10-301/601: Introduction to Machine Learning Lecture 15 — Learning Theory (Infinite Case)

Henry Chai & Matt Gormley 10/23/23

Front Matter

- Announcements
 - HW5 released 10/9, due 10/27 (Friday) at 11:59 PM
 - Exam 3 scheduled
 - Tuesday, December 12th from 5:30 PM to 8:30 PM
 - Sign up for peer tutoring! See Piazza for more details
 - · Exam l'exit poll also on Piazza

Recall Theorem 1: Finite, Realizable Case

• For a *finite* hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ (*realizable*) and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$\underbrace{M} \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \le \epsilon$

Recall Theorem 1: Finite, Realizable Case

• For a *finite* hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ (*realizable*) and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M = \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \widehat{\epsilon}$

• Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a *finite* hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ (*realizable*) and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Recall Theorem 2: Finite, Agnostic Case

• For a *finite* hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy

$$\left| R(h) - \widehat{R}(h) \right| \le \epsilon$$

• Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points

Statistical Learning Theory Corollary

• For a *finite* hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \widehat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

• For a *finite* hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S where |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Labellings

- Given some finite set of data points $S = \{x^{(1)}, ..., x^{(M)}\}$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a <u>labelling</u>
 - $[h(x^{(1)}), ..., h(x^{(M)})]$ is a vector of M +1's and -1's (recall: our discussion of PAC learning assumes binary classification)
- Given $S = \{x^{(1)}, ..., x^{(M)}\}$, each hypothesis in \mathcal{H} induces a labelling but not necessarily a unique labelling
 - The set of labellings induced by ${\mathcal H}$ on S is

$$\mathcal{H}(S) = \{ \left[h(\mathbf{x}^{(1)}), \dots, h(\mathbf{x}^{(M)}) \right] \mid h \in \mathcal{H} \}$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$[h_1(x^{(1)}), h_1(x^{(2)}), h_1(x^{(3)}), h_1(x^{(4)})]$$

= (-1, +1, -1, +1)

 h_1

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$[h_1(x^{(1)}), h_1(x^{(2)}), h_1(x^{(3)}), h_1(x^{(4)})]$$

= (-1, +1, -1, +1)

 h_2

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$[h_1(x^{(1)}), h_1(x^{(2)}), h_1(x^{(3)}), h_1(x^{(4)})]$$

= (+1, +1, -1, -1)

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\mathcal{H}(S)$$
= {[+1, +1, -1, -1], [-1, +1, -1, +1]}

$$|\mathcal{H}(S)| = 2$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\mathcal{H}(S)$$

= {[+1, +1, -1, -1]}

$$|\mathcal{H}(S)| = 1$$

VC-Dimension

- $\mathcal{H}(S)$ is the set of all labellings induced by \mathcal{H} on S
 - If |S| = M, then $|\mathcal{H}(S)| \le 2^M$
 - \mathcal{H} shatters S if $|\mathcal{H}(S)| = 2^M$
- The <u>VC-dimension</u> of \mathcal{H} , $VC(\mathcal{H})$, is the size of the largest set S that can be shattered by \mathcal{H} .
 - If ${\mathcal H}$ can shatter arbitrarily large finite sets, then $V{\mathcal C}({\mathcal H})=\infty$
- To prove that $VC(\mathcal{H}) = d$, you need to show
 - 1. \exists some set of d data points that \mathcal{H} can shatter and
 - 2. $\not\exists$ a set of d+1 data points that \mathcal{H} can shatter

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can ${\mathcal H}$ shatter some set of 1 point? igcup

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can ${\mathcal H}$ shatter some set of 2 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

20

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

21

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter **some** set of 3 points?

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

VC-Dimension: Example

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

$$|\mathcal{H}(S_1)| = 6$$

$$|\mathcal{H}(S_2)| = 8$$

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

 S_2 At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

 S_2 At least one point inside the convex hull

10/23/23 **26**

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

 S_2 At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

 S_2 At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

 S_2 At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

 S_2 At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can ${\mathcal H}$ shatter some set of 1 point? \checkmark
 - Can ${\mathcal H}$ shatter some set of 2 points? \checkmark
 - Can ${\mathcal H}$ shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

$$|\mathcal{H}(S_2)| = 14$$

At least one point
inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- $VC(\mathcal{H}) = 3$
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

$$|\mathcal{H}(S_2)| = 14$$

At least one point
inside the convex hull

 $x \in \mathbb{R}^d$ and $\mathcal{H} = \text{all } d$ -dimensional linear separators

• $VC(\mathcal{H}) = d + 1$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

VC-Dimension: Example

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

VC-Dimension: Example

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

VC-Dimension: Example

VC-Dimension: Example

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $VC(\mathcal{H}) = 1$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

VC-Dimension: Example

Poll Question 1:

What is $VC(\mathcal{H})$?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

• $x \in \mathbb{R}$ and $\mathcal{H} = \text{all 1-dimensional positive intervals}$

• $x \in \mathbb{R}$ and $\mathcal{H} = \text{all 1-dimensional positive intervals}$

VC-Dimension: Example

• $VC(\mathcal{H}) = 2$

Theorem 3: Vapnik-Chervonenkis (VC)-Bound

• Infinite, realizable case: for any hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon} \left(\underbrace{VC(\mathcal{H})} \log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right) \right) \right)$$

then with probability at least $1-\delta$, all $h\in\mathcal{H}$ with $\widehat{R}(h)=0$ have $R(h)\leq\epsilon$

Statistical Learning Theory Corollary 3

• Infinite, realizable case: for any hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le O\left(\frac{1}{M}\left(VC(\mathcal{H})\log\left(\frac{M}{VC(\mathcal{H})}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Theorem 4: Vapnik-Chervonenkis (VC)-Bound

• Infinite, agnostic case: for any hypothesis set ${\cal H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon^2} \left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ have

$$|R(h) - \hat{R}(h)| \le \epsilon$$

Statistical Learning Theory Corollary 4

• Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Approximation Generalization Tradeoff

How well does h generalize?

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$$

How well does h approximate c^* ?

Approximation Generalization Tradeoff

Increases as $VC(\mathcal{H})$ increases $R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$ Decreases as $VC(\mathcal{H})$ increases

Can we use this corollary to guide model selection?

• Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Learning
Theory and
Model
Selection

51

Learning Theory and Model Selection

- How can we find this "best tradeoff" for linear separators?
- Use a regularizer! By (effectively) reducing the number of features our model considers, we reduce its VC-dimension.

Learning Theory Learning Objectives

You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples
- Theoretically motivate regularization

Recall: Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target distribution, $y \sim p^*(Y|x)$
 - Distribution, p(Y|x)
 - Goal: find a distribution, p, that best approximates p^*

Recall: Maximum Likelihood Estimation (MLE)

Given independent, identically distributed observations (iid)

 $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$ from a parametrized probability distribution,

MLE sets the parameters by maximizing the likelihood of the data:

$$\theta^{MLE} = \underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(x^{(i)} \mid \theta)$$

 Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data

10/23/23 55

Recall: Maximum Likelihood Estimation (MLE)

Given independent, identically distributed observations (iid)

 $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$ from a parametrized probability distribution, MLE sets the parameters by maximizing the *log*-likelihood of the data:

$$\theta^{MLE} = \underset{\theta}{\operatorname{argmax}} \log p(\mathcal{D} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(x^{(i)} \mid \theta)$$

• Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data

10/23/23 **56**

Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 with probability ϕ and value 0 with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

Coin **Flipping**

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

• Given N iid samples
$$\{x^{(1)}, ..., x^{(N)}\}$$
, the log-likelihood is
$$l(\phi) = \sum_{i=1}^{N} log(\phi^{X^{(i)}}(1-\phi)^{1-X^{(i)}})$$

$$= \sum_{i=1}^{N} x^{(i)} log(\phi + (1-x^{(i)}) log(1-\phi)$$

$$= \sum_{i=1}^{N} x^{(i)} log(\phi + \sum_{i=1}^{N} (1-x^{(i)}) log(1-\phi)$$

Coin Flipping MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1 - \phi)^{1-x}$$

 The partial derivative of the log-likelihood is L(B) = N, log & + No log (1-B)

Poll Question 2:

After flipping your coin 5 times, what is the MLE of your coin?

- A. 0/5
- B. 1/5
- C. 2/5
- D. 3/5
- E. $\pi/5$ (TOXIC)
- F. 4/5
- G. 5/5

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

The partial derivative of the log-likelihood is

$$\frac{N_1}{\hat{\phi}} - \frac{N_0}{1 - \hat{\phi}} = 0 \to \frac{N_1}{\hat{\phi}} = \frac{N_0}{1 - \hat{\phi}}$$

$$\rightarrow N_1(1-\hat{\phi}) = N_0\hat{\phi} \rightarrow N_1 = \hat{\phi}(N_0 + N_1)$$

$$\rightarrow \hat{\phi} = \frac{N_1}{N_0 + N_1}$$

• where N_1 is the number of 1's in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of 0's

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the posterior distribution over the parameters

MLE finds
$$\theta = argmax p(D10)$$

MAP finds $\theta = argmax p(O10)$

$$= argmax P(D10)P(0)$$

$$\Rightarrow P(D)$$

$$\Rightarrow P(D)$$

$$\Rightarrow P(D)$$

$$\Rightarrow P(D)$$

$$\Rightarrow P(D)$$

Maximum a Posteriori (MAP) Estimation

1. Specify the *generative story*, i.e., the data generating distribution, including a *prior distribution*

2. Maximize the log-posterior of $\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$

$$\ell_{MAP}(\theta) = \log p(\theta) + \sum_{i=1}^{N} \log p(x^{(i)}|\theta)$$

3. Solve in *closed form*: take partial derivatives, set to 0 and solve