

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

PAC Learning

Matt Gormley Lecture 14 Oct. 13, 2023

Q&A

Q: What is "bias"?

That depends. The word "bias" shows up all over machine learning! A: Watch out...

- 1. The additive term in a linear model (i.e. b in $w^{T}x + b$)
- 2. Inductive bias is the principle by which a learning algorithm generalizes to unseen examples
- 3. Bias of a model in a societal sense may refer to racial, socio- economic, gender biases that exist in the predictions of your model
- 4. The difference between the expected predictions of your model and the ground truth (as in "bias-variance tradeoff")

Reminders

- **Homework 5: Neural Networks**
	- **Out: Mon, Oct 9**
	- **Due: Fri, Oct 27 at 11:59pm**

LEARNING THEORY

PAC(-MAN) Learning For some hypothesis $h \in \mathcal{H}$:

1. True Error

 $R(h)$

2. Training Error $\hat{R}(h)$

Question 1: Question 2:

What is the expected number OF PAC-MAN JEVEIS Mall WIII C of PAC-MAN levels Matt will complete before a **Game-Over**?

- \overline{A} 1-10 A. 1-10
- R 11-2 B. 11-20
- C. 21-30

Questions for today (and next lecture)

- 1. Given a classifier with **zero training error**, what can we say about **true error** (aka. generalization error)? (Sample Complexity, Realizable Case)
- 2. Given a classifier with **low training error**, what can we say about **true error** (aka. generalization error)? (Sample Complexity, Agnostic Case)
- 3. Is there a **theoretical justification for (Structural Risk Minimization)**

PAC/SLT Model for Supervised ML

 $0¹$ $- +$ V 1

 $- +$

PAC/SLT Model for Supervised ML

- **Problem Setting**
	- Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
	- Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
	- Distribution over instances, $p^*(\cdot)$
	- Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain)
	- Set, H, of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees)
- **Learner is given** N training examples
 $D = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(N)}, y^{(N)}) \}$ where $x^{(i)}$ ~ $p^*(\cdot)$ and $y^{(i)} = c^*(x^{(i)})$
(history of patients and their diagnoses)
- **Learner produces** a hypothesis function, $\hat{y} = h(x)$, that best
approximates unknown target function $y = c^*(x)$ on the training data

IMPORTANT NOTE

In our discussion of PAC Learning, we are only concerned with the problem of **binary** classification

There are other theoretical frameworks (including PAC) that handle other learning settings, but this provides us with a representative one.

PAC/SLT Model for Supervised ML

Two Types of Error

- 1. True Error (aka. **expected risk**)
	- $R(h) = P_{\mathbf{x} \sim p^*(\mathbf{x})}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$
- 2. Train Error (aka. **empirical risk**)

$$
\hat{R}(h) = P_{\mathbf{x} \sim S}(c^*(\mathbf{x}) \neq h(\mathbf{x}))
$$
\n
$$
= \frac{1}{N} \sum_{i=1}^N \mathbb{1}(c^*(\mathbf{x}^{(i)}) \neq h(\mathbf{x}^{(i)}))
$$
\n
$$
= \frac{1}{N} \sum_{i=1}^N \mathbb{1}(y^{(i)} \neq h(\mathbf{x}^{(i)}))
$$

where $\mathcal{S} = {\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\}}_{i=1}^N$ is the training data set, and $\mathbf{x} \sim$ S denotes that x is sampled from the empirical distribution.

This quantity

is alwant
'**nkr**

unknown

We can **measure** this on the training data

PAC / SLT Model

1. Generate instances from unknown distribution p^*

$$
\mathbf{x}^{(i)} \sim p^*(\mathbf{x}), \forall i \tag{1}
$$

2. Oracle labels each instance with unknown function c^*

$$
y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i
$$
 (2)

3. Learning algorithm chooses hypothesis $h \in \mathcal{H}$ with low(est) training error, $\hat{R}(h)$

$$
\hat{h} = \operatorname*{argmin}_{h} \hat{R}(h) \tag{3}
$$

4. Goal: Choose an h with low generalization error $R(h)$

Three Hypotheses of Interest

The true function c^* is the one we are trying to learn and that labeled the training data:

$$
y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i
$$
 (1)

The expected risk minimizer has lowest true error:

$$
h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h) \tag{2}
$$

The empirical risk minimizer has lowest training error:

$$
\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \,\hat{R}(h) \tag{3}
$$

Three Hypotheses of Interest

$$
y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i
$$
\n
$$
h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)
$$

Question: *True or False*: h* and c* are always equal.

Answer: Answer:

PAC LEARNING

PAC Learning

- Q: Can we bound $R(h)$ in terms of $\hat{R}(h)$?
- A: Yes!
- **PAC** stands for

A **PAC Learner** yields a hypothesis $h \in \mathcal{H}$ which is... approximately correct $R(h) \approx 0$ with high probability $Pr(R(h) \approx 0) \approx 1$

Probably Approximately Correct (PAC) Learning

PAC Criterion Sample Complexity

Consistent Learner

SAMPLE COMPLEXITY RESULTS

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Probably Approximately Correct (PAC) Learning

Theorem 1: Realizable Case, Finite |H|

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

Example: Conjunctions

Question: Suppose H = class of conjunctions over **x** in {0,1}M

```
Example hypotheses:
```
 $h(x) = x_1 (1-x_3) x_5$ $h(x) = x_1 (1-x_2) x_4 (1-x_5)$

If $M = 10$, $\varepsilon = 0.1$, $\delta = 0.01$, how many examples suffice according to Theorem 1?

Answer:

- A. $10^*(2^*ln(10)+ln(100)) \approx 92$
- B. $10^*(3^*ln(10)+ln(100)) \approx 116$
- C. $10*(10*ln(2)+ln(100)) \approx 116$
- D. $10*(10*ln(3)+ln(100)) \approx 156$
- E. $100*(2*ln(10)+ln(10)) \approx 691$
- F. $100*(3*ln(10)+ln(10)) \approx 922$
- G. $100*(10*ln(2)+ln(10)) \approx 924$
- H. $100*(10*ln(3)+ln(10)) \approx 1329$

Thm. 1 $N \geq \frac{1}{\epsilon} \left[\log(|\mathcal{H}|) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$.

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

Background: Contrapositive

• *Definition:* The **contrapositive** of the statement $A \implies B$

is the statement
 $\neg B \Rightarrow \neg A$

and the two are logically equivalent (i.e. they share all the same truth values in a truth table!)

- *Proof by contrapositive:* If you want to prove $A \Rightarrow B$, instead prove $\neg B \Rightarrow \neg A$ and then conclude that $A \Rightarrow B$
- *Caution:* sometimes negating a statement is easier said than done, just be careful!

Proof of Theorem 1

Proof of Theorem 1

Proof of Theorem 1

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

Finite vs. Infinite |H|

Finite |H|

• *Example*: H = the set of all decision trees of depth D over binary feature vectors of length M

• *Example*: H = the set of all conjunctions over binary feature vectors of length M

Infinite |H|

Example: H = the set of all linear decision boundaries in M dimensions

• *Example*: H = the set of all neural networks with 1-hidden layer with length M inputs

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

