10-301/601: Introduction to Machine Learning Lecture 15 – Learning Theory (Infinite Case)

Henry Chai & Matt Gormley

10/23/23

Front Matter

- Announcements
	- · HW5 released 10/9, due
	- Exam 3 scheduled
		- · Tuesday, December 1:
	- · Sign up for peer tutoring!

· Exan I exit poll

Recall - Theorem 1: Finite, Realizable Case • For a *finite* hypothesis set H such that $c^* \in H$ (*realizable*) and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
\widehat{\mathcal{M}} \geq \frac{1}{\epsilon} \Big(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \Big)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

Recall - Theorem 1: Finite, Realizable Case • For a *finite* hypothesis set H such that $c^* \in H$ (*realizable*) and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M = \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \widehat{\epsilon}$

• Making the bound tight and solving for ϵ gives...

Statistical Learning **Theory Corollary**

• For a *finite* hypothesis set H such that $c^* \in H$ (*realizable*) and arbitrary distribution p^{*}, given a training dataset S where $|S| = M$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq$ 1 \overline{M} $ln(|\mathcal{H}|) + ln$ 1 δ

with probability at least $1 - \delta$.

Recall - Theorem 2: Finite, Agnostic Case For a *finite* hypothesis set ℋ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M \ge \frac{1}{2\varepsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|R(h) - \hat{R}(h)| \leq \epsilon$

Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points

Statistical Learning Theory Corollary

 For a *finite* hypothesis set ℋ and arbitrary distribution p^* , given a training dataset S where $|S| = M$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}
$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$? For a *finite* hypothesis set ℋ and arbitrary distribution p^* , given a training data set S where $|S| = M$, all $h \in \mathcal{H}$ have

$$
R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}
$$

with probability at least $1 - \delta$.

Labellings

- Given some finite set of data points $S = \{x^{(1)}, ..., x^{(M)}\}$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a **labelling**
	- $\cdot \left[h\big(\pmb{x}^{(1)}\big),...,h\big(\pmb{x}^{(M)}\big)\right]$ is a vector of M +1's and -1's (recall: our discussion of PAC learning assumes binary classification)
- Given $S = \{x^{(1)}, ..., x^{(M)}\}$, each hypothesis in H

induces a labelling but not necessarily a unique labelling

 \cdot The set of labellings induced by $\mathcal H$ on S is

 $\mathcal{H}(S) = \{ [h(x^{(1)}), ..., h(x^{(M)})] \mid h \in \mathcal{H} \}$

Example: Labellings

 $\overline{\mathcal{H}} = \{h_1, h_2, h_3\}$

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 $h_1\bigl(\pmb{x}^{(1)}\bigr)$, $h_1\bigl(\pmb{x}^{(2)}\bigr)$, $h_1\bigl(\pmb{x}^{(3)}\bigr)$, $h_1\bigl(\pmb{x}^{(4)}\bigr)$ $= (-1, +1, -1, +1)$

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 $h_1\bigl(\pmb{x}^{(1)}\bigr)$, $h_1\bigl(\pmb{x}^{(2)}\bigr)$, $h_1\bigl(\pmb{x}^{(3)}\bigr)$, $h_1\bigl(\pmb{x}^{(4)}\bigr)$ $= (-1, +1, -1, +1)$

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 $h_{1}\bigl(\pmb{x}^{(1)}\bigr)$, $h_{1}\bigl(\pmb{x}^{(2)}\bigr)$, $h_{1}\bigl(\pmb{x}^{(3)}\bigr)$, $h_{1}\bigl(\pmb{x}^{(4)}\bigr)$ $= (+1, +1, -1, -1)$

10/23/23

VC-Dimension

• $\mathcal{H}(S)$ is the set of all labellings induced by \mathcal{H} on S

- \cdot If $|S| = M$, then $|\mathcal{H}(S)| \leq 2^M$
- H shatters S if $|\mathcal{H}(S)| = 2^M$
- The **VC-dimension** of H , $VC(H)$, is the size of the largest set S that can be shattered by H .
	- \cdot If $\mathcal H$ can shatter arbitrarily large finite sets, then $VC(\mathcal{H}) = \infty$
- \cdot To prove that $VC(\mathcal{H})=d$, you need to show
	- 1. \exists some set of d data points that H can shatter and
	- 2. \vec{A} a set of $d + 1$ data points that H can shatter

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$? • Can H shatter some set of 1 point? $\mathbb C$

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- \cdot Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- \cdot Can H shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- \cdot Can H shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- \cdot Can H shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- Can H shatter *some* set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- \cdot Can H shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- · Can H shatter some set of 3 points?

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- \cdot Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?
- \cdot Can H shatter some set of 3 points?
- \cdot Can H shatter some set of 4 points?

 S_1 S_2 All points on the convex hull

At least one point inside the convex hull

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- \cdot Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?
- \cdot Can H shatter some set of 3 points?
- \cdot Can H shatter some set of 4 points?

 S_1 S_2 All points on the convex hull

At least one point inside the convex hull

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- \cdot Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?
- \cdot Can H shatter some set of 3 points?
- \cdot Can H shatter some set of 4 points?

All points on the convex hull $S₁$

At least one point inside the convex hull

 S_2

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?
- \cdot Can H shatter some set of 3 points?
- \cdot Can H shatter some set of 4 points?

All points on the convex hull $|\mathcal{H}(S_1)| = 14$

At least one point inside the convex hull

 S_2

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?
- \cdot Can H shatter some set of 3 points?
- \cdot Can H shatter some set of 4 points?

All points on the convex hull $|\mathcal{H}(S_1)| = 14$

At least one point inside the convex hull

 $S₂$

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- \cdot Can H shatter some set of 1 point?
- \cdot Can H shatter some set of 2 points?
- \cdot Can H shatter some set of 3 points?
- \cdot Can H shatter some set of 4 points?

All points on the convex hull $|\mathcal{H}(S_1)| = 14$

At least one point inside the convex hull

 $S₂$

- $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
	- Can H shatter some set of 1 point?
	- Can H shatter some set of 2 points?
	- Can H shatter some set of 3 points?
	- Can H shatter some set of 4 points? \searrow

All points on the convex hull

 $|\mathcal{H}(S_1)| = 14$ $|\mathcal{H}(S_2)| = 14$

At least one point inside the convex hull

 $\cdot x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

- \cdot $VC(\mathcal{H}) = 3$
	- \cdot Can H shatter some set of 1 point?
	- \cdot Can H shatter some set of 2 points?
	- \cdot Can H shatter some set of 3 points?
	- \cdot Can H shatter some set of 4 points?

All points on the convex hull $|\mathcal{H}(S_1)| = 14$ $|\mathcal{H}(S_2)| = 14$

At least one point inside the convex hull

 $\mathbf{x} \in \mathbb{R}^d$ and $\mathcal{H} =$ all d-dimensional linear separators

 \cdot $VC(\mathcal{H}) = d + 1$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = sign(x - a)$

 \cdot $VC(\mathcal{H}) = 1$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

What is $VC(\mathcal{H})$? A. 0 B. 1 C. 1.5 **(TOXIC)** $D.$ E. 3

Poll Question 1:

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

 \cdot $VC(\mathcal{H}) = 2$

VC-Dimension: Example

Theorem 3: Vapnik-**Chervonenkis** (VC)-Bound

 \cdot Infinite, realizable case: for any hypothesis set $\mathcal H$ such that $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies $M=0$ 1 ϵ $VC(\mathcal{H})$ log 1 ϵ $+$ log 1 δ

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

Statistical Learning Theory Corollary 3 \cdot Infinite, realizable case: for any hypothesis set $\mathcal H$ such that $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training dataset S where $|S| = M$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have

$$
R(h) \le O\left(\frac{1}{M}\left(VC(\mathcal{H})\log\left(\frac{M}{VC(\mathcal{H})}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)
$$

with probability at least $1 - \delta$.

Theorem 4: Vapnik-Chervonenkis (VC)-Bound

 \cdot Infinite, agnostic case: for any hypothesis set $\mathcal H$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M = O\left(\frac{1}{\epsilon^2} \Big(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\Big)\right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ have $|R(h) - \hat{R}(h)| \leq \epsilon$

Statistical Learning **Theory** Corollary 4 \cdot Infinite, agnostic case: for any hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training dataset S where $|S| = M$, all $h \in \mathcal{H}$ have

$$
R(h) \le \widehat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)
$$

with probability at least $1 - \delta$.

Approximation Generalization **Tradeoff**

How well does *generalize?* $R(h) \leq \widehat{R}(h) + 0$ 1 $\frac{1}{M}\Big(VC(\mathcal{H}) + \log \frac{1}{M}\Big)$ 1 δ How well does h approximate c^* ?

Approximation Generalization **Tradeoff**

Agrostic cases as for any hypothesis cases as $\mathit{VC}(\mathcal{H})$ increases $R(h) \leq \widehat{R}(h) + 0$ 1 $\frac{1}{M}\Big(VC(\mathcal{H}) + \log \frac{1}{M}\Big)$ 1 δ Decreases as $VC(\mathcal{H})$ increases

Can we use this corollary to guide model selection?

 \cdot Infinite, agnostic case: for any hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training dataset S where $|S| = M$, all $h \in \mathcal{H}$ have

$$
R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M} \left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)
$$

with probability at least $1 - \delta$.

Learning Theory and Model Selection

Learning Theory and Model Selection

- How can we find this "best tradeoff" for linear separators?
- Use a regularizer! By (effectively) reducing the number of features our model considers, we reduce its VC-dimension.

Learning **Theory** Learning **Objectives** You should be able to…

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples
- Theoretically motivate regularization

Recall: Probabilistic **Learning**

- Previously:
	- (Unknown) Target function, $c^* \colon \mathcal{X} \to \mathcal{Y}$
	- Classifier, $h: \mathcal{X} \rightarrow \mathcal{Y}$
	- Goal: find a classifier, h , that best approximates c^*
- Now:
	- \cdot (Unknown) Target *distribution*, $y \sim p^*(Y|\mathbf{x})$
	- Distribution, $p(Y|\mathbf{x})$
	- Goal: find a distribution, p , that best approximates p^*

Recall: Maximum Likelihood Estimation (MLE)

- Given independent, identically distributed observations (iid) $\mathcal{D} = \{ \mathcal{x}^{(i)} \}$ $i=1$ \overline{N} from a parametrized probability distribution, MLE sets the parameters by maximizing the likelihood of the data: $\theta^{MLE} = \text{argmax}$ θ $p(\mathcal{D} \mid \theta) = \text{argmax}$ θ $\mathbf I$ $\overline{i}=\overline{1}$ N_N $p\bigl(\mathbf{\chi}^{(i)}\bigm| \theta$
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*

Recall: Maximum Likelihood Estimation (MLE)

 Given independent, identically distributed observations (iid) $\mathcal{D} = \{ \mathcal{x}^{(i)} \}$ $i=1$ \overline{N} from a parametrized probability distribution, MLE sets the parameters by maximizing the *log*-likelihood of the data:

$$
\theta^{MLE} = \underset{\theta}{\operatorname{argmax}} \log p(\mathcal{D} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(x^{(i)} \mid \theta)
$$

· Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*

Bernoulli **Distribution** MLE

- \cdot A Bernoulli random variable takes value 1 with probability ϕ and value 0 (or tails) with probability $1 - \phi$
- The pmf of the Bernoulli distribution is

 $p(x|\phi) = \phi^x (1-\phi)^{1-x}$

Coin Flipping MLE

 A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1 - \phi$

 $\implies p(x|\phi) = \phi^x (1-\phi)^{1-x}$

- The pmf of the Bernoulli distribution is
- 10/23/23 **58** • Given N iid samples $\{x^{(1)},...,x^{(N)}\}$, the log-likelihood is $2CV$ = ,-# ,-# \sim 2, $log(\varphi^{\wedge})$ $l(-\phi)$) . $\sum_{\tau=1}^{\infty}$ \wedge \log \vee τ $\left(\frac{1}{\pi}\right)$ $= 7 x^{\lfloor \zeta \rfloor} \log \alpha$ where # is the number of 1's in # , … , . and 4 is \Rightarrow \Rightarrow \land

Coin **Flipping** MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1 - \phi$
- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- The partial derivative of the log-likelihood is λ $\mu = 1$ \downarrow $\overline{9}$ \overline{C} $\overline{}$ $\sqrt{1}$ $\overline{}$ \bigcap 1 $\overline{\wedge}$ δ + δ + δ \vee $\mathcal{L}_{\mathcal{A}}$ Jტ \Rightarrow ϕ $\Rightarrow M \wedge (1 - \lambda)^{2} M \wedge (1 - \lambda)^{3} M \Rightarrow M = M_{\circ} +$ \Rightarrow 10/23/23 **59**

Poll Question 2:

After flipping your coin 5 times, what is the MLE of your coin?

A. 0/5 B. 1/5 C. 2/5 D. 3/5 \overline{E} . $\pi/5$ **(TOXIC)** F. 4/5 G. 5/5

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1 - \phi$
- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- The partial derivative of the log-likelihood is

$$
\frac{N_1}{\hat{\phi}} - \frac{N_0}{1 - \hat{\phi}} = 0 \rightarrow \frac{N_1}{\hat{\phi}} = \frac{N_0}{1 - \hat{\phi}}
$$

$$
\rightarrow N_1(1 - \hat{\phi}) = N_0 \hat{\phi} \rightarrow N_1 = \hat{\phi}(N_0 + N_1)
$$

$$
\rightarrow \hat{\phi} = \frac{N_1}{N_0 + N_1}
$$

• where N_1 is the number of 1's in $\{x^{(1)},...,x^{(N)}\}$ and N_0 is the number of 0's

Maximum a **Posteriori** (MAP) Estimation

- **· Insight: sometimes we have** *prior* **information we want** to incorporate into parameter estimation
- \cdot Idea: use Bayes rule to reason about the *posterior* distribution over the parameters

 MLE Q_1 $\overline{}$ $\hat{\wedge}$ \sim \sim \sim \sim \sim $\overline{}$ \triangle \sqrt{V} / \sqrt{V} $U - U \odot$ $=$ argment $P(D|E)$ $=$ $\frac{1}{2}$ $\frac{1}{2}$ $10/23/23$ **61** $\alpha \in \mathbb{R}$ likelihood prior $\int i \text{ker}(r)$

Maximum a **Posteriori** (MAP) Estimation

1. Specify the *generative story*, i.e., the data generating distribution, including a *prior distribution*

- 2. Maximize the log-posterior of $\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$ $\ell_{MAP}(\theta) = \log p(\theta) + \sum$ $\overline{i=1}$ N_N $\log p(x^{(i)}|\theta)$
- 3. Solve in *closed form*: take partial derivatives, set to 0 and solve