10-301/601: Introduction
to Machine Learning
Lecture 15 — Learning
Theory (Infinite Case)
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Front Matter

10/23/23

* Announcements

* HWS5 released 10/9, due 10/27 (Friday) at 11:59 PM
* Exam 3 scheduled
* Tuesday, December 12t from 5:30 PM to 8:30 PM

* Sign up for peer tutoring! See Piazza for more details
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https://piazza.com/class/l6xoswmdxo10m/post/985

Recall -
Theorem 1:

Finite,
Realizable Case

10/23/23

* For a finite hypothesis set H such thatc* € H
(realizable) and arbitrary distribution p*, if the number

of labelled training data points satisfies

@ %(mqm) +In (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€



Recall -
Theorem 1:

Finite,
Realizable Case

10/23/23

* For a finite hypothesis set H such thatc* € H
(realizable) and arbitrary distribution p*, if the number

of labelled training data points satisfies

M = é(ln(l}[l) + In (%))

then with probability at least 1 — 6, all h € H with

R(h) = 0 have R(h) S@

- Making the bound tight and solving for € gives...



* For a finite hypothesis set H such that c* € H

(realizable) and arbitrary distribution p*, given a training

Statistical dataset S where |S| = M, all h € I with R(h) = 0 have
' 1 1
Learning R(h) < M(ln(l?—[l) +1n (E))

Theory
Corollary with probability at least 1 — 6.

10/23/23



Recall -
Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > T;z(ln(lﬂl) + In (;))

then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points



Statistical
Learning

Theory
Corollary

10/23/23

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset S where |S| = M, allh € H

have

R(h) < R(h) + % (ln(l}[l) +1n (%))

TN =

with probability at least 1 — 6.




* For a finite hypothesis set H and arbitrary distribution
p*, given a training data set S where |S| = M, allh € H

have

What happens

R(R) < R(h) + V % (ln(l}[l) +1In (%))

with probability at least 1 — 6.

when ?
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Labellings

10/23/23

* Given some finite set of data points S = {x1), ..., (™}

and some hypothesis h € H, applying h to each point in

S results in a labelling

. [h(x(l)), e h(x(M))] is a vector of M +1’s and -1’s
(recall: our discussion of PAC learning assumes

binary classification)

* Given § = {x(l), ...,x(M)}, each hypothesis in H

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
7#(S) = {[R(x®), ..., h(x™)] | n € 3}



Example: Labellings

H = {h1; h2' h3}
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Example: Labellings

H = {hli h2' h3}

[hy (x), hy (22), by (x(2)), Ry (x®)]
=(—-1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}

[hy (x), hy (22), by (x(2)), Ry (x®)]
=(—-1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}

[hy (x), hy (22), by (x(2)), Ry (x®)]
=(+1,+1,—-1,—-1)

10/23/23



Example: Labellings

H = {hl' hZi h3}

H(S)
= {[+1,+1,—-1,—-1],[-1,+1,—1,+1]}

[H (S| =2

10/23/23



Example: Labellings

H = {hl! hz, hB}

H(S)
={[+1,+1,—-1,—1]}

[H S| =1

10/23/23



VC-Dimension

10/23/23

* H(S) is the set of all labellings induced by Hon S

- If |S| = M, then | (S)| < 2M
- I shatters S if |H(S)| = 2M

* The VC-dimension of H, VC (H), is the size of the largest

set S that can be shattered by H.

* If H can shatter arbitrarily large finite sets, then
VC(H) = oo

* To prove that VC(H) = d, you need to show

1. 3 some set of d data points that H can shatter and
2. A asetofd+ 1data points that H can shatter

16



- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point? '\/

VC-Dimension:

Example

<
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- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

VC-Dimension:

Example ¢

_ L/\

S
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?

19



VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?

20



VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

* Can H shatter some set of 3 points?
<

21



VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

- What is VC (7)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?

22



VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?

23



VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

- Can H shatter some set of 3 points?\/

24



VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

®
°
o [ [ o
° °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
® ® [ o
O °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
o ® [ o
o °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
O O ® ®
o °
|H (S| =14 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
O
o @ ® ®
o O
|H (S| =14 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
o @ ® ®
o o
|H (S| =14 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

* What is VC(H)?
* Can H shatter some set of 1 point? N
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points? ~
* Can H shatter some set of 4 points? 7§

o
o
o @ ® ®
o o
[FH (S| =14 [F(S2)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example

10/23/23

- x € R? and I = all 2-dimensional linear separators

VC(H) =3

* Can H shatter some set of 1 point?

* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
o @ ® ®
o o
[FH (S| =14 [F(S2)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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* X E IRé and H = all d-dimensional linear separators

"VC(H)=d+1
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- x € Rand H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

VC-Dimension: « .

Example

10/23/23 34



VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

X+
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VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

X+
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

xD @

37



VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

xD @
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

x| @
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive rays, i.e., all

hypotheses of the form h(x; a) = sign(x — a)

"VC(H) =1
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive intervals

41



Poll Question 1:

What is VC(H)?

A.
B.
C. 1.5 (TOXIC)
D. .
E.

10/23/23

- x € Rand H = all 1-dimensional positive intervals
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VC-Dimension:

Example

10/23/23

- x € Rand H = all 1-dimensional positive intervals

“VC(H) =2
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

10/23/23

* Infinite, realizable case: for any hypothesis set H such

that ¢™ € H and arbitrary distribution p*, if the number

of labelled training data points satisfies fl

L~
M = 0”Z ! (VC(?—[) l J(l) +1 V/(l))
B €\ —— o5 € o5 o)
then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

T

44



Statistical
Learning

Theory
Corollary 3

10/23/23

* Infinite, realizable case: for any hypothesis set H such
that ¢™ € H and arbitrary distribution p*, given a training
dataset S where |S| = M, all h € H with R(h) = 0 have

=0 (ﬁ (vt 108 (i e5) + 108 (%)))
_/

— \/
with probability at least 1 — 6.
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Theorem 4:
Vapnik-

Chervonenkis
(VC)-Bound

10/23/23

* Infinite, agnostic case: for any hypothesis set H and
deTio>te L

arbitrary distribution p*, if the number of labelled

training data points satisfies

= 0(&(veen +10s(2)

then with probability at least 1 — 6, all h € H have
IR(h) —R(h)| < e

46



Statistical
Learning

Theory
Corollary 4

10/23/23

* Infinite, agnostic case: for any hypothesis set H and

arbitrary distribution p*, given a training dataset S
where |S| = M, all h € H have

R(h) <R(h)+0 V%(VC(JL[) + log (%))

with probability at least 1 — 6.

47



How well does
h generalize?

. . N J
Approximation Y |
Generalization ) 1 1
T deoff R(R) < 1;((1) +0 VM(VC(}[) +log (5))

s N

How well does h
approximate c¢*?

10/23/23 48



Increases as
VC(H) increases

: : N J
Approximation e

Generalization ) 1 N
T deoff R(h)Sli(\h)+0 VM(VC(H)Hog(E))
- N

Decreases as
VC(H) increases

10/23/23 49



Can we use
this corollary to

guide model
selection?

10/23/23

* Infinite, agnostic case: for any hypothesis set H and

arbitrary distribution p*, given a training dataset S
where |S| = M, all h € H have

R(h) <R(h)+0 V%(VC(JL[) + log (%))

with probability at least 1 — 6.

50



Learning
Theory and

Model
Selection

10/23/23

error
>

~ 1
R(h)+ 0 (VM(VC(H) +log(

N

)

r\/‘

%(VC(}[) +log(

\
. ()
/ R(h) (training error)

VC (%)

)

)

51



Learning
Theory and

Model
Selection

10/23/23

error

>

R(h)+o0 l(VC(?—[) + log (1))

\ M )
R(h) (true error)

o & (vew0+10e(3)

R(h) (training error)
|

>
Best tradeoff VE(H)

* How can we find this “best tradeoff” for linear separators?

 Use a regularizer! By (effectively) reducing the number of

features our model considers, we reduce its VC-dimension.

52



Learning
Theory

Learning
Objectives

10/23/23

You should be able to...

* Identify the properties of a learning setting and
assumptions required to ensure low generalization error

* Distinguish true error, train error, test error

* Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

- Apply sample complexity bounds to real-world machine
learning examples

- Theoretically motivate regularization

53



Recall:
Probabilistic

Learning

10/23/23

* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y

* Goal: find a classifier, h, that best approximates c*

* Now:

* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*

54



Recall:

Maximum
Likelihood

Estimation
(MLE)

10/23/23

* Given independent, identically distributed observations (iid)

~ N
D = {x(‘)}izl from a parametrized probability distribution,

IVILE sets the parameters by maximizing the likelihood of

the data: /

N
OMLE = argmaxp(D | 6) = argmaxl_[p(x(i) | 6)
0 o 1
i=1

S—

* Intuition: assign as much of the (finite) probability mass to

the observed data at the expense of unobserved data

55



Recall:

Maximum
Likelihood

Estimation
(MLE)

10/23/23

* Given independent, identically distributed observations (iid)

~ N
D = {x(‘)}izl from a parametrized probability distribution,

MLE sets the parameters by maximizing the log-likelihood
of the data:

N
OMLE = argmaxlogp(D | ) = argmaxz logp(x® | 89)
0 o
i=1

| S J

* Intuition: assign as much of the (finite) probability mass to

the observed data at the expense of unobserved data

56



Bernoulli

Distribution
MLE

10/23/23

* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — )™

57



* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

—> plx|p) =d*(1 — )™
* Given N iid samples {x(l) x(N)} the log-likelihood is

Cc.)in. £(¢> — Z_J éﬁ( Qt) \"XC\\>

Flipping =Y >
MLE N C\
(:;Z\' X 05 ¢ + (I-Xm) c§[ ¢4>

N

’Zx“\ljﬁ 220 Ol (4
k¢§)\\& U[rj("ﬁ)

58




* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|g) = p*(1 — p)'™*

* The partial derivative of the log-likelihood is
Coin L = N \QS & + No kOj C\"}é>
Flipping oL \J,| . C"D

MLE B ? t \)f-gs

> B2 Ny



Poll Question 2:

After flipping your coin
5 times, what is the MLE
of your coin?

. 0/5

. 1/5

. 2/5

. 3/5

. 1/5 (TOXIC)
. 4/5

. 5/5

10/23/23

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — )™

* The partial derivative of the log-likelihood is

Ny N N, N

b 1-¢ 6 1-6¢

- N1(1 - 43) = No$ = Ny = ¢(Ny + Ny)

Ny
No + N,

5=

- where N; is the number of 1’s in {x(l), ...,x(N)} and Ny is

the number of 0’s
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* Insight: sometimes we have prior information we want
to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior
distribution over the parameters

Maximum a MLE Lnds @: argmex ?CD\9>

Posteriori a O
(MAP) MAP Rds B -7 5(01D)
Estimation _ arg e ?(D‘@?@

A A
10/23/23 \ { \QL\:\'\.QGA p ({ar 61



Maximum a
Posteriori

(MAP)
Estimation

10/23/23

. Specify the generative story, i.e., the data generating

distribution, including a prior distribution

Maximize the log-posterior of D = {xV), ..., x(M)}

N
tuap(0) = logp(6) + ) logp(xV16)

1=1

. Solve in closed form: take partial derivatives,

set to 0 and solve
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