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10-301/601: Introduction 
to Machine Learning
Lecture 13 – 
Differentiation 



Front Matter

� Announcements

� HW4 released 9/29, due 10/9 at 11:59 PM

� HW5 released 10/9, due 10/27 (after fall break) 
at 11:59 PM

� HW5 recitation on 10/11 (Wednesday) 

� Exam 1 viewings happening tonight (10/6) and 

Monday (10/9)
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Recall: Neural 
Networks 
(Matrix Form)
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Recall: Neural 
Networks 
(Matrix Form)
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Forward 
Propagation 
for Making 
Predictions

� Inputs: weights 𝜶 ! , … , 𝜶 " , 𝜷 and a query data point 𝒙#

� Initialize 𝒛 $ = 𝒙#

� For 𝑙 = 1,… , 𝐿

� 𝒂 % = 𝜶 % &𝒛 %'!

� 𝒛 % = 𝜎 𝒂 %

� -𝑦 = 𝜎 𝜷&𝒛 "

� Output: the prediction -𝑦
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Stochastic 
Gradient 
Descent 
for Learning

� Input: 𝒟 = 𝒙 ( , 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 ( 𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 ( 𝜶 ! , … , 𝜶 " , 𝜷

� Update 𝜷 = 𝜷 − 𝛾𝑔𝜷
� For 𝑙 = 1,… , 𝐿

� Update 𝜶 % = 𝜶 % − 𝛾𝑔𝜶 !

� Output:𝜶 ! , … , 𝜶 " , 𝜷 610/6/23



Two questions: 

1. What is this 
loss function 
𝐽 ! ?

2. How on earth 
do we take 
these gradients?

� Input: 𝒟 = 𝒙 ( , 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 ( 𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 ( 𝜶 ! , … , 𝜶 " , 𝜷

� Update 𝜷 = 𝜷 − 𝛾𝑔𝜷
� For 𝑙 = 1,… , 𝐿

� Update 𝜶 % = 𝜶 % − 𝛾𝑔𝜶 !

� Output:𝜶 ! , … , 𝜶 " , 𝜷 710/6/23



Two questions: 

1. What is this 
loss function 
𝐽 ! ?

2. How on earth 
do we take 
these gradients?

� Input: 𝒟 = 𝒙 ( , 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 ( 𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 ( 𝜶 ! , … , 𝜶 " , 𝜷
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� Output:𝜶 ! , … , 𝜶 " , 𝜷 810/6/23



Loss 
Functions 
for Neural 
Networks

� Let 𝚯 = 𝜶 ! , … , 𝜶 " , 𝜷  be the parameters of our neural network

� Regression - squared error (same as linear regression!) 

𝐽 ( 𝚯 = -𝑦𝚯 𝒙 ( − 𝑦 ( .

� Binary classification - cross-entropy loss (same as logistic regression!)

� Assume 𝑌 ∈ 0,1  and 𝑃 𝑌 = 1 𝒙,𝚯 = -𝑦𝚯 𝒙

𝐽 ( 𝚯 = − log𝑃 𝑦 ( |𝒙 ( , 𝚯

𝐽 ( 𝚯 = − log -𝑦𝚯 𝒙 ( / "
1 − -𝑦𝚯 𝒙 (

!'/ "

𝐽 ( 𝚯 = − 𝑦 ( log -𝑦𝚯 𝒙 ( + 1 − 𝑦 ( log 1 − -𝑦𝚯 𝒙 (

10/6/23 9



Loss 
Functions 
for Neural 
Networks
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� Let 𝚯 = 𝜶 ! , … , 𝜶 " , 𝜷  be the parameters of our neural network

� Multi-class classification - cross-entropy loss again!

� Express the label as a one-hot or one-of-𝐶 vector e.g.,

𝒚 = 0 0 1 0 ⋯ 0

� Assume the neural network output is also a vector of length 𝐶, J𝒚𝚯

𝑃 𝒚 𝑐 = 1 𝒙,𝚯 = 	 J𝒚𝚯 𝒙 ( 𝑐

� Then the cross-entropy loss is

𝐽 ( 𝚯 = − log𝑃 𝑦 ( |𝒙 ( , 𝚯

𝐽 ( 𝚯 = −M
0)!

1

𝒚 ( 𝑐 log J𝒚𝚯 𝒙 ( 𝑐



Okay but 
how do 
we get 
our 
network 
to output
this 
vector?
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Softmax
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Two questions: 

1. What is this 
loss function 
𝐽 ! ?

2. How on earth 
do we take 
these gradients?

� Input: 𝒟 = 𝒙 ( , 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)
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Matrix 
Calculus

Types of 
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

D
en

om
in

at
or

Table courtesy of Matt Gormley10/6/23 14



Matrix 
Calculus: 
Denominator 
Layout

� Derivatives of a 

scalar always 
have the same 
shape as the 

entity that the 
derivative is 
being taken 
with respect to. 

Types of 
Derivatives scalar

scalar

vector

matrix

Table courtesy of Matt Gormley10/6/23 15



Matrix 
Calculus: 
Denominator 
Layout

Types of 
Derivatives scalar vector

scalar

vector

Table courtesy of Matt Gormley10/6/23 16



Three 
Approaches to 
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of 

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is 

proportional to the cost of computing 𝑓 𝒙
10/6/23 17
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Approach 1: 
Finite 
Difference 
Method

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

𝜕𝑓 𝒙
𝜕𝑥(

≈
𝑓 𝒙 + 𝜖𝒅( − 𝑓 𝒙 − 𝜖𝒅(

2𝜖

where 𝒅( is a one-hot vector with a 1 in the 𝑖th position

� We want 𝜖 to be small to get a good approximation but we 

run into floating point issues when 𝜖 is too small 

� Getting the full gradient requires computing the above 
approximation for each dimension of the input

𝑓 𝑥

𝑥𝜖 𝜖



� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

>>> from math import *

>>> y = lambda x,z: exp(x*z)+(x*z)/log(x)+sin(log(x))/(x*z)

>>> x = 2

>>> z = 3

>>> e = 10**-8

>>> dydx = (y(x+e,z)-y(x-e,z))/(2*e)

>>> dydz = (y(x,z+e)-y(x,z-e))/(2*e)

>>> print(dydx, dydz)
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Approach 1: 
Finite 
Difference 
Method
Example

Example courtesy of Matt Gormley



Three 
Approaches to 
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of 

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is 

proportional to the cost of computing 𝑓 𝒙
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Approach 2: 
Symbolic 
Differentiation

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

� Looks like we’re gonna need the chain rule!

Example courtesy of Matt Gormley



The Chain Rule 
of Calculus

� If 𝑦 = 𝑓 𝑧  and 𝑧 = 𝑔 𝑥  then 

the corresponding computation graph is 

� If 𝑦 = 𝑓 𝑧!, 𝑧.  and 𝑧! = 𝑔! 𝑥 , 𝑧. = 𝑔. 𝑥  then 

� If 𝑦 = 𝑓 𝒛  and 𝒛 = 𝑔 𝑥  then 

10/6/23 22
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⟹
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Poll Question 1

� If 𝑦 = 𝑓 𝒛 , 𝒛 = 𝑔 𝒘  and 𝒘 = ℎ 𝑥 , does the equation 

still hold?

A. Yes

B. No

C. Only on Fridays (TOXIC)
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Approach 2: 
Symbolic 
Differentiation

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

𝜕𝑦
𝜕𝑥

=
𝜕
𝜕𝑥

𝑒;< +
𝜕
𝜕𝑥

𝑥𝑧
ln 𝑥

+
𝜕
𝜕𝑥

sin ln 𝑥
𝑥𝑧

𝜕𝑦
𝜕𝑥

= 𝑧𝑒;< +
𝑧

ln 𝑥
−

𝑧
ln 𝑥 . +

cos ln 𝑥
𝑥.𝑧

−
sin ln 𝑥

𝑥.𝑧
𝜕𝑦
𝜕𝑥

= 3𝑒= +
3

ln 2
−

3
ln 2 . +

cos ln 2
12

−
sin ln 2

12
𝜕𝑦
𝜕𝑧

=
𝜕
𝜕𝑧

𝑒;< +
𝜕
𝜕𝑧

𝑥𝑧
ln 𝑥

+
𝜕
𝜕𝑧

sin ln 𝑥
𝑥𝑧

𝜕𝑦
𝜕𝑥

= 2𝑒= +
2

ln 2
−
sin ln 2

18 Example courtesy of Matt Gormley



Three 
Approaches to 
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of 

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is proportional 

to the cost of computing 𝑓 𝒙
10/6/23 25



� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

� First define some intermediate quantities, draw the  
computation graph and run the “forward” computation

10/6/23 26

Approach 3: 
Automatic 
Differentiation 
(reverse mode)

𝑎 = 𝑥𝑧
𝑏 = ln 𝑥
𝑐 = sin 𝑏
𝑑 = 𝑒>

𝑒 = [𝑎 𝑏
𝑓 = ⁄𝑐 𝑎

𝑦 = 𝑑 + 𝑒 + 𝑓

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

Example courtesy of Matt Gormley



� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

� Then compute partial derivatives, 
starting from 𝑦 and working back

10/6/23 27

Approach 3: 
Automatic 
Differentiation 
(reverse mode)

Example courtesy of Matt Gormley

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓
+

𝑦



Three 
Approaches to 
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of 

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is proportional 

to the cost of computing 𝑓 𝒙
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Automatic 
Differentiation
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� Given 𝑓:	ℝ6 → ℝ1, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 𝑓 𝒙

� Computational cost of computing ∇𝒙𝑓 𝒙 0 = [9: 𝒙 #
9𝒙  

is proportional to the cost of computing 𝑓 𝒙
� Great for high-dimensional inputs and low-dimensional 

outputs (𝐷 ≫ 𝐶)

4. Automatic differentiation (forward mode)
� Requires systematic knowledge of derivatives and an 

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙$  

is proportional to the cost of computing 𝑓 𝒙
� Great for low-dimensional inputs and high-dimensional 

outputs (𝐷 ≪ 𝐶)



Computation 
Graph: 
10-301/601 
Conventions
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� The diagram represents an algorithm 

� Nodes are rectangles with one node per intermediate 
variable in the algorithm 

� Each node is labeled with the function that it computes 

(inside the box) and the variable name (outside the box) 

� Edges are directed and do not have labels 

� For neural networks: 

� Each weight, feature value, label and bias term 
appears as a node

� We can include the loss function 



Neural 
Network 
Diagram
Conventions

� The diagram represents a neural network 

� Nodes are circles with one node per hidden unit 

� Each node is labeled with the variable corresponding to 
the hidden unit 

� Edges are directed and each edge is labeled with its weight 

� Following standard convention, the bias term is typically 
not shown as a node, but rather is assumed to be part of 
the activation function i.e., its weight does not appear in 
the picture anywhere.

� The diagram typically does not include any nodes related 
to the loss computation
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Backprop 
Learning 
Objectives

You should be able to…

� Differentiate between a neural network diagram and a computation graph 

� Construct a computation graph for a function as specified by an algorithm 

� Carry out the backpropagation on an arbitrary computation graph 

� Construct a computation graph for a neural network, identifying all the 
given and intermediate quantities that are relevant 

� Instantiate the backpropagation algorithm for a neural network 

� Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) 
when the parameters of a model are comprised of several matrices 
corresponding to different layers of a neural network 

� Use the finite difference method to evaluate the gradient of a function 

� Identify when the gradient of a function can be computed at all and when 
it can be computed efficiently 

� Employ basic matrix calculus to compute vector/matrix/tensor derivatives.
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