
Backpropagation

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 13

Oct. 9, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 4: Logistic Regression
– Out: Fri, Sep 29
– Due: Mon, Oct 9 at 11:59pm

• Homework 5: Neural Networks
– Out: Mon, Oct 9
– Due: Fri, Oct 27 at 11:59pm

2

Q&A

4

Q: Happy Indigenous Peoples Day! What do indigenous
people have to say about AI and Machine Learning?

A:
I’d recommend reading a position paper about that very topic:

“This position paper on Indigenous Protocol (IP) and Artificial Intelligence (AI) is a starting
place for those who want to design and create AI from an ethical position that centers
Indigenous concerns. Each Indigenous community will have its own particular approach to the
questions we raise in what follows. What we have written here is not a substitute for
establishing and maintaining relationships of reciprocal care and support with specific
Indigenous communities. Rather, this document offers a range of ideas to take into
consideration when entering into conversations which prioritize Indigenous perspectives in
the development of artificial intelligence. It captures multiple layers of a discussion that
happened over 20 months, across 20 time zones, during two workshops, and between
Indigenous people (and a few non-Indigenous folks) from diverse communities in Aotearoa,
Australia, North America, and the Pacific.”

https://spectrum.library.concordia.ca/986506/7/Indigenous_Protocol_and_AI_2020.pdf

https://spectrum.library.concordia.ca/986506/7/Indigenous_Protocol_and_AI_2020.pdf

BACKPROPAGATION FOR A SIMPLE
COMPUTATION GRAPH

Algorithm

5

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒!" +
𝑥𝑧
ln 𝑥 +

sin ln 𝑥
𝑥𝑧

what are -#$
#! and -#$

#" at 𝑥 = 2, 𝑧 = 3?

� Then compute partial derivatives,
starting from 𝑦 and working back

10/6/23 9

Approach 3:
Automatic
Differentiation
(reverse mode)

2
𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

• 𝑔" =
#$
#"
= #$

#%
#%
#"
= 𝑔% 𝑥

+

𝑦

• 𝑔$ =
#$
#$
= 1

• 𝑔& = 𝑔' = 𝑔(= 1

• 𝑔) =
#$
#)
= #$

#(
#(
#)
= 𝑔(

*
%

• 𝑔+ =
#$
#+
= #$

#'
#'
#+
+ #$

#)
#)
#+

• 𝑔+ = 𝑔' − %
+!

+ 𝑔) cos 𝑏

• 𝑔% =
#$
#%
= #$

#(
#(
#%
+ #$

#'
#'
#%
+ #$
#&

#&
#%

• 𝑔% = 𝑔(
,)
%!

+ 𝑔'
*
+
+ 𝑔& 𝑒%

• 𝑔! =
#$
#!
= #$

#+
#+
#!
+ #$
#%

#%
#!
= 𝑔+

*
!
+ 𝑔% 𝑧

� Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒!" +
𝑥𝑧
ln 𝑥 +

sin ln 𝑥
𝑥𝑧

what are -#$
#! and -#$

#" at 𝑥 = 2, 𝑧 = 3?

� Then compute partial derivatives,
starting from 𝑦 and working back

10/6/23 10

Approach 3:
Automatic
Differentiation
(reverse mode)

2
𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

• 𝑔" =
#$
#"
= #$

#%
#%
#"
= 𝑔% 𝑥

+

𝑦

• 𝑔$ =
#$
#$
= 1

• 𝑔& = 𝑔' = 𝑔(= 1

• 𝑔) =
#$
#)
= #$

#(
#(
#)
= 𝑔(

*
%

• 𝑔+ =
#$
#+
= #$

#'
#'
#+
+ #$

#)
#)
#+

• 𝑔+ = 𝑔' − %
+!

+ 𝑔) cos 𝑏

• 𝑔% =
#$
#%
= #$

#(
#(
#%
+ #$

#'
#'
#%
+ #$
#&

#&
#%

• 𝑔% = 𝑔(
,)
%!

+ 𝑔'
*
+
+ 𝑔& 𝑒%

• 𝑔! =
#$
#!
= #$

#+
#+
#!
+ #$
#%

#%
#!
= 𝑔+

*
!
+ 𝑔% 𝑧

Updates for
Backpropagation:

gx =

∂y

∂x
=

K∑

k=1

∂y

∂uk

∂uk

∂x

=

K∑

k=1

guk

∂uk

∂x

Backprop is
efficient b/c of
reuse in the
forward pass and
the backward pass.

BACKPROPAGATION FOR BINARY LOGISTIC
REGRESSION

Algorithm

11

Backpropagation

12

Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic
Regression

Forward Backward

J = y∗ log y + (1− y∗) log(1− y)
∂J

∂y
=

y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−a)

∂J

∂a
=

∂J

∂y

∂y

∂a
,
dy

da
=

exp(−a)

(exp(−a) + 1)2

a =
D∑

j=0

θjxj

∂J

∂θj
=

∂J

∂a

∂a

∂θj
,
da

dθj
= xj

∂J

∂xj

=
∂J

∂a

∂a

∂xj

,
da

dxj

= θj

Backpropagation

13

Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic
Regression

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−a)
ga = gy

∂y

∂a
,
∂y

∂a
=

exp(−a)

(exp(−a) + 1)2

a =
D∑

j=0

θjxj gθj = ga
∂a

∂θj
,
∂a

∂θj
= xj

gxj
= ga

∂a

∂xj

,
∂a

∂xj

= θj

TRAINING / FORWARD COMPUTATION /
BACKWARD COMPUTATION

A 1-Hidden Layer Neural Network

14

Forward-Computation

15

Training

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21
⍺22

⍺23

β1 β2Weights

Weights

Forward-Computation

16

Training

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21
⍺22

⍺23

β1 β2Weights

Weights

Forward-Computation

17

Training

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21
⍺22

⍺23

β1 β2Weights

Weights

SGD with Backprop

18

Training

Example: 1-Hidden Layer Neural Network

Backpropagation

19

Training

Case 2:
Neural
Network

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−b)
gb = gy

∂y

∂b
,
∂y

∂b
=

exp(−b)

(exp(−b) + 1)2

b =
D∑

j=0

βjzj gβj
= gb

∂b

∂βj

,
∂b

∂βj

= zj

gzj = gb
∂b

∂zj
,
∂b

∂zj
= βj

zj =
1

1 + exp(−aj)
gaj

= gzj
∂zj

∂aj
,
∂zj

∂aj
=

exp(−aj)

(exp(−aj) + 1)2

aj =
M∑

i=0

αjixi gαji
= gaj

∂aj

∂αji

,
∂aj

∂αji

= xi

gxi
=

D∑

j=0

gaj

∂aj

∂xi

,
∂aj

∂xi

= αji

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

20

Training

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−b)
gb = gy

∂y

∂b
,
∂y

∂b
=

exp(−b)

(exp(−b) + 1)2

b =
D∑

j=0

βjzj gβj
= gb

∂b

∂βj

,
∂b

∂βj

= zj

gzj = gb
∂b

∂zj
,
∂b

∂zj
= βj

zj =
1

1 + exp(−aj)
gaj

= gzj
∂zj

∂aj
,
∂zj

∂aj
=

exp(−aj)

(exp(−aj) + 1)2

aj =
M∑

i=0

αjixi gαji
= gaj

∂aj

∂αji

,
∂aj

∂αji

= xi

gxi
=

D∑

j=0

gaj

∂aj

∂xi

,
∂aj

∂xi

= αji

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

21

Training

Derivative of a Sigmoid

22

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

23

Training

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−b)
gb = gy

∂y

∂b
,
∂y

∂b
=

exp(−b)

(exp(−b) + 1)2

b =
D∑

j=0

βjzj gβj
= gb

∂b

∂βj

,
∂b

∂βj

= zj

gzj = gb
∂b

∂zj
,
∂b

∂zj
= βj

zj =
1

1 + exp(−aj)
gaj

= gzj
∂zj

∂aj
,
∂zj

∂aj
=

exp(−aj)

(exp(−aj) + 1)2

aj =
M∑

i=0

αjixi gαji
= gaj

∂aj

∂αji

,
∂aj

∂αji

= xi

gxi
=

D∑

j=0

gaj

∂aj

∂xi

,
∂aj

∂xi

= αji

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

24

Training

Forward Backward

J = y∗ log y + (1− y∗) log(1− y) gy =
y∗

y
+

(1− y∗)

y − 1

y =
1

1 + exp(−b)
gb = gy

∂y

∂b
,
∂y

∂b
= y(1− y)

b =
D∑

j=0

βjzj gβj
= gb

∂b

∂βj

,
∂b

∂βj

= zj

gzj = gb
∂b

∂zj
,
∂b

∂zj
= βj

zj =
1

1 + exp(−aj)
gaj

= gzj
∂zj

∂aj
,
∂zj

∂aj
= zj(1− zj)

aj =
M∑

i=0

αjixi gαji
= gaj

∂aj

∂αji

,
∂aj

∂αji

= xi

gxi
=

D∑

j=0

gaj

∂aj

∂xi

,
∂aj

∂xi

= αji

SGD with Backprop

25

Training

Example: 1-Hidden Layer Neural Network

In-Class Poll

26

Question:
What questions do you have?

TRAINING / FORWARD COMPUTATION /
BACKWARD COMPUTATION

A 2-Hidden Layer Neural Network

27

Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

28

Training

𝒛(") = 	σ((𝜶 ")$𝒙 + 𝒃("))

𝑥!

𝑧!
(!)

𝑥$ 𝑥%

𝑧$
(!)

𝜶(!)

𝑧!
($) 𝑧$

($)

𝜶($)

𝑦

𝜷

𝑧&!
(!)

…

…

𝑧&"
($)…

𝒛(%) = 	σ((𝜶 %)$𝒛(") + 𝒃(%))

𝑦 = 	σ((𝜷)$𝒛(%) + 𝛽&)

𝜶 " 	 ∈ ℝ'×)'

𝒃(") ∈ ℝ)'

𝜶 % 	 ∈ ℝ'×)(

𝒃(%) ∈ ℝ)(

𝜷 ∈ ℝ)(

𝛽& ∈ ℝ

Example: Neural Net Training (2-Hidden Layers)

29

Example: Backpropagation (2-Hidden Layers)

31

Example: Backpropagation (2-Hidden Layers)

32

BACKPROPAGATION OF ERRORS
Intuitions

35

Error Back-Propagation

36
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

37
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

38
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

39
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

40
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

41
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

42
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

43
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

44
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

45

y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)

THE BACKPROPAGATION ALGORITHM

46

Backpropagation

47

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order.

Let u1,…, uM denote all the nodes with vj as an input
Assuming that y = h(u) = h(u1,…, uM)
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing

(dui/dvj) is easy)

Backpropagation

48

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backpropagation (Version B)

49

Training

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Forward Backward
J = cos(u) gu = − sin(u)

u = u1 + u2 gu1
+= gu

du

du1

,
du

du1

= 1 gu2
+= gu

du

du2

,
du

du2

= 1

u1 = sin(t) gt += gu1

du1

dt
,

du1

dt
= cos(t)

u2 = 3t gt += gu2

du2

dt
,

du2

dt
= 3

t = x2 gx += gt
dt

dx
,

dt

dx
= 2x

Backpropagation (Version B)

50

Training

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Forward Backward
J = cos(u) gu = − sin(u)

u = u1 + u2 gu1
+= gu

du

du1

,
du

du1

= 1 gu2
+= gu

du

du2

,
du

du2

= 1

u1 = sin(t) gt += gu1

du1

dt
,

du1

dt
= cos(t)

u2 = 3t gt += gu2

du2

dt
,

du2

dt
= 3

t = x2 gx += gt
dt

dx
,

dt

dx
= 2x

gu = 0, gu1
= 0, gu2

= 0, gt = 0, gx = 0

Notice that we
increment the

partial derivative
for 12

13
in two places!

Initialize all the
adjoints to zero

Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but

only if the algorithm reuses shared computation in the forward
pass)

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)

51

Training

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

52

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

MATRIX CALCULUS

53

Q&A

54

Q: Do I need to know matrix calculus to derive the
backprop algorithms used in this class?

A: Well, we’ve carefully constructed our assignments
so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix
calculus to our learning objectives for backprop.

Matrix Calculus

55

Types of
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

De
no

m
in

at
or

Types of
Derivatives scalar

scalar

vector

matrix

Matrix Calculus

56

Types of
Derivatives scalar vector

scalar

vector

Matrix Calculus

57

Matrix Calculus
Whenever you read about matrix calculus, you’ll be confronted with two
layout conventions:

58

In this course, we
use denominator

layout.

Why? This
ensures that our
gradients of the

objective
function with

respect to some
subset of

parameters are
the same shape

as those
parameters.

Vector Derivatives

Scalar Derivatives Vector Derivatives

59

f(x) ∂f(x)
∂x

bx b

xb b

x2 2x
bx2 2bx

f(x) ∂f(x)
∂x type of f

bT x b f : Rm
→ R

xT b b f : Rm
→ R

xT B B f : Rm
→ R

n

BT x BT f : Rm
→ R

n

xT x 2x f : Rm
→ R

xT Qx 2Qx f : Rm
→ R

Suppose x ∈ R

and f : R → R

Suppose x ∈ R
m, b ∈ R

m,
B ∈ R

m×n, Q ∈ R
m×m

and Q is symmetric.

Vector Derivatives

Scalar Derivatives Vector Derivatives

60

f(x) ∂f(x)
∂x

g(x) + h(x) ∂g(x)
∂x + ∂h(x)

∂x
ag(x) a

∂g(x)
∂x

g(x)b ∂g(x)
∂x bT

Suppose x ∈ R
m and we have

constants a ∈ R, b ∈ R

f(x) ∂f(x)
∂x

g(x) + h(x) ∂g(x)
∂x

+ ∂h(x)
∂x

ag(x) a
∂g(x)
∂x

g(x)b ∂g(x)
∂x

b

Suppose x ∈ R
m and we have

constants a ∈ R, b ∈ R
n

Question:

Answer:

Matrix Calculus

61

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the
correct definition of the chain rule?

Recall:

DRAWING A NEURAL NETWORK

62

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

63

⍺11 ⍺12 ⍺13⍺21
⍺22

⍺23

β1 β2

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

64

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

65

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

66

Important!
Some of these conventions are

specific to 10-301/601. The literature
abounds with varations on these

conventions, but it’s helpful to have
some distinction nonetheless.

Summary

1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic regression classifiers
– discover useful hidden representations of the input

2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic differentiation

67

Backprop Objectives
You should be able to…
• Differentiate between a neural network diagram and a computation graph
• Construct a computation graph for a function as specified by an algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the given and

intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the

parameters of a model are comprised of several matrices corresponding to different
layers of a neural network

• Apply the empirical risk minimization framework to learn a neural network
• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and when it can be

computed efficiently
• Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

68

