Building a Neural Net

43

…

Output

Input

Hidden Layer

In the following examples, we have two input features,
M=2, and we vary the number of hidden units, D.

The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D ≥ M

DECISION BOUNDARY EXAMPLES
Examples 1 and 2

44

45

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band

46

Example #1: Diagonal Band

47

Example #1: Diagonal Band

48

hidden

Example #1: Diagonal Band

49

hidden

Example #1: Diagonal Band

50

hidden

Example #1: Diagonal Band

51

hidden

Example #1: Diagonal Band

52

hidden

hidden

hiddenhidden

Example #2: One Pocket

53

Example #2: One Pocket

54

Example #2: One Pocket

55

hidden

Example #2: One Pocket

56

hidden

Example #2: One Pocket

57

hidden

Example #2: One Pocket

58

hidden

Example #2: One Pocket

59

hidden

Example #2: One Pocket

60

hidden hidden

hiddenhidden

DECISION BOUNDARY EXAMPLES
Examples 3 and 4

61

62

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #3: Four Gaussians

63

Example #3: Four Gaussians

64

Example #3: Four Gaussians

65

Example #3: Four Gaussians

66

hidden

Example #3: Four Gaussians

67

hidden

Example #3: Four Gaussians

68

hidden

Example #3: Four Gaussians

69

hidden

Example #4: Two Pockets

70

Example #4: Two Pockets

71

Example #4: Two Pockets

74

Example #4: Two Pockets

75

hidden

Example #4: Two Pockets

76

hidden

Example #4: Two Pockets

77

hidden

Example #4: Two Pockets

78

hidden

BUILDING DEEPER NETWORKS

79

Neural Network
Example: Neural Network with 2
Hidden Layers and 2 Hidden Units

80

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)

𝛼!!
(!)

𝛼!$
(!)

𝛼!%
(!)𝛼$!

(!) 𝛼$$
(!) 𝛼$%

(!)

𝑧!
($) 𝑧$

($)

𝛼!!
($)

𝛼!$
($)

𝛼$!
($)

𝛼$$
($)

𝑦

𝛽! 𝛽$
𝑧!
(!) = 	σ(𝛼!!

! 𝑥! + 𝛼!$
! 𝑥$ + 𝛼!%

! 𝑥% + 𝛼!&
!)

𝑧$
(!) = 	σ(𝛼$!

! 𝑥! + 𝛼$$
! 𝑥$ + 𝛼$%

! 𝑥% + 𝛼$&
!)

𝑧!
($) = 	σ(𝛼!!

$ 𝑧!
(!) + 𝛼!$

$ 𝑧$
(!) + 𝛼!&

$)

𝑧$
($) = 	σ(𝛼$!

$ 𝑧!
(!) + 𝛼$$

$ 𝑧$
(!) + 𝛼$&

$)

𝑦 = 	σ(𝛽! 𝑧!
($) + 𝛽$ 𝑧$

($) + 𝛽&)

Neural Network (Matrix Form)
Example: Arbitrary Feed-forward Neural Network

82

𝒛(!) = 	σ((𝜶 !)'𝒙 + 𝒃(!))

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)

𝜶(!)

𝑧!
($) 𝑧$

($)

𝜶($)

𝑦

𝜷

𝑧&!
(!)

…

…

𝑧&"
($)…

𝒛($) = 	σ((𝜶 $)'𝒛(!) + 𝒃($))

𝑦 = 	σ((𝜷)'𝒛($) + 𝛽&)

𝜶 ! 	 ∈ ℝ(×*'

𝒃(!) ∈ ℝ*'

𝜶 $ 	 ∈ ℝ(×*(

𝒃($) ∈ ℝ*(

𝜷 ∈ ℝ*(

𝛽& ∈ ℝ

Neural Network (Vector Form)

83

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network with 1 Hidden Layers
and 2 Hidden Units (Matrix Form)

Deeper Networks

84

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?

Deeper Networks

85

…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?

Q: How many layers should we use?

Deeper Networks

86

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Deeper Networks

87

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function
approximator

– Cybenko (1989): For any continuous function g(x), there
exists a 1-hidden-layer neural net hθ(x)
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers)

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

88
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

decision

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

89
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Faces

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

90
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Cars

Neural Network Errors
Question X: For which of the datasets below
does there exist a one-hidden layer neural
network that achieves zero classification
error? Select all that apply.

91

Question Y: For which of the datasets
below does there exist a one-hidden layer
neural network for regression that achieves
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)

Neural Network Architectures

Even for a basic Neural Network, there are many design
decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

92

ACTIVATION FUNCTIONS

93

Activation Functions

94

…

…

Output

Input

Hidden Layer

Neural Network with sigmoid
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Activation Functions

95

Neural Network with arbitrary
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer

Activation Functions
So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function…

…but the sigmoid
is not widely used
in modern neural
networks

96

Sigmoid (aka. logistic) function

Hyperbolic tangent function

Activation Functions
• sigmoid, σ(x)
– output in range

(0,1)
– good for

probabilistic
outputs

• hyperbolic
tangent, tanh(x)
– similar shape to

sigmoid, but
output in range (-
1,+1)

97

Sigmoid (aka. logistic) function

Hyperbolic tangent function

AI Stats 2010

sigmoid
vs.
tanh

depth 5

Figure from Glorot & Bentio (2010)

depth 5
depth 5

depth 5
depth 5

Activation Functions
• Rectified Linear Unit

(ReLU)
– avoids the vanishing

gradient problem
– derivative is fast to

compute

99

Activation Functions
• Rectified Linear Unit

(ReLU)
– avoids the vanishing

gradient problem
– derivative is fast to

compute

100

• Exponential Linear
Unit (ELU)
– same as ReLU on

positive inputs
– unlike ReLU, allows

negative outputs and
smoothly transitions
for x < 0

Activation Functions

101

1. Training loss
converges
fastest with
ELU

2. ELU(x) yields
lower test
error than
ReLU(x) on
CIFAR-10

Image Classification Benchmark (CIFAR-10)

Figure from Clevert et al. (2016)

LOSS FUNCTIONS & OUTPUT LAYERS

102

Neural Network for Classification

103

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer

Neural Network for Regression

104

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

y…

…

Output

Input

Hidden Layer

Objective Functions for NNs
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared error

105

2. Binary Cross-Entropy:
– the same objective as Binary Logistic Regression
– i.e. negative log likelihood
– This requires our output y to be a probability in [0,1]

Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss

Multiclass Output

107

…

…

Output

Input

Hidden Layer

…

Multiclass Output

108

Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
2tT(bk)

�K
l=1 2tT(bl)

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Objective Functions for NNs

109

3. Cross-Entropy for Multiclass Outputs:
– i.e. negative log likelihood for multiclass outputs
– Suppose output is a random variable Y that takes one of K values
– Let y(i) represent our true label as a one-hot vector:

– Assume our model outputs a length K vector of probabilities:

– Then we can write the log-likelihood of a single training example (x(i), y(i))
as:

0 00 00 …1 0
1 52 63 …4 K

y(i) =

y = softmax(fscores(x, θ))

Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary logistic

regression, multinomial logistic regression) as components to
build up feed-forward neural network architectures

• Explain the reasons why a neural network can model nonlinear
decision boundaries for classification

• Compare and contrast feature engineering with learning
features

• Identify (some of) the options available when designing the
architecture of a neural network

• Implement a feed-forward neural network
110

