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Q

Q&A

What is “bias’’?

A That depends. The word “bias” shows up all over machine learning!
e Watch out...

1.
2.

The additive term in a linear model (i.e. b in w'x + b)

Inductive bias is the principle by which a learning algorithm
generalizes to unseen examples

Bias of a model in a societal sense may refer to racial, socio-
economic, gender biases that exist in the predictions of your
model

The difference between the expected predictions of your model
and the ground truth (as in “bias-variance tradeoff”)



Reminders

* Homework 5: Neural Networks
— Out: Mon, Oct 9
— Due: Fri, Oct 27 at 11:59pm




LEARNING THEORY



PAC(-MAN) Learning
For some hypothesis h € H:

1. True Error

2. Tri iniiiiior

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-

Over?
A. 110
B. 1120

C. 2130



Questions for today (and next lecture)

1.

Given a classifier with zero training error,
what can we say about true error%aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)



PAC/SLT Model for Supervised ML

!

h(x)



PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs, y € Y
— Distribution over instances, p*(-)
— Exists an unknown target function:i: X—TY

- Set,_g_[_,fof candidate hypothesis functions, h: X— Y

* Learner is given N training examples
D = {(X(1)’ y 1))) X(Z)) y(Z))) °** (X(N)7 y(N))}
where x() ~ p*g-) and yU) = c*(x®)

* Learner produces a hypothesis function, § = h(x), that best
approximates unknown target function y = ¢*(x) on the training data




IMPORTANT NOTE

In our discussion of PAC
Learning, we are only
concerned with the

problem of binary
classification

There are other theoretical frameworks (including
PAC) that handle other learning settings, but this
provides us with a representative one.




PAC/SLT Model for Supervised ML

Test Error Rate
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Two Types of Error

1. True Error (aka. expected risk)

R(h) PXNp* (x) (C* (X) 7é h(X)) 777/3 QU

—_— -

2. Train Error (aka. empirical risk) unk"O'j/Jl/f
R(R) = Pens(c" (%) # ()

1~ (4) (3) 0 ealﬁ:an
= 2 (D) £ h(xD)) [ Onthreth
— - Q4. 9Nin
1=1 T al’a &
1 N
= > 1y £ nx)) 4
e =1 T
where S = {xM), ... x(M)} N is the training data set, and x ~

—_—

S denotes that x is sampled from the empirical distribution.



Il‘/lf:/e;g € also
PAC / S LT M O d e I Apprjjl_fge £§f erred to

. Generate instances from unknown distribution p*
x®) ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y W = (xV), Vi (2)

. Learning algorithm chooses hypothesis h € ‘H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

yW = (xW), vi (1)
The expected risk minimizer has lowest true error:

h* = argmin R(h) (2)
heH

The empirical risk minimizer has lowest training error:

A

h = argmin R(h) (3)
heH



QL

A-

‘owic

Three Hypotheses of Interest

Y@ = ¢* (x®), Vi h* = ar}ig“én?q{in R(h)
¥ 2%% C 7§% i

Question: True or h* and c* are always equal.

Answer: % = j\'\/&w j_ib)?«\-bl‘s
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PAC LEARNING



PAC Learning

 Q: Can we bound R(h) in terms of R(h)?

* A:Yes!

* PACstands for Probably
Approximately
Correct

A PAC Learner yields a hypothesis h € H which is...

approximately correct R(h) = 0 s—
with high probability Pr(R(h) = 0) = 1



Probably Approximately Correct (PAC) Learning

PAC Criterion
P (¥hedl, 1RW-RWI<e) 2 1-6

;e_ﬁ(\/\\ ‘e
—— —
RW
&3 \I\)l\A‘\ i3 [‘amém |Il12.rt?:
A: @KU\B 1 LJ‘\\(A on o f“o’\é"’w S&.wr)le_
St ?*(x)

Sample Complexity

D;_?-. Y gmplo Xi W 1LLL Wit muw
nomber < —ﬁm\m'vb ex q?us,/\/, <t.
e PAC Crtenan Sa%'sybc[ §3r
ot € ad §

Consistent Learner
_DLS:‘. o L\,’P\A‘L\Lds 14\6?'] s Cowsisjr%‘l' vof)[\ —Ld\uiU\j
JDA’R ‘152 R(Q:D
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SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).
We’ll start with the
. "S Four Cases we care about... finite case...
XWR'%Q\M& Realizable D Agno:ci?
Finite |H | C% 677[ € "¢ Ao

céct

Infinite |H|




Probably Approximately Correct (PAC) Learning

Theorem 1: Realizable Case, Finite |H|
B} You heve M Jrn?wio7 exarples,  whor
Nz [0 (1) + La(/5Y], Yo Hhey ot
it do ewsone fht 1w/ pobbiliky
(-8) ve ke Hedfeall e with R0
we kaow 4t R(W <K€
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
Fini beled examples are sufficient so that with

te |H| probability (1—4) all h € H with R(h) =0
have R(h) < e.

Infinite |H|




2 Example: Conjunctions M

Question: Answer:
Suppose H = class of 10*(2*In(10)+In(100 )) = 92 |(’A
conjunctions over x in {0,1}’\/1‘/\ 10*(3*Iri(10)+In(100)) = 116 ))°/
< T.F) 10*(10#In(2)+In(100 )) = 116 L{z:/o
Example hypotheses: ID.| 10*(16*In(3)+In(100)) = 156 24
% h(x) =%, (1-X3) X = X ATSAKJE" 100%*(2*In(10)+In(10 )) = 691
h(x) = X; (1-X2) X4 (1-X5) 100*(3*In(10)+In(10)) = 922
= XA XL AN Xs 100*(10*In(2)+In(10 )) = 924

If M =10, £=0.1,3 = 0.01, how H—1oo*(To*In(3)+n{te))=+329- JML

many examples suffice

according to Theorem 12 }?—H :BM:?D —_ ngU?"Df 10 a(3)
Ui . 55'\ x [!Lg N&éﬂk }\))
Thm. 1 N > I[log(|H]) +log(3)] le- %7 Fhe o ere /
beled examples are sufficient so tAhaqc with 1S _Lnear I e nnloers %’4‘51/\4,
probability (1 —4) allh € H with R(h) =0 g . ki
have R(h) < . - even Fhook U] i M

sy M. g



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
Fini beled examples are sufficient so that with

te |H| probability (1—4) all h € H with R(h) =0
have R(h) < e.

Infinite |H|




Background: Contrapositive

* Definition: The contrapositive of the statement
A=1B
is the statement
B = -A
and the two are logically equivalent (i.e. they share all the same truth
values in a truth table!)

* Proof by contrapositive:
If you want to prove A = B, instead prove =B = -A and then conclude
that A= B

* Caution: sometimes negating a statement is easier said than done, just
be careful!
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Proof of Theorem 1



Proof of Theorem 1



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
Fini beled examples are sufficient so that with

te |H| probability (1—4) all h € H with R(h) =0
have R(h) < e.

Thm. 2 N > 5l [log([H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — d) forall h € H we
have that |R(h) — R(h)| < e.

Infinite |H|




Finite ||

Infinite |H|

1. Boundis inversely linear in 1.
epsilon (e.g. halving the error )
requires double the examples)

2. Boundis only logarithmicin  [€]2.
[H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
|H| (i.e. same as Realizable

case)

Realizable

% Agnostic

Thm. 1 N > I[log(|H|) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5l [log([H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |R(h) — R(h)| < e.




Finite vs. Infinite |H|

Finite |H| Infinite |H|
* Example: H = the set of all decision trees * Example: H = the set of all linear decision
of depth D over binary feature vectors of boundaries in M dimensions
length M
A
A
N o0 +
B B ‘
AN\ VAN
+ C C + +
/N /\
Y O + >
¢ Exampl€: H= the set Of a” ConjunCtionS ° Example: H= the set Of a” neural
over binary feature vectors of length M networks with 1-hidden layer with length

M inputs



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic
Thm|  For these two cases, we will use a new definition for the
Finite || gf(')e “complexity” of a Hypothesis space called VC Dimension
have R(h) < e. have that | R( R(h)| < e.
| .

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H|

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5l [log([H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — d) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(% (VC(H)log() + log(3)])
labeled examples—are-sufficient so that
with probability (1 — ) all h € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% |VC(H) '+ log(35)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(h)| < e.




