

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Networks

Matt Gormley Lecture 11 Oct. 4, 2023

Reminders

- Homework 4: Logistic Regression
 - Out: Fri, Sep 29
 - Due: Mon, Oct 9 at 11:59pm
- Exam viewings
- Lecture on Friday

A RECIPE FOR ML

Background

A Recipe for Machine Learning

Face

Face

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

- 2. Choose each of these:
 - Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Examples: Linear regression, Logistic regression, Neural Network

Not a face

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$

3. Define goal:
$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

– Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

4. Train with SGD:(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for

Gradients

1. Given training dat **Backprop** $\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^{N}$ gradient!
And it's a

2. Choose each of t

– Decision function $\hat{m{y}}=f_{m{ heta}}(m{x}_i)$

– Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)

 $-\eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

A Recipe for

Backgrou Goals for Today's Lecture

- Explore a new class of decision functions (Neural Networks)
 - 2. Consider variants of this recipe for training

2. choose each or these

– Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

 $\ell(\hat{\pmb{y}}, \pmb{y}_i) \in \mathbb{R}$

Train with SGD:
 ke small steps
 opposite the gradient)

 $oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$

Perceptron

COMPONENTS OF A NEURAL NETWORK

Neural Network

Suppose we already learned the weights of the neural network.

To make a new prediction, we take in some new features (aka. the input layer) and perform the feed-forward computation.

Neural Network

 $.62 = \sigma(.50)$.50 = 13(.1) + 2(.3) + 7(-.2)

The computation of each neural network unit resembles binary logistic regression.

Neural Network

 $.57 = \sigma(.29)$.29 = .62(-.7) + .80(.9)

 $.80 = \sigma(1.4)$ 1.4 = 13(-.4) + 2(.5) + 7(.8)

 $.62 = \sigma(.50)$.50 = 13(.1) + 2(.3) + 7(-.2)

The computation of each neural network unit resembles binary logistic regression.

Neural Network

target value for y at training We have to learn to create "useful" values of z_1 and z_2 in the hidden layer.

From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology...

Biological "Model"

- Neuron: an excitable cell
- **Synapse:** connection between neurons
- A neuron sends an electrochemical pulse along its synapses when a sufficient voltage change occurs
- **Biological Neural Network:** collection of neurons along some pathway through the brain

Biological "Computation"

- Neuron switching time : ~ 0.001 sec
- Number of neurons: $\sim 10^{10}$
- Connections per neuron: ~ 10⁴⁻⁵
- Scene recognition time: ~ 0.1 sec

Artificial Model

- Neuron: node in a directed acyclic graph (DAG)
- Weight: multiplier on each edge
- Activation Function: nonlinear thresholding function, which allows a neuron to "fire" when the input value is sufficiently high

Synapse

Axon

• Artificial Neural Network: collection of neurons into a DAG, which define some differentiable function

Artificial Computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

DEFINING A 1-HIDDEN LAYER NEURAL NETWORK

Example: Neural Network with One Hidden Layer

$$X in \in \mathbb{R}$$

 $Zm \in \mathbb{R}$ (general case)
 $Zm \in (0,1)$ (for sigmoid act)

Let
$$\sigma$$
 be an activation function
If σ is signal: $\sigma(q) = \frac{1}{2 + exp(-q)}$
 $z_1 = \sigma(X_{11}X_1 + \alpha_{12}X_2 + \alpha_{10})$
 $z_2 = \sigma(\alpha_{21}X_1 + \alpha_{22}X_2 + \alpha_{20})$
 $\gamma = \sigma(\beta_1 z_1 + \beta_2 z_2 + \beta_0)$
 $= \sigma(\beta_1 \sigma(\alpha_{11}X_1 + \alpha_{12}X_2 + \alpha_{10}) + \beta_2 \sigma(\alpha_{21}X_1 + \alpha_{12}X_2 + \alpha_{10}) + \beta_2 \sigma(\alpha_{11}X_1 + \alpha_{12}X_2 + \alpha_{11}X_1$

$$y = \sigma(eta_1 z_1 + eta_2 z_2)$$

$$z_2 = \sigma(\alpha_{21}x_1 + \alpha_{22}x_2 + \alpha_{23}x_3)$$
$$z_1 = \sigma(\alpha_{11}x_1 + \alpha_{12}x_2 + \alpha_{13}x_3)$$

NONLINEAR DECISION BOUNDARIES AND NEURAL NETWORKS

Logistic Regression

Logistic Regression

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function
- 5. How to initialize the parameters

BUILDING WIDER NETWORKS

D = **M** Building a Neural Net

Q: How many hidden units, D, should we use?

D < M Building a Neural Net

Q: How many hidden units, D, should we use?

The hidden units could learn to be...

- a selection of the most useful features
- nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

D > M Building a Neural Net

Q: How many hidden units, D, should we use?

The hidden units could learn to be...

- a selection of the most useful features
- nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

$D \ge M$ Building a Neural Net

In the following examples, we have two input features, M=2, and we vary the number of hidden units, D.

The hidden units could learn to be...

- a selection of the most useful features
- nonlinear combinations of the features
- a lower
 dimensional
 projection of
 the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

Examples 1 and 2

DECISION BOUNDARY EXAMPLES

0.4

0.2

-0.8

-1.0

-1.0

Example #2: One Pocket

Example #4: Two Pockets

Example #1: Diagonal Band 2 1 -0 --1 --2 --3 -2 . О 1 1 -1 2 -3

LR1 for Tuned Neural Network (hidden=2, activation=logistic) 2 1 -Xz 0 - $Z_1 = f(\chi_1, \chi_2)$ -1 --2 -7 -3 -2 -10 2 -3 1 X

LR1 for Tuned Neural Network (hidden=2, activation=logistic)

LR2 for Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

LR3 for Tuned Neural Network (hidden=3, activation=logistic) 2 -1 -0 -0.300 $^{-1}$ -2 --3 -2 ' 0 $\stackrel{\scriptscriptstyle |}{1}$ ' 2 -1-3

Examples 3 and 4

DECISION BOUNDARY EXAMPLES

0.4

0.2

-0.8

-1.0

-1.0

K-NN (k=5, metric=euclidean)

Tuned Neural Network (hidden=2, activation=logistic) 2 -1 -0 --1 --2 -2 ' 0 $\stackrel{\scriptscriptstyle{}}{1}$ ' 2 -1

Tuned Neural Network (hidden=3, activation=logistic) 2 -1 -0 --1 --2 -2 1 1 ' 2 $^{-1}$ 0

Tuned Neural Network (hidden=4, activation=logistic)

Tuned Neural Network (hidden=10, activation=logistic)

BUILDING DEEPER NETWORKS

Neural Network

Example: Neural Network with 2 Hidden Layers and 2 Hidden Units

$$z_{1}^{(1)} = \sigma(\alpha_{11}^{(1)}x_{1} + \alpha_{12}^{(1)}x_{2} + \alpha_{13}^{(1)}x_{3} + \alpha_{10}^{(1)})$$

$$z_{2}^{(1)} = \sigma(\alpha_{21}^{(1)}x_{1} + \alpha_{22}^{(1)}x_{2} + \alpha_{23}^{(1)}x_{3} + \alpha_{20}^{(1)})$$

$$z_{1}^{(2)} = \sigma(\alpha_{11}^{(2)}z_{1}^{(1)} + \alpha_{12}^{(2)}z_{2}^{(1)} + \alpha_{10}^{(2)})$$

$$z_{2}^{(2)} = \sigma(\alpha_{21}^{(2)}z_{1}^{(1)} + \alpha_{22}^{(2)}z_{2}^{(1)} + \alpha_{20}^{(2)})$$

$$y = \sigma(\beta_{1} z_{1}^{(2)} + \beta_{2} z_{2}^{(2)} + \beta_{0})$$

Neural Network (Vector Form)

Neural Network with 1 Hidden Layers and 2 Hidden Units (Matrix Form)

Q: How many layers should we use?

Q: How many layers should we use?

Q: How many layers should we use?

- Theoretical answer:
 - A neural network with 1 hidden layer is a universal function approximator
 - Cybenko (1989): For any continuous function $g(\mathbf{x})$, there exists a 1-hidden-layer neural net $h_{\theta}(\mathbf{x})$ s.t. $|h_{\theta}(\mathbf{x}) - g(\mathbf{x})| < \epsilon$ for all \mathbf{x} , assuming sigmoid activation functions
- Empirical answer:
 - Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
 - After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

Big caveat: You need to know and use the right tricks.

Feature Learning

- Traditional feature engineering: build up levels of abstraction by hand
- **Deep networks** (e.g. convolution networks): learn the increasingly higher levels of abstraction from data
 - each layer is a learned feature representation
 - sophistication increases in higher layers

Feature Learning

Traditional feature engineering: build up levels of abstraction by hand

Deep networks (e.g. convolution networks): learn the increasingly higher levels of abstraction from data

- each layer is a learned feature representation
- sophistication increases in higher layers

Feature Learning

 Traditional feature engineering: build up levels of abstraction by hand

Deep networks (e.g. convolution networks): learn the increasingly higher levels of abstraction from data

- each layer is a learned feature representation
- sophistication increases in higher layers

Neural Network Errors

Question X: For which of the datasets below does there exist a one-hidden layer neural network that achieves zero *classification* error? **Select all that apply.**

 Q_2

Question Y: For which of the datasets below does there exist a one-hidden layer neural network for *regression* that achieves *nearly* zero MSE? **Select all that apply.**

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function
- 5. How to initialize the parameters

ACTIVATION FUNCTIONS

So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

Sigmoid (aka. logistic) function

... but the sigmoid is not widely used in modern neural networks

- sigmoid, $\sigma(x)$
 - output in range(0,1)
 - good for
 probabilistic
 outputs
- hyperbolic tangent, tanh(x)
 - similar shape to sigmoid, but output in range (- 1,+1)

Sigmoid (aka. logistic) function

Hyperbolic tangent function

Understanding the difficulty of training deep feedforward neural networks

Figure from Glorot & Bentio (2010)

- Rectified Linear Unit (ReLU)
 - avoids the vanishing gradient problem
 - derivative is fast to compute

 $\operatorname{ReLU}(x) = max(0, x)$

- Rectified Linear Unit (ReLU)
 - avoids the vanishing gradient problem
 - derivative is fast to compute

 $\operatorname{ReLU}(x) = max(0, x)$

- Exponential Linear Unit (ELU)
 - same as ReLU on positive inputs
 - unlike ReLU, allows negative outputs and smoothly transitions for x < 0

$$\mathsf{ELU}(x) = \begin{cases} x, & \text{if } x > 0\\ \alpha(\exp(x) - 1), & \text{if } x \le 0 \end{cases}$$

- 1. Training loss converges fastest with ELU
- 2. ELU(x) yields lower test error than ReLU(x) on CIFAR-10

Figure from Clevert et al. (2016)

LOSS FUNCTIONS & OUTPUT LAYERS

Neural Network for Classification

Neural Network for Regression

Objective Functions for NNs

- 1. Quadratic Loss:
 - the same objective as Linear Regression
 - i.e. mean squared error

$$J = \ell_Q(y, y^{(i)}) = \frac{1}{2}(y - y^{(i)})^2$$
$$\frac{dJ}{dy} = y - y^{(i)}$$

- 2. Binary Cross-Entropy:
 - the same objective as Binary Logistic Regression
 - i.e. negative log likelihood
 - This requires our output y to be a probability in [0,1]

$$J = \ell_{CE}(y, y^{(i)}) = -(y^{(i)} \log(y) + (1 - y^{(i)}) \log(1 - y))$$
$$\frac{dJ}{dy} = -\left(y^{(i)} \frac{1}{y} + (1 - y^{(i)}) \frac{1}{y - 1}\right)$$

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Figure from Glorot & Bentio (2010)

Multiclass Output

Multiclass Output

Objective Functions for NNs

- 3. Cross-Entropy for Multiclass Outputs:
 - i.e. negative log likelihood for multiclass outputs
 - Suppose output is a random variable Y that takes one of K values
 - Let $\mathbf{y}^{(i)}$ represent our true label as a one-hot vector:

$$\mathbf{y}^{(i)} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & \dots & K \end{bmatrix}$$

– Assume our model outputs a length K vector of probabilities:

$$y = softmax(f_{scores}(x, \theta))$$

Then we can write the log-likelihood of a single training example (x⁽ⁱ⁾, y⁽ⁱ⁾) as:

$$J = \ell_{CE}(\mathbf{y}, \mathbf{y}^{(i)}) = -\sum_{k=1}^{K} y_k^{(i)} \log(y_k)$$

Neural Networks Objectives

You should be able to...

- Explain the biological motivations for a neural network
- Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
- Explain the reasons why a neural network can model nonlinear decision boundaries for classification
- Compare and contrast feature engineering with learning features
- Identify (some of) the options available when designing the architecture of a neural network
- Implement a feed-forward neural network