
Henry Chai & Matt Gormley

10/6/23

10-301/601: Introduction
to Machine Learning
Lecture 13 –
Differentiation

Front Matter

� Announcements

� HW4 released 9/29, due 10/9 at 11:59 PM

� HW5 released 10/9, due 10/27 (after fall break)
at 11:59 PM

� HW5 recitation on 10/11 (Wednesday)

� Exam 1 viewings happening tonight (10/6) and

Monday (10/9)

10/6/23 2

Recall: Neural
Networks
(Matrix Form)

10/6/23 3

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)

𝜶(!)

𝑧!
($) 𝑧$

($)

𝜶($)

𝑦

𝜷

𝑧&!
(!)

…

…

𝑧&"
($)…

𝒛(") = 	σ((𝜶 ")$𝒙 + 𝒃("))

𝒛(%) = 	σ((𝜶 %)$𝒛(") + 𝒃(%))

𝑦 = 	σ((𝜷)$𝒛(%) + 𝛽&)

𝜶 " 	 ∈ ℝ'×)'

𝒃(") ∈ ℝ)'

𝜶 % 	 ∈ ℝ'×)(

𝒃(%) ∈ ℝ)(

𝜷 ∈ ℝ)(

𝛽& ∈ ℝ

𝜶 " *
= 𝒃 " $

𝜶 " 	 ∈ ℝ '+" ×)'

Recall: Neural
Networks
(Matrix Form)

10/6/23 4

𝒛(") = 	σ 𝜶 " *) 1
𝒙

𝑦 = 	σ 𝜷*$
1
𝒛 %

𝜷* = 𝛽&
𝜷

∈ ℝ)(+"

𝜶 % *
= 𝒃 % $

𝜶 % 	 ∈ ℝ)'+" ×)(

𝒛(%) = 	σ 𝜶 % *$ 1
𝒛 "

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)

𝜶(!)

𝑧!
($) 𝑧$

($)

𝜶($)

𝑦

𝜷

𝑧&!
(!)

…

…

𝑧&"
($)…

Forward
Propagation
for Making
Predictions

� Inputs: weights 𝜶 ! , … , 𝜶 " , 𝜷 and a query data point 𝒙#

� Initialize 𝒛 $ = 𝒙#

� For 𝑙 = 1,… , 𝐿

� 𝒂 % = 𝜶 % &𝒛 %'!

� 𝒛 % = 𝜎 𝒂 %

� -𝑦 = 𝜎 𝜷&𝒛 "

� Output: the prediction -𝑦

510/6/23

Stochastic
Gradient
Descent
for Learning

� Input: 𝒟 = 𝒙 (, 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� Update 𝜷 = 𝜷 − 𝛾𝑔𝜷
� For 𝑙 = 1,… , 𝐿

� Update 𝜶 % = 𝜶 % − 𝛾𝑔𝜶 !

� Output:𝜶 ! , … , 𝜶 " , 𝜷 610/6/23

Two questions:

1. What is this
loss function
𝐽 ! ?

2. How on earth
do we take
these gradients?

� Input: 𝒟 = 𝒙 (, 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� Update 𝜷 = 𝜷 − 𝛾𝑔𝜷
� For 𝑙 = 1,… , 𝐿

� Update 𝜶 % = 𝜶 % − 𝛾𝑔𝜶 !

� Output:𝜶 ! , … , 𝜶 " , 𝜷 710/6/23

Two questions:

1. What is this
loss function
𝐽 ! ?

2. How on earth
do we take
these gradients?

� Input: 𝒟 = 𝒙 (, 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� Update 𝜷 = 𝜷 − 𝛾𝑔𝜷
� For 𝑙 = 1,… , 𝐿

� Update 𝜶 % = 𝜶 % − 𝛾𝑔𝜶 !

� Output:𝜶 ! , … , 𝜶 " , 𝜷 810/6/23

Loss
Functions
for Neural
Networks

� Let 𝚯 = 𝜶 ! , … , 𝜶 " , 𝜷 be the parameters of our neural network

� Regression - squared error (same as linear regression!)

𝐽 (𝚯 = -𝑦𝚯 𝒙 (− 𝑦 (.

� Binary classification - cross-entropy loss (same as logistic regression!)

� Assume 𝑌 ∈ 0,1 and 𝑃 𝑌 = 1 𝒙,𝚯 = -𝑦𝚯 𝒙

𝐽 (𝚯 = − log𝑃 𝑦 (|𝒙 (, 𝚯

𝐽 (𝚯 = − log -𝑦𝚯 𝒙 (/ "
1 − -𝑦𝚯 𝒙 (

!'/ "

𝐽 (𝚯 = − 𝑦 (log -𝑦𝚯 𝒙 (+ 1 − 𝑦 (log 1 − -𝑦𝚯 𝒙 (

10/6/23 9

Loss
Functions
for Neural
Networks

10/6/23 10

� Let 𝚯 = 𝜶 ! , … , 𝜶 " , 𝜷 be the parameters of our neural network

� Multi-class classification - cross-entropy loss again!

� Express the label as a one-hot or one-of-𝐶 vector e.g.,

𝒚 = 0 0 1 0 ⋯ 0

� Assume the neural network output is also a vector of length 𝐶, J𝒚𝚯

𝑃 𝒚 𝑐 = 1 𝒙,𝚯 = 	 J𝒚𝚯 𝒙 (𝑐

� Then the cross-entropy loss is

𝐽 (𝚯 = − log𝑃 𝑦 (|𝒙 (, 𝚯

𝐽 (𝚯 = −M
0)!

1

𝒚 (𝑐 log J𝒚𝚯 𝒙 (𝑐

Okay but
how do
we get
our
network
to output
this
vector?

10/6/23 11

� Let 𝚯 = 𝜶 ! , … , 𝜶 " , 𝜷 be the parameters of our neural network

� Multi-class classification - cross-entropy loss

� Express the label as a one-hot or one-of-𝐶 vector e.g.,

𝒚 = 0 0 1 0 ⋯ 0

� Assume the neural network output is also a vector of length 𝐶, J𝒚𝚯

𝑃 𝒚 𝑐 = 1 𝒙,𝚯 = 	 J𝒚𝚯 𝒙 (𝑐

� Then the cross-entropy loss is

𝐽 (𝚯 = − log𝑃 𝑦 (|𝒙 (, 𝚯

𝐽 (𝚯 = −M
0)!

1

𝒚 (𝑐 log J𝒚𝚯 𝒙 (𝑐

Softmax

10/6/23 12

…

…

…

𝑎2 =	M
()$

3

𝛼2,(𝑥(

𝑧2 = 𝜎 𝑎2

𝑏0 =	M
5)$

6

𝛽0,5𝑧5

𝑦0 =
exp 𝑏0

∑7)!1 exp 𝑏7

𝜶

𝜷

Two questions:

1. What is this
loss function
𝐽 ! ?

2. How on earth
do we take
these gradients?

� Input: 𝒟 = 𝒙 (, 𝑦 (
()!
*
, 𝛾

� Initialize all weights 𝜶 ! , … , 𝜶 " , 𝜷 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑖 ∈ shuf7le 1, … ,𝑁

� Compute 𝑔𝜷 = ∇𝜷𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� For 𝑙 = 1,… , 𝐿

� Compute 𝑔𝜶 ! = ∇𝜶 ! 𝐽 (𝜶 ! , … , 𝜶 " , 𝜷

� Update 𝜷 = 𝜷 − 𝛾𝑔𝜷
� For 𝑙 = 1,… , 𝐿

� Update 𝜶 % = 𝜶 % − 𝛾𝑔𝜶 !

� Output:𝜶 ! , … , 𝜶 " , 𝜷 1310/6/23

Matrix
Calculus

Types of
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

D
en

om
in

at
or

Table courtesy of Matt Gormley10/6/23 14

Matrix
Calculus:
Denominator
Layout

� Derivatives of a

scalar always
have the same
shape as the

entity that the
derivative is
being taken
with respect to.

Types of
Derivatives scalar

scalar

vector

matrix

Table courtesy of Matt Gormley10/6/23 15

Matrix
Calculus:
Denominator
Layout

Types of
Derivatives scalar vector

scalar

vector

Table courtesy of Matt Gormley10/6/23 16

Three
Approaches to
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is

proportional to the cost of computing 𝑓 𝒙
10/6/23 17

10/6/23 18

Approach 1:
Finite
Difference
Method

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

𝜕𝑓 𝒙
𝜕𝑥(

≈
𝑓 𝒙 + 𝜖𝒅(− 𝑓 𝒙 − 𝜖𝒅(

2𝜖

where 𝒅(is a one-hot vector with a 1 in the 𝑖th position

� We want 𝜖 to be small to get a good approximation but we

run into floating point issues when 𝜖 is too small

� Getting the full gradient requires computing the above
approximation for each dimension of the input

𝑓 𝑥

𝑥𝜖 𝜖

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

>>> from math import *

>>> y = lambda x,z: exp(x*z)+(x*z)/log(x)+sin(log(x))/(x*z)

>>> x = 2

>>> z = 3

>>> e = 10**-8

>>> dydx = (y(x+e,z)-y(x-e,z))/(2*e)

>>> dydz = (y(x,z+e)-y(x,z-e))/(2*e)

>>> print(dydx, dydz)

10/6/23 19

Approach 1:
Finite
Difference
Method
Example

Example courtesy of Matt Gormley

Three
Approaches to
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is

proportional to the cost of computing 𝑓 𝒙
10/6/23 20

10/6/23 21

Approach 2:
Symbolic
Differentiation

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

� Looks like we’re gonna need the chain rule!

Example courtesy of Matt Gormley

The Chain Rule
of Calculus

� If 𝑦 = 𝑓 𝑧 and 𝑧 = 𝑔 𝑥 then

the corresponding computation graph is

� If 𝑦 = 𝑓 𝑧!, 𝑧. and 𝑧! = 𝑔! 𝑥 , 𝑧. = 𝑔. 𝑥 then

� If 𝑦 = 𝑓 𝒛 and 𝒛 = 𝑔 𝑥 then

10/6/23 22

⟹ 𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑧
𝜕𝑧
𝜕𝑥

⟹ 𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑧!

𝜕𝑧!
𝜕𝑥

+
𝜕𝑦
𝜕𝑧.

𝜕𝑧.
𝜕𝑥

⟹
𝜕𝑦
𝜕𝑥

= M
2)!

6
𝜕𝑦
𝜕𝑧2

𝜕𝑧2
𝜕𝑥

⋮

𝑥 𝑧 𝑦

𝑥
𝑧!

𝑧.

𝑦

𝑥 𝑦

𝑧6

𝑧!

𝑧.

Poll Question 1

� If 𝑦 = 𝑓 𝒛 , 𝒛 = 𝑔 𝒘 and 𝒘 = ℎ 𝑥 , does the equation

still hold?

A. Yes

B. No

C. Only on Fridays (TOXIC)

10/6/23 23

𝜕𝑦
𝜕𝑥

= M
2)!

6
𝜕𝑦
𝜕𝑧2

𝜕𝑧2
𝜕𝑥

10/6/23 24

Approach 2:
Symbolic
Differentiation

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

𝜕𝑦
𝜕𝑥

=
𝜕
𝜕𝑥

𝑒;< +
𝜕
𝜕𝑥

𝑥𝑧
ln 𝑥

+
𝜕
𝜕𝑥

sin ln 𝑥
𝑥𝑧

𝜕𝑦
𝜕𝑥

= 𝑧𝑒;< +
𝑧

ln 𝑥
−

𝑧
ln 𝑥 . +

cos ln 𝑥
𝑥.𝑧

−
sin ln 𝑥

𝑥.𝑧
𝜕𝑦
𝜕𝑥

= 3𝑒= +
3

ln 2
−

3
ln 2 . +

cos ln 2
12

−
sin ln 2

12
𝜕𝑦
𝜕𝑧

=
𝜕
𝜕𝑧

𝑒;< +
𝜕
𝜕𝑧

𝑥𝑧
ln 𝑥

+
𝜕
𝜕𝑧

sin ln 𝑥
𝑥𝑧

𝜕𝑦
𝜕𝑥

= 2𝑒= +
2

ln 2
−
sin ln 2

18 Example courtesy of Matt Gormley

Three
Approaches to
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is proportional

to the cost of computing 𝑓 𝒙
10/6/23 25

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

� First define some intermediate quantities, draw the
computation graph and run the “forward” computation

10/6/23 26

Approach 3:
Automatic
Differentiation
(reverse mode)

𝑎 = 𝑥𝑧
𝑏 = ln 𝑥
𝑐 = sin 𝑏
𝑑 = 𝑒>

𝑒 = [𝑎 𝑏
𝑓 = ⁄𝑐 𝑎

𝑦 = 𝑑 + 𝑒 + 𝑓

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

Example courtesy of Matt Gormley

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒;< +
𝑥𝑧
ln 𝑥

+
sin ln 𝑥

𝑥𝑧

what are [9/
9; and [9/

9< at 𝑥 = 2, 𝑧 = 3?

� Then compute partial derivatives,
starting from 𝑦 and working back

10/6/23 27

Approach 3:
Automatic
Differentiation
(reverse mode)

Example courtesy of Matt Gormley

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓
+

𝑦

Three
Approaches to
Differentiation

� Given 𝑓:	ℝ6 → ℝ, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

1. Finite difference method
� Requires the ability to call 𝑓 𝒙
� Great for checking accuracy of implementations of

more complex differentiation methods
� Computationally expensive for high-dimensional inputs

2. Symbolic differentiation
� Requires systematic knowledge of derivatives
� Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙 is proportional

to the cost of computing 𝑓 𝒙
10/6/23 29

Automatic
Differentiation

10/6/23 30

� Given 𝑓:	ℝ6 → ℝ1, compute ∇𝒙𝑓 𝒙 = [9: 𝒙
9𝒙

3. Automatic differentiation (reverse mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 𝑓 𝒙

� Computational cost of computing ∇𝒙𝑓 𝒙 0 = [9: 𝒙 #
9𝒙

is proportional to the cost of computing 𝑓 𝒙
� Great for high-dimensional inputs and low-dimensional

outputs (𝐷 ≫ 𝐶)

4. Automatic differentiation (forward mode)
� Requires systematic knowledge of derivatives and an

algorithm for computing 𝑓 𝒙

� Computational cost of computing [9: 𝒙
9𝒙$

is proportional to the cost of computing 𝑓 𝒙
� Great for low-dimensional inputs and high-dimensional

outputs (𝐷 ≪ 𝐶)

Computation
Graph:
10-301/601
Conventions

10/6/23 31

� The diagram represents an algorithm

� Nodes are rectangles with one node per intermediate
variable in the algorithm

� Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

� Edges are directed and do not have labels

� For neural networks:

� Each weight, feature value, label and bias term
appears as a node

� We can include the loss function

Neural
Network
Diagram
Conventions

� The diagram represents a neural network

� Nodes are circles with one node per hidden unit

� Each node is labeled with the variable corresponding to
the hidden unit

� Edges are directed and each edge is labeled with its weight

� Following standard convention, the bias term is typically
not shown as a node, but rather is assumed to be part of
the activation function i.e., its weight does not appear in
the picture anywhere.

� The diagram typically does not include any nodes related
to the loss computation

10/6/23 32

Backprop
Learning
Objectives

You should be able to…

� Differentiate between a neural network diagram and a computation graph

� Construct a computation graph for a function as specified by an algorithm

� Carry out the backpropagation on an arbitrary computation graph

� Construct a computation graph for a neural network, identifying all the
given and intermediate quantities that are relevant

� Instantiate the backpropagation algorithm for a neural network

� Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2)
when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

� Use the finite difference method to evaluate the gradient of a function

� Identify when the gradient of a function can be computed at all and when
it can be computed efficiently

� Employ basic matrix calculus to compute vector/matrix/tensor derivatives.
10/6/23 33

