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Reminders

* Homework 4: Logistic Regression
— Out: Fri, Sep 29
— Due: Mon, Oct 9 at 11:59pm

« Homework 5: Neural Networks
— Out: Mon, Oct 9
— Due: Fri, Oct 27 at 11:59pm




Q&A

Happy Indigenous Peoples Day! What do indigenous
people have to say about Al and Machine Learning?

I’d recommend reading a position paper about that very topic:

Title: Indigenous Protocol and Artificial Intelligence Position Paper

Lewis, Jason Edward (-}, Abdilla, Angie, Arista, Noelani, Baker, Kaipulaumakaniolono, Benesiinaabandan, Scott, Brown, Michelle, Cheung,
Melanie, Coleman, Meredith, Cordes, Ashley, Davison, Joel, Duncan, Kiipono, Garzon, Sergio, Harrell, D. Fox, Jones, Peter-Lucas,
Kealiikanakaoleohaililani, Kekuhi, Kelleher, Megan, Kite, Suzanne, Lagon, Olin, Leigh, Jason, Levesque, Maroussia, Mahelona, Keoni, Moses,
Caleb, Nahuewai, Isaac ('lka'aka), Noe, Kari, Olson, Danielle, Parker Jones, 'Oiwi, Running Wolf, Caroline, Running Wolf, Michael, Silva, Marlee,
Fragnito, Skawennati and Whaanga, Hemi (2020) /ndigenous Protocol and Atrtificial Intelligence Position Paper. Project Report. Indigenous
Protocol and Atrtificial Intelligence Working Group and the Canadian Institute for Advanced Research, Honolulu, HI. (Submitted)

“This position paper on Indigenous Protocol (IP) and Artificial Intelligence (Al) is a starting
place for those who want to design and create Al from an ethical position that centers
Indigenous concerns. Each Indigenous community will have its own particular approach to the
questions we raise in what follows. What we have written here is not a substitute for
establishing and maintaining relationships of reciprocal care and support with specific
Indigenous communities. Rather, this document offers a range of ideas to take into
consideration when entering into conversations which prioritize Indigenous perspectives in
the development of artificial intelligence. It captures multiple layers of a discussion that
happened over 20 months, across 20 time zones, during two workshops, and between
Indigenous people (and a few non-Indigenous folks) from diverse communities in Aotearoa,
Australia, North America, and the Pacific.”


https://spectrum.library.concordia.ca/986506/7/Indigenous_Protocol_and_AI_2020.pdf

BACKPROPAGATION FOR A SIMPLE
COMPUTATION GRAPH
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BACKPROPAGATION FOR BINARY LOGISTIC
REGRESSION



Training Backpropagation
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Training

Case 1:
Logistic
Regression

Forward
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TRAINING /| FORWARD COMPUTATION |
BACKWARD COMPUTATION
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Training
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Training
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Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)
LW°N

1 procedure SGD(Training data D, 4ast data D,)
2 Initialize parameters/a, 8 | = o

3 fore € {1,2,...,E} do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:

o = object(x,a,b,z,y,J) = NNFORWARD(X, y, ¢, 3)
a4y,
Compute gradients via backprop:

a = Vad
8: 36 \ié }: NNBACKWARD(x,y, a, (3,0)

gs = VgJ
o: Update parameters:
10: a4~ 0 — V8
11 B B —8g ] @ i @_XQ
12: Evaluate training mean cross-entropy Jp(a, 3)
13: Evaluate Ee?t mean cross-entropy Jp, (¢, 3)

c.
14 return paran¥eters a, 3




Training

Case 2:
Neural
Network

Backpropagation
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Training
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Training
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Derivative of a Sigmoid

First suppose that
1

* = T+ exp(—b) 1)
To obtain the simplified form of the derivative of a sigmoid.
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Training
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Training
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Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D;)
2 Initialize parameters «, 3

3 fore € {1,2,...,E} do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:
o = object(x,a,b,z,y,J) = NNFORWARD(X,y, , 3)
Compute gradients via backprop:

8: Ba = Vol | _ NNBACKWARD(X, y, c, 3, 0)
gs = VpJ

9: Update parameters:

10: a— o — V8q

1 B <+ B—ga

12: Evaluate training mean cross-entropy Jp (o, 3)

13: Evaluate test mean cross-entropy Jp, (¢, 3)

14: return parameters I6;




In-Class Poll

Question: (1

What questions do you have?



TRAINING /| FORWARD COMPUTATION |
BACKWARD COMPUTATION



Training

Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

B € RP-
2
By ER y = o((B)2” + o)
a(z) e RMXD; Z(z) _ G((a(z))TZ(l) + b(z))
b?) € RP
Z(l) — o((a(l))Tx + b(l))

b(l) e RP1

28



Example: Neural Net Training (2-Hidden Layers)
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Example: Backpropagation (2-Hidden Layers)
Given
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Example: Backpropagation (2-Hidden Layers)



BACKPROPAGATION OF ERRORS
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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THE BACKPROPAGATION ALGORITHM



Training Backpropagation




Training Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direclzgc)j acyclic graph, where each variable is a node (i.e. the “computation
grap

2. Visit each node in topological order. aY
For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)

b. Store theresult at the node

. . Ui L J
Backward Computation (Version B) U, 9\1 - (C)%- e M

1. Initialize all partial derivatives dy/du; to 0 and dy/dy = 1. b

2. Visit each node inTeverse topological order.
For variable u; = gi(v,,..., Vx)
a. Wealread

b. lncrementﬁfﬂy\ﬂ/ﬁ:yl(dy/duig(dui/dv]-) | ' Y D--- U\//\/
(Choice of algori ing (du;/dv)) is easy)

Return partial derivatives dy/du;for all variables



Training Backpropagation (Version B)

Simple Example: The goal is to compute J = cos(sin(z?) + 32?)
on the forward pass and the derivative fl—i on the backward pass.

Forward
J = cos(u)

U = U1 + ug

uy = sin(t)




Training

Backpropagation (Version B)

Simple Example: The goal is to compute J = cos(sin(z?) + 32?)
on the forward pass and the derivative Z—i on the backward pass.

\

9u = 0,9u, = 0,9u, =0,9: = 0,9, =0 @

Forward Backward
J =cos(u) | gut= —sin(u)
o .\ du du ] \ du

Uu=u U wra T —mQy—, —— = us = Gu——)

! ° i_l 7 du1 du1 12_ g d’LL2

. du1 du1
up = sin(? += gy, ——, —— = cos(t

dus dus /_\
Uy = 3t gt =Gu gy =3
_ - T dt t
. 5 \ dt dt 5
= T p— — — = T
g It dx dx

Initialize all the
adjoints to zero

du

— =1
dUQ

Notice that we
Qu_jncr Tent the
‘partialiderivative

d]
for ”

in two places!




Training Backpropagation

Why is the backpropagation algorithm e;
1,
2.

icient?
Reuses computation from the forward pass in the backward pass

Reuses partial derivatives throughout the backward pass (but
only if the algorithm reuses shared computation in the forward

pass)

\—

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)
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MATRIX CALCULUS



Do | need to know matrix calculus to derive the
backprop algorithms used in this class?
Well, we’ve carefully constructed our assignments

so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix
calculus to our learning objectives for backprop.



Matrix Calculus

Numerator
DTy_pes " J scalar vector matrix
erivatives
Lety, x € Rbescalars,
y € RM andx € R” Oy Oy @ 0Y
be vectors, and scalar — — S
Y e RM*XN gndX € Ox Ox ox
RP*XQ be matrices
Jy Ody | 0Y
vector — _Y
@)
£
o | OV | Oy | OY
0X 0X  0X




Matrix Calculus

Types o
y p .f scalar
Derivatives
oy
scalar — [g—y]
ox x
- 5y
8:1:1
Y
a ox
vector 9y _2
ox :
Oy
| Oxp |
- _Oy Oy Oy 7
3X11 8X12 8X1Q
. Oy Oy Oy
matrix oy 0X21  0Xag 0X2q
0X :
Oy Oy ... _Oy
| 0 X pq 0Xpo 0Xpq
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Matrix Calculus

Ty p e .O f scalar vector
Derivatives
: @ — [@] 6‘_y _ [3y1 Oy2 8'yN]
>catar Or Loz Or ox ox ox
| ;— ~ Oy1 Oy2 Oyn
évl 3:131 8:81 8331
0, B ; Oy1  Oyz Oyn
_y — L2 8}’ L 85132 8:132 8332
vector ox 8_X — :
;—y Oy1 Oy2 Oyn
- TP N 8wp aaﬁp 63313 N
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Matrix Calculus

Whenever you read about matrix calculus, you’ll be confronted with two

layout conventions:
Let y, z € R be scalars, y € R™ and x € R” be vectors.

1. In numerator layout:

oy . .
% isal x P matrix, i.e. arow vector

— isan M x P matrix

oy . .
bt 4 isa P x 1 matrix, i.e. a column vector

isan P x M matrix

In this course, we
use denominator
layout.

Why? This
ensures that our
gradients of the

objective
ction with
respect to some
set of
eters are
same shape
as those
parameters.

—




Scalar Derivatives

Supposex € R

Vector Derivatives TR 2w (O

—
WY

Vector Derivatives

Supposex € R™, b € R™,
B 6 Ran, Q E Rme

and Q is symmetric.

and f :R — R
fl@) 57
bx
xb
2
bx?

flx) 25 typeof f
b f:R™ =R
b f:R™ >R
B f:R™ —- R"
BT f:R™ 5 R”

2X f:R™ =R
2Qx f:R™ —= R

59



Scalar Derivatives

Suppose x € R™ and we have
constantsa € R, b € R

Of(x)

f(x) 5
(@) +h@) P+ %

g(x

ag(x) Cgﬁ

g(z)b Oz b

Vector Derivatives

Vector Derivatives

Suppose x € R™ and we have
constantsa € R, b € R"

Of (x)
/ (X) Ox
() + ) 24 250
g(x
e
g (X)b Ox b




Matrix Calculus

Question: (7

Suppose y = g(u) and u = h(x)

y [ ]

¢ | ,\)

u [TTrrrrme®

|

« T €%

Which of the following is the
correct definition of the chain rule?

o7 ¢

Recall: —37
@: ‘%/2 oy
0x %

Oy
Oxp
Answer:

[Oy1  Oy2
81‘1 81'1
Oy1 Oy
8.’B2 8.’172

% _
ox
OJy Ou

A Budx

5 0" 0u
" Odu Ox
8y oul
" Hu dx
o, 200"

ou 0x
Oy Ou,

e (8u8x)

0y1 0y2

orlet
e

V 50



DRAWING A NEURAL NETWORK



Ways of Drawing Neural Networks

Neural Network Diagram

The diagram represents a neural network
Nodes are circles

One node per hidden unit

Node is labeled with the variable
corresponding to the hidden unit

For a fully connected feed-forward neural
network, a hidden unit is a nonlinear
function of nodes in the previous layer

Edges are directed

Each edge is labeled with its weight (side
note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)
Other details:

— Following standard convention, the
intercept term is NOT shown as a node, but
rather is assumed to be part of the non-

linear function that yields a hidden unit. (i.e.

its weight does NOT appear in the picture
anywhere)

— The diagram does NOT include any nodes
related to the loss computation

63



Ways of Drawing Neural Networks

ggme__gﬁeb Computation Graph
e The diagram represents an algorithm

QU-) K(;)
rﬂl : ' | L‘
qa

->(1-)

i,x(z)
20 -
y
[ TS <O
()

Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

Edges do not have labels (since they don’t
need them)

For neural networks:

— Eachintercept term should appear as a node
(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph

— It’s perfectly fine to include the loss
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Ways of Drawing Neural Networks

(F) Loss Computation Graph
J=35(y—y*)? :

(E) Output (sigmoid) (E’) Label
. Given y* )
b= 370557

Y= Thexp(=n)
f .

?
[ (C) Hidden (sigmoid)

[ (D) Output (linear)

(C’) Parameters

TFexp(=a;)’ Given 3;,Vj

\

f

[ (B) Hidden (linear)

Given x;, V1

] (A’) Parameters
Given Qg V’L,]

The diagram represents an algorithm
Nodes are rectangles
One node per intermediate variable in the
algorithm
Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)
Edges are directed
(since they don’t

need them)
For neural networks:

— Each intercept term should appear as a node

(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph
— It’s perfectly fine to include the loss
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Ways of Drawing Neural Networks

Computation Graph

Neural Network Diagram

The diagram represents a neural network
Nodes are circles

One node per hidden unit

Node is labeled with the variable
corresponding to the hidden unit

For a fully connected feed-forward neural
network, a hidden unit is a nonlinear
function of nodes in the previous layer

Edges are directed

Each (side
note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

Other details:

— Following standard convention, the
intercept term is NOT shown as a node, but
rather is assumed to be part of the non-

linear function that yields a hidden unit. (i.e.

its weight does NOT appear in the picture
anywhere)

— The diagram does NOT include any nodes
related to the loss computation

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)

For neural networks:

— Each intercept term should appear as a node
(if it’s not folded in somewhere)

— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph

— It’s perfectly fine to include the loss

Important!

Some of these conventions are
specific to 10-301/601. The literature
abounds with varations on these

conventions, but it’s helpful to have

some distinction nonetheless.




Summary

1. Neural Networks...
— provide a way of learning features
— are highly nonlinear prediction functions
— (can be) a highly parallel network of logistic regression classifiers
— discover useful hidden representations of the input

2. Backpropagation...
— provides an efficient way to compute gradients
— is a special case of reverse-mode automatic differentiation



Backprop Objectives

You should be able to...

Differentiate between a neural network diagram and a computation graph
Construct a computation graph for a function as specified by an algorithm
Carry out the backpropagation on an arbitrary computation graph

Construct a computation graph for a neural network, identifying all the given and
intermediate quantities that are relevant

Instantiate the backpropagation algorithm for a neural network

Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the
parameters of a model are comprised of several matrices corresponding to different
layers of a neural network

Apply the empirical risk minimization framework to learn a neural network
Use the finite difference method to evaluate the gradient of a function

|dentify when the gradient of a function can be computed at all and when it can be
computed efficiently

Employ basic matrix calculus to compute vector/matrix/tensor derivatives.



