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10-301/601: Introduction 
to Machine Learning
Lecture 15 – Learning 
Theory (Infinite Case)



Front Matter

� Announcements
� HW5 released 10/9, due 10/27 (Friday) at 11:59 PM

� Exam 3 scheduled

� Tuesday, December 12th from 5:30 PM to 8:30 PM

� Sign up for peer tutoring! See Piazza for more details

210/23/23

https://piazza.com/class/l6xoswmdxo10m/post/985


Recall - 
Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ such that 𝑐∗ ∈ ℋ 
(realizable) and arbitrary distribution 𝑝∗, if the number 
of labelled training data points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖
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� For a finite hypothesis set ℋ such that 𝑐∗ ∈ ℋ 
(realizable) and arbitrary distribution 𝑝∗, if the number 
of labelled training data points satisfies 

𝑀 =
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� Making the bound tight and solving for 𝜖 gives…



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ such that 𝑐∗ ∈ ℋ 

(realizable) and arbitrary distribution 𝑝∗, given a training 
dataset 𝑆 where 𝑆 = 𝑀, all ℎ ∈ ℋ with /𝑅 ℎ = 0	have

𝑅 ℎ ≤
1
𝑀

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.



Recall - 
Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖"

ln ℋ + ln
2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training dataset 𝑆 where 𝑆 = 𝑀, all ℎ ∈ ℋ 
have

𝑅 ℎ ≤ /𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 where 𝑆 = 𝑀, all ℎ ∈ ℋ 
have

𝑅 ℎ ≤ /𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



Labellings

� Given some finite set of data points 𝑆 = 𝒙 # , … , 𝒙 $  

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 
𝑆 results in a labelling 

� ℎ 𝒙 # , … , ℎ 𝒙 $  is a vector of 𝑀 +1’s and -1’s 

(recall: our discussion of PAC learning assumes 
binary classification)

� Given 𝑆 = 𝒙 # , … , 𝒙 $ , each hypothesis in ℋ 

induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 # , … , ℎ 𝒙 $ 	 ℎ ∈ ℋ

910/23/23



Example: Labellings

ℋ = {ℎ#, ℎ", ℎ%} 
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ℋ = {ℎ#, ℎ", ℎ%} 

ℎ# 𝒙 # , ℎ# 𝒙 " , ℎ# 𝒙 % , ℎ# 𝒙 (

= −1,+1,−1,+1
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Example: Labellings

10/23/23



Example: Labellings
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𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ#, ℎ", ℎ%} 

ℎ# 𝒙 # , ℎ# 𝒙 " , ℎ# 𝒙 % , ℎ# 𝒙 (

= −1,+1,−1,+1
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Example: Labellings
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ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ#, ℎ", ℎ%} 

ℎ# 𝒙 # , ℎ# 𝒙 " , ℎ# 𝒙 % , ℎ# 𝒙 (

= +1,+1,−1,−1
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Example: Labellings
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𝒙 $
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ℋ = {ℎ#, ℎ", ℎ%}

ℋ 𝑆

= +1,+1,−1,−1 , −1,+1,−1,+1

ℋ 𝑆 = 2



Example: Labellings

ℋ = ℎ#, ℎ", ℎ%

ℋ 𝑆

= +1,+1,−1,−1

ℋ 𝑆 = 1
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�ℋ 𝑆 	is the set of all labellings induced by ℋon 𝑆

� If 𝑆 = 𝑀, then ℋ 𝑆 ≤ 2$

�ℋ shatters 𝑆 if ℋ 𝑆 = 2$

� The VC-dimension of ℋ, 𝑉𝐶 ℋ , is the size of the largest 

set 𝑆 that can be shattered by ℋ. 

� If ℋ	can shatter arbitrarily large finite sets, then 
𝑉𝐶 ℋ = ∞ 

� To prove that 𝑉𝐶 ℋ = 𝑑, you need to show

1.  ∃ some set of 𝑑 data points that ℋ can shatter and

2.  ∄ a set of 𝑑 + 1 data points that ℋ can shatter 

VC-Dimension

1610/23/23



VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

17

𝑆
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Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 
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� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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ℋ 𝑆" = 8ℋ 𝑆# = 6 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆# 𝑆"
All points on the 

convex hull
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆"
All points on the 

convex hull
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆"
All points on the 

convex hull

ℋ 𝑆# = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 
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� Can ℋ shatter some set of 1 point?
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� Can ℋ shatter some set of 4 points? 
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

ℋ 𝑆# = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

31

All points on the 
convex hull

ℋ 𝑆# = 14 ℋ 𝑆" = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 2-dimensional linear separators 

� 𝑉𝐶 ℋ 	=	3
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

32

All points on the 
convex hull

At least one point 
inside the convex hull

ℋ 𝑆# = 14 ℋ 𝑆" = 14
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ"	and	ℋ = all 𝑑-dimensional linear separators 

� 𝑉𝐶 ℋ 	=	𝑑	+	1
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

33

All points on the 
convex hull

One point inside 
the convex hull

ℋ 𝑆# = 14 ℋ 𝑆" = 14
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VC-Dimension: 
Example

34

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

10/23/23



VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 "
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 "
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 " 𝑥 !
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎
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VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎
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VC-Dimension: 
Example

40

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form	ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑉𝐶 ℋ = 1

𝑥 " 𝑥 !

𝑎

10/23/23



� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example

41

𝑎 𝑏
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

Poll Question 1: 

What is 𝑉𝐶 ℋ ?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

42

𝑎 𝑏
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

� 𝑉𝐶 ℋ = 2

VC-Dimension: 
Example

43

𝑎 𝑏

𝑥 " 𝑥 #𝑥 !
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Theorem 3: 
Vapnik-
Chervonenkis 
(VC)-Bound

44

� Infinite, realizable case: for any hypothesis set ℋ such 
that 𝑐∗ ∈ ℋ and arbitrary distribution 𝑝∗, if the number 
of labelled training data points satisfies 

𝑀 = 𝑂
1
𝜖
𝑉𝐶 ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

10/23/23



Statistical 
Learning 
Theory 
Corollary 3

45

� Infinite, realizable case: for any hypothesis set ℋ such 

that 𝑐∗ ∈ ℋ and arbitrary distribution 𝑝∗, given a training 
dataset 𝑆 where 𝑆 = 𝑀, all ℎ ∈ ℋ with /𝑅 ℎ = 0	have

𝑅 ℎ ≤ 𝑂
1
𝑀

𝑉𝐶 ℋ log
𝑀

𝑉𝐶 ℋ
+ log

1
𝛿

with probability at least 1 − 𝛿.

10/23/23



Theorem 4: 
Vapnik-
Chervonenkis 
(VC)-Bound

46

� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution 𝑝∗, if the number of labelled 
training data points satisfies 

𝑀 = 𝑂
1
𝜖"

𝑉𝐶 ℋ + log
1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

10/23/23



Statistical 
Learning 
Theory 
Corollary 4

47

� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution 𝑝∗, given a training dataset 𝑆 
where 𝑆 = 𝑀, all ℎ ∈ ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

10/23/23



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

48

Approximation 
Generalization 
Tradeoff

How well does ℎ 
approximate 𝑐∗?

How well does 
ℎ generalize?

10/23/23



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑉𝐶 ℋ  increases

Decreases as 
𝑉𝐶 ℋ  increases

10/23/23



Can we use 
this corollary to 
guide model 
selection? 

50

� Infinite, agnostic case: for any hypothesis set ℋ and 

arbitrary distribution 𝑝∗, given a training dataset 𝑆 
where 𝑆 = 𝑀, all ℎ ∈ ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

10/23/23



Learning 
Theory and 
Model 
Selection

51

𝑉𝐶 ℋ
er

ro
r

10/23/23

/𝑅 ℎ  (training error)

𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

/𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿



Learning 
Theory and 
Model 
Selection

52

𝑉𝐶 ℋ
er

ro
r

/𝑅 ℎ  (training error)

𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

𝑅 ℎ  (true error)

/𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

Best tradeoff

� How can we find this “best tradeoff” for linear separators?

� Use a regularizer! By (effectively) reducing the number of 
features our model considers, we reduce its VC-dimension. 

10/23/23



Learning 
Theory 
Learning 
Objectives

You should be able to…
� Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
� Distinguish true error, train error, test error
� Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

� Apply sample complexity bounds to real-world machine 
learning examples

� Theoretically motivate regularization

5310/23/23



Recall: 
Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗

10/23/23 54



Recall: 
Maximum 
Likelihood 
Estimation 
(MLE)

� Given independent, identically distributed observations (iid) 

𝒟 = 𝑥 ,
,-#
.

 from a parametrized probability distribution, 

MLE sets the parameters by maximizing the likelihood of 
the data: 

𝜃$/0 = argmax
1

𝑝 𝒟	|	𝜃 = argmax
1

`
,-#

.

𝑝 𝑥 , 	 𝜃

� Intuition: assign as much of the (finite) probability mass to 
the observed data at the expense of unobserved data
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Recall: 
Maximum 
Likelihood 
Estimation 
(MLE)

� Given independent, identically distributed observations (iid) 

𝒟 = 𝑥 ,
,-#
.

 from a parametrized probability distribution, 

MLE sets the parameters by maximizing the log-likelihood 
of the data: 

𝜃$/0 = argmax
1

log 𝑝 𝒟	|	𝜃 = argmax
1

a
,-#

.

log 𝑝 𝑥 , 	 𝜃

� Intuition: assign as much of the (finite) probability mass to 
the observed data at the expense of unobserved data
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Bernoulli 
Distribution
MLE

10/23/23 57

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙2 1 − 𝜙 #32

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 . , the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁#
/𝜙
−

𝑁4
1 − /𝜙

= 0 →
𝑁#
/𝜙
=

𝑁4
1 − /𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁# 1 − /𝜙 = 𝑁4 /𝜙 → 𝑁# = /𝜙 𝑁4 +𝑁#

𝜕ℓ
𝜕𝜙

→ /𝜙 =
𝑁#

𝑁4 +𝑁#
� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 .  and 𝑁4 is 

the number of 0’s
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙2 1 − 𝜙 #32

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 . , the log-likelihood is

ℓ 𝜙 =a
,-#

.

log 𝑝 𝑥 , |𝜙 =a
,-#

.

log𝜙2 ! 1 − 𝜙 #32 !

ℓ 𝜙 =a
,-#

.

𝑥 , log𝜙 + 1 − 𝑥 , log 1 − 𝜙

ℓ 𝜙 = 𝑁# log𝜙 + 𝑁4 log 1 − 𝜙

� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 .  and 𝑁4 is 
the number of 0’s
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙2 1 − 𝜙 #32

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁#
𝜙
−

𝑁4
1 − 𝜙

= 0 →
𝑁#
/𝜙
=

𝑁4
1 − /𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁# 1 − /𝜙 = 𝑁4 /𝜙 → 𝑁# = /𝜙 𝑁4 +𝑁#

𝜕ℓ
𝜕𝜙

→ /𝜙 =
𝑁#

𝑁4 +𝑁#
� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 .  and 𝑁4 is 

the number of 0’s



Poll Question 2:

After flipping your coin 
5 times, what is the MLE 
of your coin? 
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
	 𝑝 𝑥|𝜙 = 𝜙2 1 − 𝜙 #32

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁#
/𝜙
−

𝑁4
1 − /𝜙

= 0 →
𝑁#
/𝜙
=

𝑁4
1 − /𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁# 1 − /𝜙 = 𝑁4 /𝜙 → 𝑁# = /𝜙 𝑁4 +𝑁#

𝜕ℓ
𝜕𝜙

→ /𝜙 =
𝑁#

𝑁4 +𝑁#
� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 .  and 𝑁4 is 

the number of 0’s

A.  0/5
B.  1/5
C.  2/5
D.  3/5
E.  𝜋/5 (TOXIC)
F.  4/5
G.  5/5



� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior 
distribution over the parameters

� MLE finds /𝜃 = argmax
1

	𝑝 𝒟 𝜃

� MAP finds /𝜃 = argmax
1

	𝑝 𝜃 𝒟

MAP finds /𝜃 = argmax
1

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds /𝜃 = argmax
1

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds /𝜃. = argmax
1

	log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation
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likelihood prior

log-posterior



1. Specify the generative story, i.e., the data generating 
distribution, including a prior distribution 

� How on earth do we pick a prior?

2. Maximize the log-posterior of 𝒟 = 𝑥 # , … , 𝑥 .

ℓ$56 𝜃 = log 𝑝 𝜃 +a
,-#

.

log 𝑝 𝑥 , |𝜃

3. Solve in closed form: take partial derivatives,           

set to 0 and solve
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Maximum a 
Posteriori 
(MAP) 
Estimation


