

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Backpropagation

Matt Gormley Lecture 13 Oct. 9, 2023

Reminders

- Homework 4: Logistic Regression
 - Out: Fri, Sep 29
 - Due: Mon, Oct 9 at 11:59pm
- Homework 5: Neural Networks
 - Out: Mon, Oct 9
 - Due: Fri, Oct 27 at 11:59pm

BACKPROPAGATION FOR A SIMPLE COMPUTATION GRAPH

Algorithm

Given

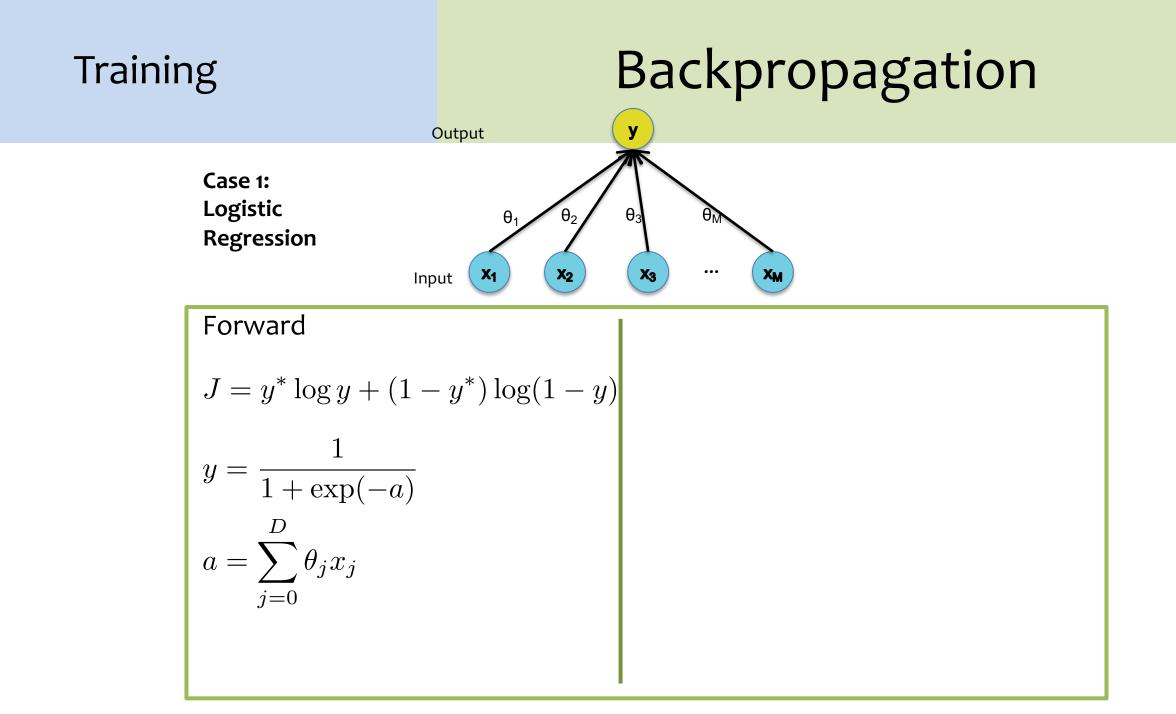
Approach 3: Automatic Differentiation (reverse mode)

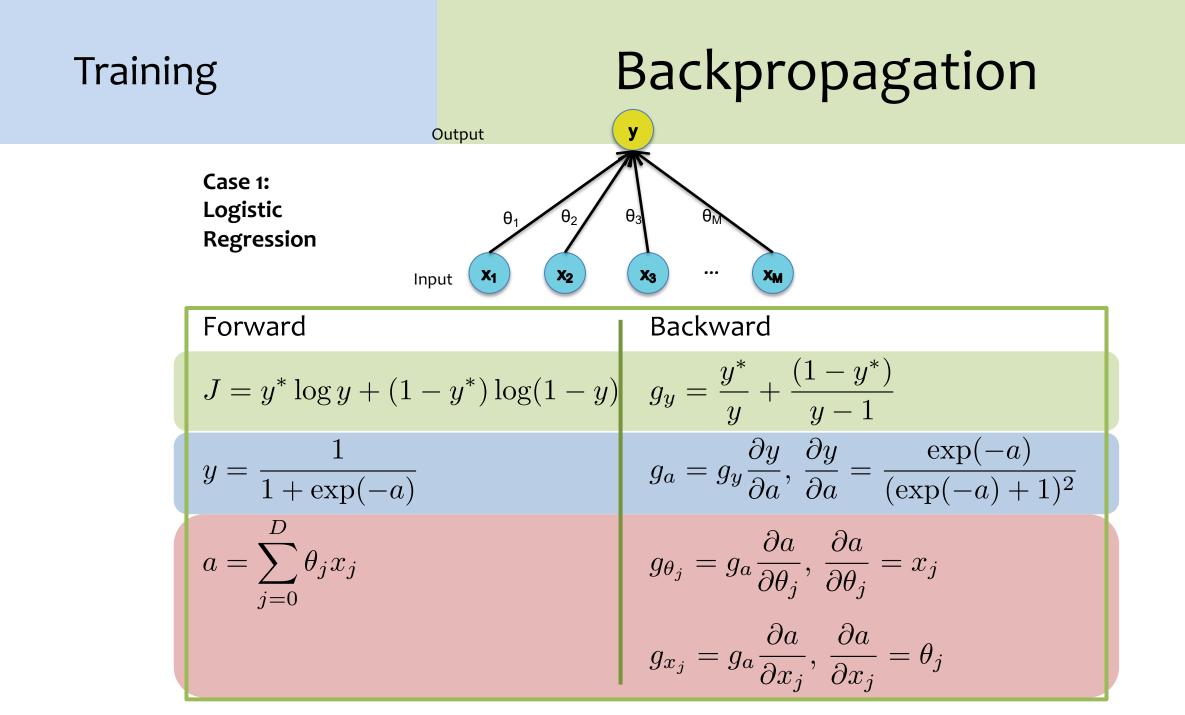
 $y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}$ • $g_y = \frac{\partial y}{\partial y} = 1$ what are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at x = 2, z = 3? • $g_d = g_e = g_f = 1$ Then compute partial derivatives, starting from y and working back • $g_c = \frac{\partial y}{\partial c} = \frac{\partial y}{\partial f} \frac{\partial f}{\partial c} = g_f \left(\frac{1}{a}\right)$ • $g_b = \frac{\partial y}{\partial b} = \frac{\partial y}{\partial e} \frac{\partial e}{\partial b} + \frac{\partial y}{\partial c} \frac{\partial c}{\partial b}$ d X a $= g_e\left(-\frac{a}{h^2}\right) + g_c(\cos(b))$ * exp • $g_a = \frac{\partial y}{\partial a} = \frac{\partial y}{\partial f} \frac{\partial f}{\partial a} + \frac{\partial y}{\partial e} \frac{\partial e}{\partial a} + \frac{\partial y}{\partial d} \frac{\partial d}{\partial a}$ b Ζ *e* 3 ln + $=g_f\left(\frac{-c}{a^2}\right)+g_e\left(\frac{1}{b}\right)+g_d(e^a)$ • $g_x = \frac{\partial y}{\partial x} = \frac{\partial y}{\partial b} \frac{\partial b}{\partial x} + \frac{\partial y}{\partial a} \frac{\partial a}{\partial x} = g_b \left(\frac{1}{x}\right) + g_a(z)$ sin С • $g_z = \frac{\partial y}{\partial z} = \frac{\partial y}{\partial a} \frac{\partial a}{\partial z} = g_a(x)$

	Updates for	$r_{z} = sin(\ln(x))$
	Backpropagation:	$y = f(x, z) = e^{xz} + \frac{xz}{\ln(x)} + \frac{\sin(\ln(x))}{xz}$
	1_{-} 1 10	t are $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ at $x = 2, z = 3$? • $g_y = \frac{\partial y}{\partial y} = 1$
	$=\sum_{k=1}^{K} g_{u_k} \frac{\partial u_k}{\partial x}$	en compute partial derivatives, $g_d = g_e = g_f = 1$ $\partial y \partial y \partial f$ (1)
	$=\sum_{k=1}^{n}g_{u_{k}}\overline{\partial x}$	rting from y and working back • $g_c = \frac{\partial y}{\partial c} = \frac{\partial y}{\partial f} \frac{\partial f}{\partial c} = g_f \left(\frac{1}{a}\right)$
	Approach 2 x	a d ${}^{\bullet}g_b = \frac{\partial y}{\partial b} = \frac{\partial y}{\partial e}\frac{\partial e}{\partial b} + \frac{\partial y}{\partial c}\frac{\partial c}{\partial b}$
	Backprop is 2	$= g_e \left(-\frac{a}{h^2} \right) + g_c(\cos(b))$
	efficient b/c of	$b \qquad y \qquad \bullet g_a = \frac{\partial y}{\partial a} = \frac{\partial y}{\partial f} \frac{\partial f}{\partial a} + \frac{\partial y}{\partial e} \frac{\partial e}{\partial a} + \frac{\partial y}{\partial d} \frac{\partial d}{\partial a}$
	forward pass and 3	$\ln \left(\frac{1}{r} \right) + g_f \left(\frac{-c}{a^2} \right) + g_e \left(\frac{1}{b} \right) + g_d (e^a)$
	the backward pass.	$\int \frac{f}{\int \frac{\partial y}{\partial x}} = \frac{\partial y}{\partial x} = \frac{\partial y}{\partial y} \frac{\partial b}{\partial x} + \frac{\partial y}{\partial x} \frac{\partial a}{\partial x} = q_{h} \left(\frac{1}{2}\right) + q_{a}(z)$
-	10/6/23	• $g_z = \frac{\partial y}{\partial z} = \frac{\partial y}{\partial a} \frac{\partial a}{\partial z} = g_a(x)$

BACKPROPAGATION FOR BINARY LOGISTIC REGRESSION

Algorithm

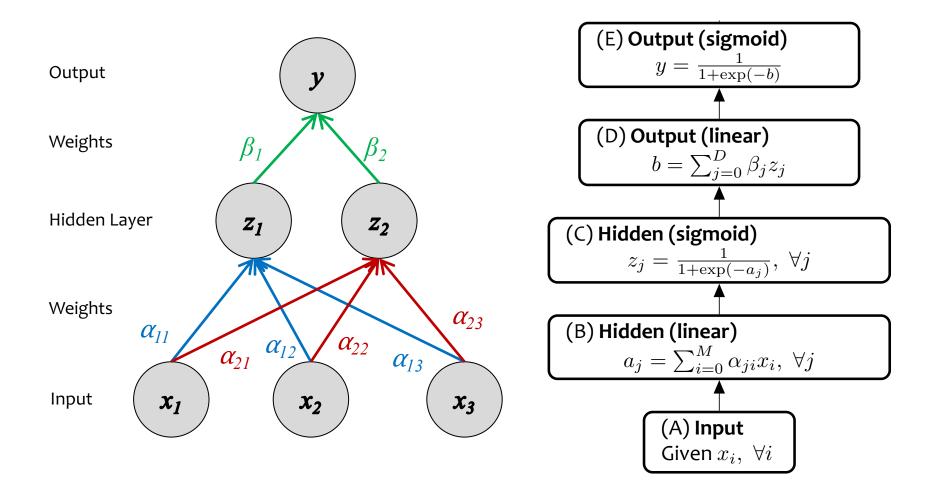




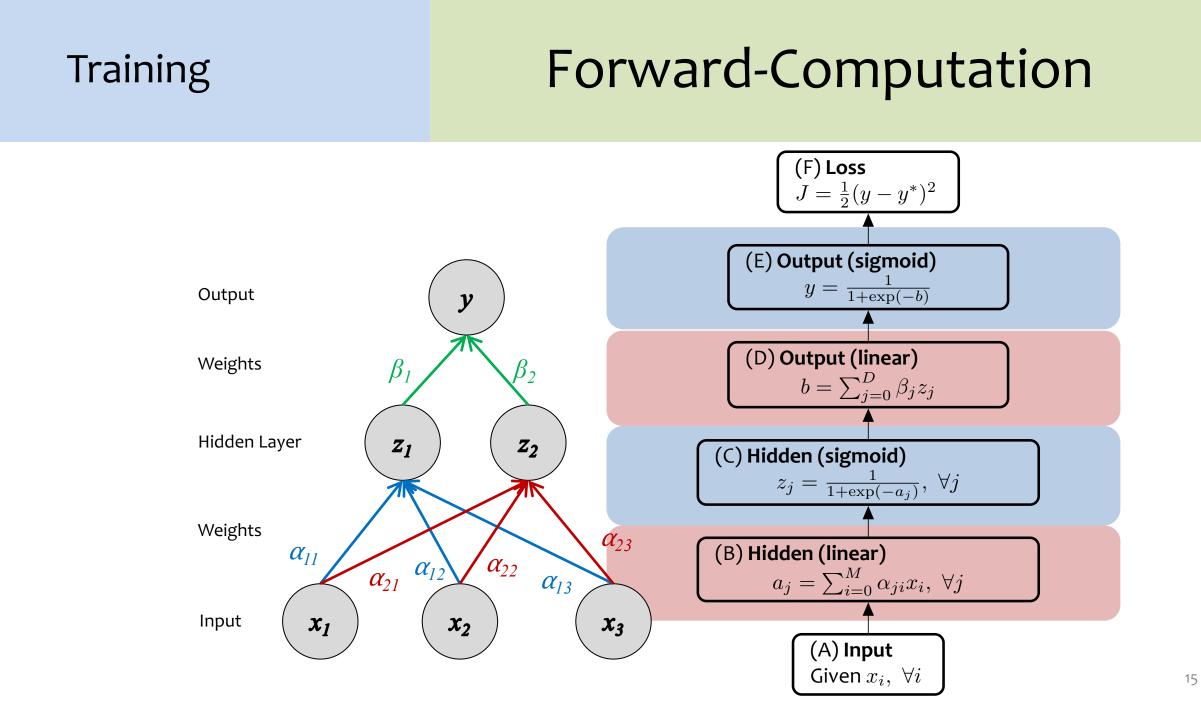
A 1-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Forward-Computation



Forward-Computation Training (F) Loss $J = \frac{1}{2}(y - y^*)^2$ (E) Output (sigmoid) $y = \frac{1}{1 + \exp(-b)}$ Output V (D) Output (linear) Weights β_1 β_2 $b = \sum_{j=0}^{D} \beta_j z_j$ Hidden Layer **Z**1 Z_2 (C) Hidden (sigmoid) $z_j = \frac{1}{1 + \exp(-a_j)}, \ \forall j$ Weights α_{23} (B) Hidden (linear) α_{ll} α_{22} α_{12} α_{21} $a_j = \sum_{i=0}^M \alpha_{ji} x_i, \ \forall j$ α_{13} Input $\boldsymbol{x_1}$ \boldsymbol{x}_2 x_3 (A) Input Given $x_i, \forall i$



SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algo	Algorithm 1 Stochastic Gradient Descent (SGD)		
1: 6	procedure SGD(Training data \mathcal{D} , test data \mathcal{D}_t)		
2:	Initialize parameters $oldsymbol{lpha},oldsymbol{eta}$		
3:	for $e \in \{1,2,\ldots,E\}$ do		
4:	for $(\mathbf{x},\mathbf{y})\in\mathcal{D}$ do		
5:	Compute neural network layers:		
6:	$\mathbf{o} = \texttt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \texttt{NNFORWARD}(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta})$		
7:	Compute gradients via backprop:		
8:	$ \left. \begin{array}{c} \mathbf{g}_{\alpha} = \nabla_{\alpha} J \\ \mathbf{g}_{\beta} = \nabla_{\beta} J \end{array} \right\} = NNBACKWARD(\mathbf{x}, \mathbf{y}, \alpha, \beta, \mathbf{o}) $		
9:	Update parameters:		
10:	$\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha} - \gamma \mathbf{g}_{\boldsymbol{\alpha}}$		
11:	$oldsymbol{eta} \leftarrow oldsymbol{eta} - \gamma \mathbf{g}_{oldsymbol{eta}}$		
12:	Evaluate training mean cross-entropy $J_{\mathcal{D}}(oldsymbollpha,oldsymboleta)$		
13:	Evaluate test mean cross-entropy $J_{\mathcal{D}_t}(oldsymbollpha,oldsymboleta)$		
14:	return parameters $oldsymbol{lpha},oldsymbol{eta}$		

Backpropagation

Case 2: Neural Network

Output yWeights β_1 β_2 Hidden Layer z_1 z_2 Weights a_{11} a_{21} a_{12} a_{22} a_{13} Input x_1 x_2 x_3

ForwardBackward
$$J = y^* \log y + (1 - y^*) \log(1 - y)$$
 $g_y = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$ $y = \frac{1}{1 + \exp(-b)}$ $g_b = g_y \frac{\partial y}{\partial b}, \frac{\partial y}{\partial b} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$ $b = \sum_{j=0}^{D} \beta_j z_j$ $g_{\beta_j} = g_b \frac{\partial b}{\partial \beta_j}, \frac{\partial b}{\partial \beta_j} = z_j$ $z_j = \frac{1}{1 + \exp(-a_j)}$ $g_{a_j} = g_b \frac{\partial b}{\partial z_j}, \frac{\partial b}{\partial a_j} = \beta_j$ $a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$ $g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$ $g_{x_i} = \sum_{j=0}^{D} g_{a_j} \frac{\partial a_j}{\partial x_i}, \frac{\partial a_j}{\partial x_i} = \alpha_{ji}$

17

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	9 9 -
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$g_b = g_y \frac{\partial y}{\partial b}, \ \frac{\partial y}{\partial b} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$g_{\beta_j} = g_b \frac{\partial b}{\partial \beta_j}, \ \frac{\partial b}{\partial \beta_j} = z_j$ $g_{z_j} = g_b \frac{\partial b}{\partial z_j}, \ \frac{\partial b}{\partial z_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$g_{a_j} = g_{z_j} \frac{\partial z_j}{\partial a_j}, \ \frac{\partial z_j}{\partial a_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \ \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$ $g_{x_i} = \sum_{j=0}^D g_{a_j} \frac{\partial a_j}{\partial x_i}, \ \frac{\partial a_j}{\partial x_i} = \alpha_{ji}$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \ \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \ \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \alpha_{ji}$

Derivative of a Sigmoid

First suppose that

$$s = \frac{1}{1 + \exp(-b)} \tag{1}$$

To obtain the simplified form of the derivative of a sigmoid.

$$\frac{ds}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$
(2)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1+1-1)^2}$$
(3)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1)^2}$$
(4)

$$= \frac{\exp(-b) + 1}{(\exp(-b) + 1)^2} - \frac{1}{(\exp(-b) + 1)^2}$$
(5)

$$=\frac{1}{(\exp(-b)+1)}-\frac{1}{(\exp(-b)+1)^2}$$
(6)

$$= \frac{1}{(\exp(-b)+1)} - \left(\frac{1}{(\exp(-b)+1)}\frac{1}{(\exp(-b)+1)}\right)$$
(7)

$$= \frac{1}{(\exp(-b)+1)} \left(1 - \frac{1}{(\exp(-b)+1)} \right)$$
(8)
= $s(1-s)$ (9)

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$g_b = g_y \frac{\partial y}{\partial b}, \ \frac{\partial y}{\partial b} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$g_{\beta_j} = g_b \frac{\partial b}{\partial \beta_j}, \ \frac{\partial b}{\partial \beta_j} = z_j$ $g_{z_j} = g_b \frac{\partial b}{\partial z_j}, \ \frac{\partial b}{\partial z_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$g_{a_j} = g_{z_j} \frac{\partial z_j}{\partial a_j}, \frac{\partial z_j}{\partial a_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \ \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$ $g_{x_i} = \sum_{j=0}^D g_{a_j} \frac{\partial a_j}{\partial x_i}, \ \frac{\partial a_j}{\partial x_i} = \alpha_{ji}$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$g_b = g_y \frac{\partial y}{\partial b}, \ \frac{\partial y}{\partial b} = y(1-y)$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$g_{\beta_j} = g_b \frac{\partial b}{\partial \beta_j}, \ \frac{\partial b}{\partial \beta_j} = z_j$ $g_{z_j} = g_b \frac{\partial b}{\partial z_j}, \ \frac{\partial b}{\partial z_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$g_{a_j} = g_{z_j} \frac{\partial z_j}{\partial a_j}, \ \frac{\partial z_j}{\partial a_j} = z_j (1 - z_j)$
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \ \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$ $g_{x_i} = \sum_{j=0}^D g_{a_j} \frac{\partial a_j}{\partial x_i}, \ \frac{\partial a_j}{\partial x_i} = \alpha_{ji}$

SGD with Backprop

Example: 1-Hidden Layer Neural Network

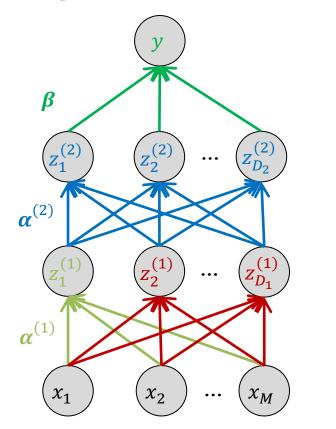
Algorithm 1 Stochastic Gradient Descent (SGD)		
1:	procedure SGD(Training data \mathcal{D} , test data \mathcal{D}_t)	
2:	Initialize parameters $oldsymbol{lpha},oldsymbol{eta}$	
3:	for $e \in \{1,2,\ldots,E\}$ do	
4:	for $(\mathbf{x},\mathbf{y})\in\mathcal{D}$ do	
5:	Compute neural network layers:	
6:	$\mathbf{o} = \texttt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \texttt{NNFORWARD}(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta})$	
7:	Compute gradients via backprop:	
8:	$ \left. \begin{array}{c} \mathbf{g}_{\alpha} = \nabla_{\alpha} J \\ \mathbf{g}_{\beta} = \nabla_{\beta} J \end{array} \right\} = NNBACKWARD(\mathbf{x}, \mathbf{y}, \alpha, \beta, \mathbf{o}) $	
9:	Update parameters:	
10:	$oldsymbol{lpha} \leftarrow oldsymbol{lpha} - \gamma \mathbf{g}_{oldsymbol{lpha}}$	
11:	$oldsymbol{eta} \leftarrow oldsymbol{eta} - \gamma \mathbf{g}_{oldsymbol{eta}}$	
12:	Evaluate training mean cross-entropy $J_{\mathcal{D}}(oldsymbollpha,oldsymboleta)$	
13:	Evaluate test mean cross-entropy $J_{\mathcal{D}_t}(oldsymbollpha,oldsymboleta)$	
14:	return parameters $oldsymbol{lpha},oldsymbol{eta}$	

A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Backpropagation

Recall: Our 2-Hidden Layer Neural Network **Question:** How do we train this model?



 $\boldsymbol{\beta} \in \mathbb{R}^{D_2}$ $\boldsymbol{\beta}_0 \in \mathbb{R} \qquad \qquad \boldsymbol{y}$ $\boldsymbol{\alpha}^{(2)} \in \mathbb{R}^{M \times D_2} \qquad \boldsymbol{z}^{(2)}$ $\boldsymbol{b}^{(2)} \in \mathbb{R}^{D_2} \qquad \boldsymbol{z}^{(1)}$ $\boldsymbol{\alpha}^{(1)} \in \mathbb{R}^{M \times D_1}$ $\boldsymbol{b}^{(1)} \in \mathbb{R}^{D_1}$

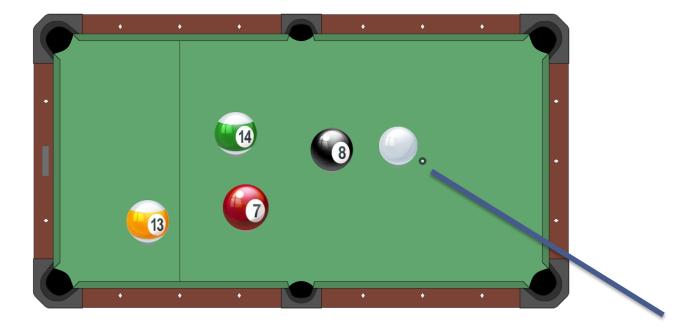
 $y = \sigma((\boldsymbol{\beta})^T \boldsymbol{z}^{(2)} + \beta_0)$ $\boldsymbol{z}^{(2)} = \sigma((\boldsymbol{\alpha}^{(2)})^T \boldsymbol{z}^{(1)} + \boldsymbol{b}^{(2)})$ $\boldsymbol{z}^{(1)} = \sigma((\boldsymbol{\alpha}^{(1)})^T \boldsymbol{x} + \boldsymbol{b}^{(1)})$

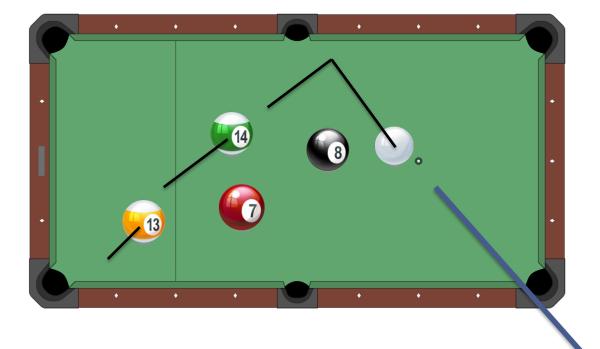
Example: Neural Net Training (2-Hidden Layers)

Example: Backpropagation (2-Hidden Layers)

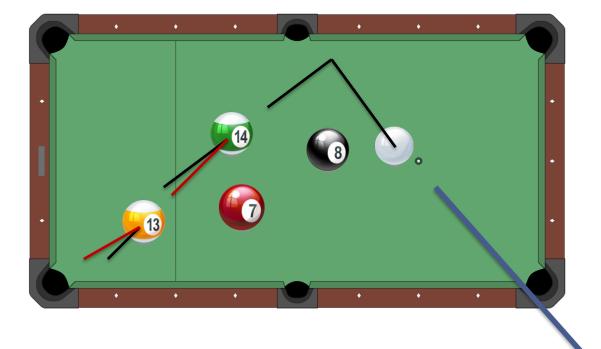
Intuitions

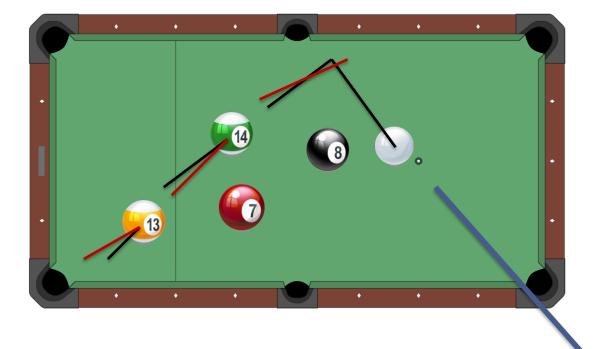
BACKPROPAGATION OF ERRORS

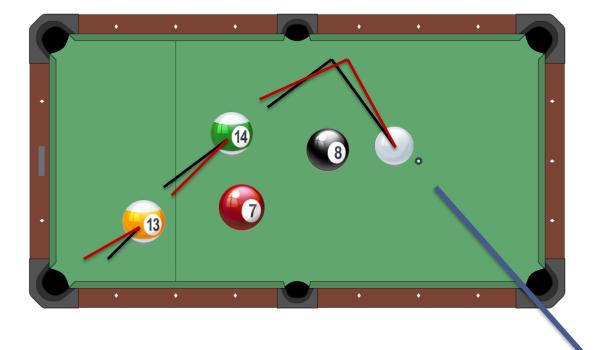


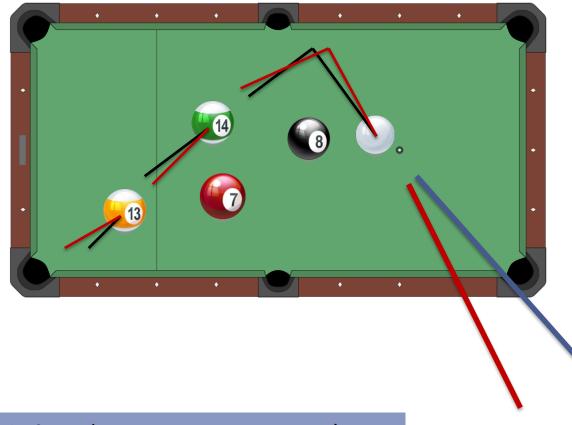


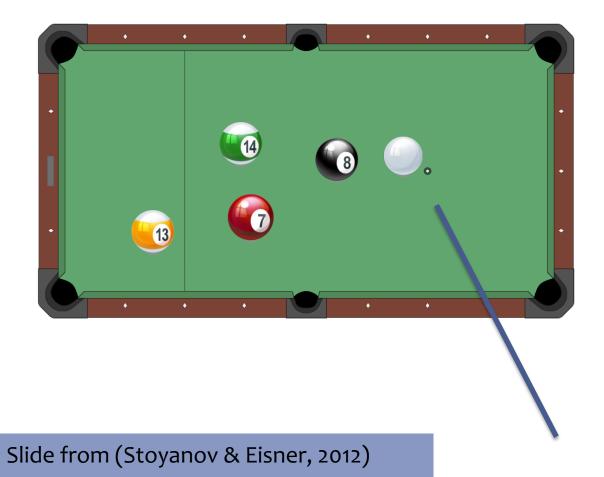


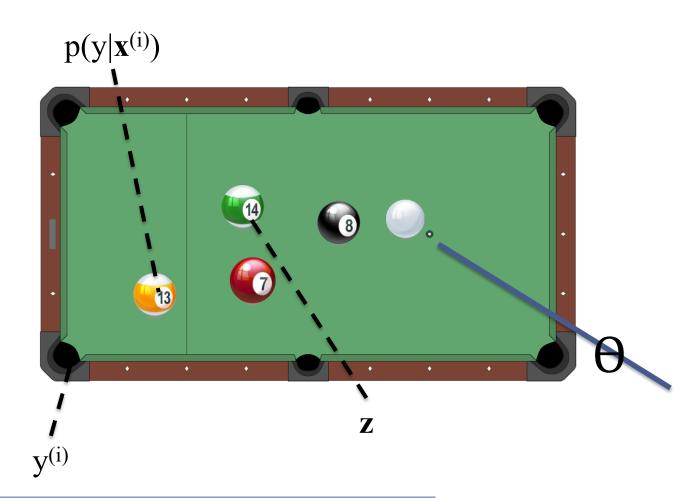












THE BACKPROPAGATION ALGORITHM

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a **directed acyclic graph**, where each variable is a node (i.e. the "**computation** graph")
- 2. Visit each node in **topological order**. For variable u_i with inputs v_1, \dots, v_N a. Compute $u_i = g_i(v_1, \dots, v_N)$ b. Store the result at the node

Backward Computation (Version A)

- Initialize dy/dy = 1. 1.
- 2.
- Visit each node v_j in **reverse topological order**. Let u_1, \ldots, u_M denote all the nodes with v_j as an input
 - Assuming that $y = h(\mathbf{u}) = h(u_1, \dots, u_M)$ and $\mathbf{u} = g(\mathbf{v})$ or equivalently $u_i = g_i(v_1, \dots, v_j, \dots, v_N)$ for all i a. We already know dy/du_i for all i

 - b. Compute dy/dv_i as below (Choice of algorithm ensures computing (du_i/dv_i) is easy)

$$\frac{dy}{dv_j} = \sum_{i=1}^{M} \frac{dy}{du_i} \frac{du_i}{dv_j}$$

Return partial derivatives dy/du_i for all variables

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a **directed acyclic graph**, where each variable is a node (i.e. the "**computation** graph")
- 2. Visit each node in **topological order**. For variable u_i with inputs v_1, \dots, v_N a. Compute $u_i = g_i(v_1, \dots, v_N)$ b. Store the result at the node

Backward Computation (Version B)

- **Initialize** all partial derivatives dy/du_i to 0 and dy/dy = 1. 1.
- Visit each node in **reverse topological order**. 2. For variable $u_i = g_i(v_1, \dots, v_N)$

 - a. We already know dy/du_i
 b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Return partial derivatives dy/du_i for all variables

Backpropagation (Version B)

Simple Example: The goal is to compute $J = cos(sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Backpropagation (Version B)

Simple Example: The goal is to compute $J = cos(sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

	$g_u = 0, g_{u_1} = 0, g_{u_2} = 0, g_t = 0, g_x = 0$	Initialize	
Forward	Backward	adjoints t	o zero
$J = \cos(u)$	$g_u = -\sin(u)$		
$u = u_1 + u_2$	$g_{u_1} += g_u \frac{du}{du_1}, \frac{du}{du_1} = 1 \qquad g_{u_2} += g_u \frac{du}{du_2},$	$\frac{du}{du_2} = 1$	
$u_1 = \sin(t)$	$g_t += g_{u_1} \frac{du_1}{dt}, \frac{du_1}{dt} = \cos(t)$	Notice th	
$u_2 = 3t$	$g_t += g_{u_2} \frac{du_2}{dt}, \frac{du_2}{dt} = 3$	increme partial de	
$t = x^2$	$g_x += g_t \frac{dt}{dx}, \frac{dt}{dx} = 2x$	for	
		in two p	naces:

Backpropagation

Why is the backpropagation algorithm efficient?

- 1. Reuses **computation from the forward pass** in the backward pass
- 2. Reuses **partial derivatives** throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)

(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

Background

A Recipe for

Gradients

1. Given training dat **Backprop** $\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^{N}$ gradient!
And it's a

2. Choose each of t

– Decision function $\hat{m{y}}=f_{m{ heta}}(m{x}_i)$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Backpropagation can compute this gradient!

And it's a **special case of a more general algorithm** called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)

 $-\eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

MATRIX CALCULUS

Q: Do I need to know **matrix calculus** to derive the backprop algorithms used in this class?

A: Well, we've carefully constructed our assignments so that you do **not** need to know matrix calculus.

That said, it's pretty handy. So we added matrix calculus to our learning objectives for backprop.

Numerator

	Types of Derivatives	scalar	vector	matrix
	scalar	$rac{\partial y}{\partial x}$	$rac{\partial \mathbf{y}}{\partial x}$	$rac{\partial \mathbf{Y}}{\partial x}$
tor	vector	$rac{\partial y}{\partial \mathbf{x}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$rac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
Denominator	matrix	$rac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$rac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in \mathbb{R}^{P \times Q}$ be matrices

)enominato

Types of Derivatives	scalar		
scalar	$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x} \end{bmatrix}$		
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$		
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$		

Types of Derivatives	scalar	vector
scalar	$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \\ \vdots & & & \\ \frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

```
Let y, x \in \mathbb{R} be scalars, \mathbf{y} \in \mathbb{R}^M and \mathbf{x} \in \mathbb{R}^P be vectors.
```

1. In numerator layout:

$$\begin{array}{l} \displaystyle \frac{\partial y}{\partial \mathbf{x}} \text{ is a } 1 \times P \text{ matrix, i.e. a row vector} \\ \displaystyle \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text{ is an } M \times P \text{ matrix} \end{array}$$

2. In denominator layout:

$$\begin{array}{l} \displaystyle \frac{\partial y}{\partial \mathbf{x}} \text{ is a } P \times 1 \text{ matrix, i.e. a column vector} \\ \displaystyle \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text{ is an } P \times M \text{ matrix} \end{array}$$

Why? This ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

In this course, we

use denominator

layout.

Vector Derivatives

Scalar Derivatives

Suppose $x \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$

f(x)	$\frac{\partial f(x)}{\partial x}$
bx	b
xb	b
x^2	2x
bx^2	2bx

Vector Derivatives

Suppose $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, $\mathbf{Q} \in \mathbb{R}^{m \times m}$ and \mathbf{Q} is symmetric.

$f(\mathbf{x})$	$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$	type of f
$\mathbf{b}^T \mathbf{x}$	b	$f:\mathbb{R}^m\to\mathbb{R}$
$\mathbf{x}^T \mathbf{b}$	b	$f:\mathbb{R}^m\to\mathbb{R}$
$\mathbf{x}^T \mathbf{B}$	\mathbf{B}	$f:\mathbb{R}^m\to\mathbb{R}^n$
$\mathbf{B}^T \mathbf{x}$	\mathbf{B}^{T}	$f:\mathbb{R}^m\to\mathbb{R}^n$
$\mathbf{x}^T \mathbf{x}$	$2\mathbf{x}$	$f:\mathbb{R}^m\to\mathbb{R}$
$\mathbf{x}^T \mathbf{Q} \mathbf{x}$	$2\mathbf{Q}\mathbf{x}$	$f:\mathbb{R}^m\to\mathbb{R}$

Vector Derivatives

Scalar Derivatives

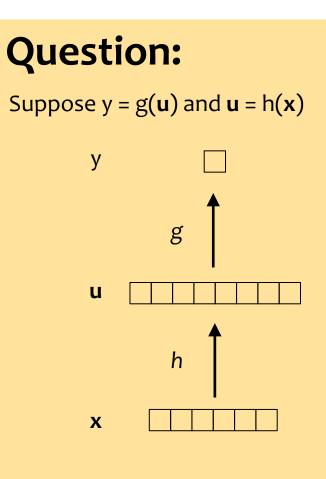
Suppose $\mathbf{x} \in \mathbb{R}^m$ and we have constants $a \in \mathbb{R}$, $b \in \mathbb{R}$

f(x)	$rac{\partial f(x)}{\partial x}$
g(x) + h(x) $ag(x)$ $g(x)b$	$\frac{\frac{\partial g(x)}{\partial x} + \frac{\partial h(x)}{\partial x}}{a\frac{\partial g(x)}{\partial x}} \\ \frac{\frac{\partial g(x)}{\partial x}}{\partial x}b$

Vector Derivatives

Suppose $\mathbf{x} \in \mathbb{R}^m$ and we have constants $a \in \mathbb{R}$, $\mathbf{b} \in \mathbb{R}^n$

$f(\mathbf{x})$	$rac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$
$g(\mathbf{x}) + h(\mathbf{x})$ $ag(\mathbf{x})$ $g(\mathbf{x})\mathbf{b}$	$\frac{\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} + \frac{\partial h(\mathbf{x})}{\partial \mathbf{x}}}{a \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}} \\ \frac{\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}}{\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}} \mathbf{b}^{T}$



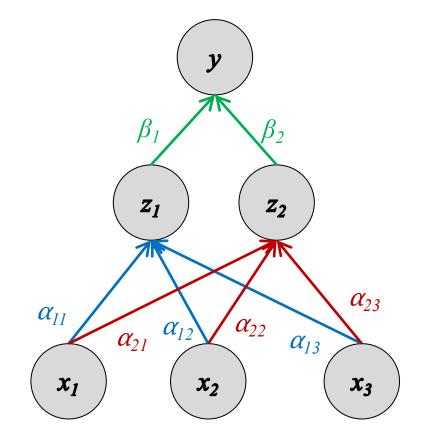
Which of the following is the correct definition of the chain rule?

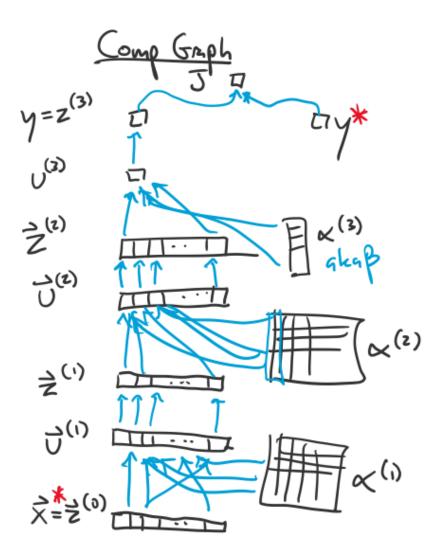
Recall: $\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \\ \vdots & & & \\ \frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$
Answer	• $\frac{\partial y}{\partial \mathbf{x}} = \dots$
	A. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
	$B. \; \frac{\partial y}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
	$C. \ \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$
	D. $\frac{\partial y}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$
	$E. \ (\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}})^T$
	F. None of the above

DRAWING A NEURAL NETWORK

Neural Network Diagram

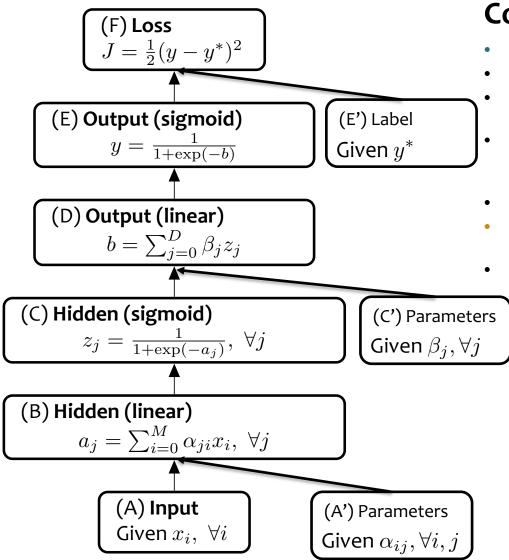
- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
 - Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
 - The diagram does NOT include any nodes related to the loss computation





Computation Graph

- The diagram represents an algorithm
- Nodes are **rectangles**
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
 - Each intercept term should appear as a node (if it's not folded in somewhere)
 - Each parameter should appear as a node
 - Each constant, e.g. a true label or a feature vector should appear in the graph
 - It's perfectly fine to include the loss



Computation Graph

- The diagram represents an algorithm
- Nodes are **rectangles**
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
 - Each intercept term should appear as a node (if it's not folded in somewhere)
 - Each parameter should appear as a node
 - Each constant, e.g. a true label or a feature vector should appear in the graph
 - It's perfectly fine to include the loss

Neural Network Diagram

- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
 - Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
 - The diagram does NOT include any nodes related to the loss computation

Computation Graph

- The diagram represents an algorithm
- Nodes are **rectangles**
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
 - Each intercept term should appear as a node (if it's not folded in somewhere)
 - Each parameter should appear as a node
 - Each constant, e.g. a true label or a feature vector should appear in the graph
 - It's perfectly fine to include the loss

Important!

Some of these conventions are specific to 10-301/601. The literature abounds with varations on these conventions, but it's helpful to have some distinction nonetheless.

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.